Что будет, если подать в электросеть постоянный ток
Война токов завершилась, и Тесла с Вестингаузом, похоже, победили. Сети постоянного тока сейчас используются кое-где на железной дороге, а также в виде свервысоковольтных линий передачи.
Подавляющее большинство энергосетей работают на переменном токе. Но давайте представим, что вместо переменного напряжения с действующим значением 220 вольт в ваш дом внезапно стали поступать те же 220 В, но постоянного тока.
Театр начинается с вешалки, а наш электрический цирк — с вводного щитка.
Автоматы
И сразу хорошие новости: защитные автоматы будут работать как положено. Автомат имеет два расцепителя: тепловой и электромагнитный. Тепловой служит для защиты от длительной перегрузки. Ток нагревает биметаллическую пластинку, она изгибается и размыкает цепь.
Электромагнитный элемент срабатывает от кратковременного импульса тока при коротком замыкании. Он представляет собой соленоид, который втягивает в себя сердечник и, опять же, разрывает цепь. Обе эти системы прекрасно работают на постоянном токе.
источник картинки: выключатель-автоматический.
рф
Дополнения от Bronx и AndrewN:
Магнитный расцепитель срабатывает по амплитудному значению тока, то есть в 1,4 раза больше действующего. На постоянном токе его ток срабатывания будет в 1,4 раза выше. Дугу постоянного тока сложнее погасить, так что при коротком замыкании увеличится время разрыва цепи и ускорится износ автомата. Существуют специальные автоматы, рассчитанные на работу с постоянным током.
УЗО
Помимо автоматов, в щитке есть устройство защитного отключения (УЗО). Его цель — обнаруживать утечку тока из сети на землю, например при касании человеком токоведущих частей. УЗО измеряет силу тока в двух проводниках, проходящих через него. Если в нагрузку втекает такой же ток, что и вытекает — всё в порядке, утечки нет. Если же токи не равны, УЗО бьёт тревогу и разрывает цепь.
Чувствительный элемент УЗО — дифференциальный трансформатор. У такого трансформатора две первичные обмотки, включенные в противоположных направлениях. Если токи равны, их магнитные поля компенсируют друг друга и на выходе сигнала нет. Если токи не скомпенсированы, на выходе сигнальной обмотки появляется напряжение, на которое реагирует схема УЗО.
На постоянном токе трансформатор работать не будет, и УЗО окажется бесполезным.
Счетчик
Неважно, какой у вас электросчетчик — старый механический или новый электронный — работать он не будет. Механический счетчик представляет собой электродвигатель, где ротором служит металлический диск, а статор содержит две обмотки. Одна обмотка включена последовательно с нагрузкой и измеряет ток, вторая включена параллельно и измеряет напряжение.
Таким образом, чем больше потребляемая мощность, тем быстрее крутится диск. Работа такого счетчика основана на явлении электромагнитной индукции, и при постоянном токе в обмотках диск останется неподвижен. Электронный счетчик устроен по-другому.
Он напрямую измеряет напряжение (через резистивный делитель) и ток (при помощи шунта или датчика Холла), оцифровывает их, а затем микропроцессор пересчитывает полученные данные в киловатт-часы. В принципе, ничто не мешает такой схеме работать с постоянным током, но во всех бытовых счетчиках постоянная составляющая программно отфильтровывается и на показания не влияет.
Счетчики постоянного тока существуют в природе, их ставят, например, на электровозы, но в квартирном щитке вы такой не найдёте. Ну и ладно, не хватало ещё платить за всё это безобразие! Идём дальше по цепи и смотрим, какие электроприборы могут нам встретиться.
Нагревательные приборы
Тут всё прекрасно. Электронагреватель — это чисто резистивная нагрузка, а тепловое действие тока не зависит от его формы и направления. Электроплиты, чайники, кипятильники, утюги и паяльники будут работать на постоянном токе точно так же, как и на переменном. Биметаллические терморегуляторы (как, например, в утюге) тоже будут функционировать правильно.
Лампы накаливания
Старая добрая лампочка Ильича на постоянном токе чувствует себя не хуже, чем на переменном. Даже лучше: не будет пульсаций света, лампа не будет гудеть. На переменном токе лампочка может гудеть из-за того, что спираль (особенно, если она провисла) работает как электромагнит, сжимаясь и растягиваясь дважды за период. При питании постоянным током этого неприятного явления не будет.
Однако если у вас установлены регуляторы яркости (диммеры), то они работать перестанут. Ключевым элементом диммера является тиристор — полупроводниковый прибор, который открывается и начинает пропускать ток в момент подачи управляющего импульса. Закрывается тиристор, когда ток через него прекращает течь. При питании тиристора переменным током он будет закрываться при каждом переходе тока через ноль.
Подавая управляющий импульс в разное время относительно этого перехода, можно менять время, в течение которого тиристор будет открыт, а значит, и мощность в нагрузке. Именно так и работает диммер. При питании постоянным током тиристор не сможет закрыться, и лампа всегда будет гореть на 100% мощности. А возможно, управляющая схема не сможет «поймать» переход сетевого напряжения через ноль и не подаст импульс для открытия тиристора.
Тогда лампа не загорится совсем. В любом случае, диммер будет бесполезен.
Люминесцентные лампы
Люминесцентную лампу нельзя включать напрямую в сеть, для нормальной работы ей нужен пуско-регулирующий аппарат (ПРА). В простейшем случае он состоит из трёх деталей: стартёра, дросселя и конденсатора. Последний нужен не самой лампе, а остальным потребителям в сети, так как он улучшает коэффициент мощности и фильтрует помехи, создаваемые лампой.
Стартёр — это неоновая лампочка, один из электродов которой при нагреве изгибается и касается второго электрода. Дроссель — большая катушка индуктивности, включенная последовательно с лампой: Штатно всё это работает так: при включении зажигается разряд в стартёре, его контакты нагреваются и замыкаются между собой.
Ток течёт через нити накала лампы, отчего те разогреваются и начинают испускать электроны. В это время стартёр остывает и размыкает цепь. Ток резко падает, и за счет самоиндукции на дросселе появляется импульс высокого напряжения. Этот импульс зажигает разряд в лампе, и дальше он горит самостоятельно.
Дроссель теперь ограничивает ток разряда, работая как добавочное сопротивление. Что же будет на постоянном токе? Стартёр сработает, лампа зажжётся как положено, но вот дальше всё пойдёт наперекосяк. В цепи постоянного тока у дросселя не будет индуктивного сопротивления (только активное сопротивление проводов, а оно мало), а значит, он больше не сможет ограничивать ток.
Чем выше ток разряда, тем сильнее ионизируется газ в лампе, сопротивление падает, и ток растёт ещё сильнее. Процесс будет развиваться лавинообразно и закончится взрывом лампы.
Лампы с электронным ПРА
Электромагнитные ПРА просты, но не лишены недостатков. У них низкий КПД, дроссель громоздкий и тяжелый, гудит и нагревается, лампа загорается с диким миганием, а потом мерцает с частотой 100 Гц. Всех этих недостатков лишен электронный пускорегулирующий аппарат (ЭПРА). Как он работает? Если посмотреть схемы различных ЭПРА, можно заметить общий принцип.
Напряжение сети выпрямляется (преобразуется в постоянное), затем генератор на транзисторах или микросхеме вырабатывает переменное напряжение высокой частоты (десятки кГц), которое питает лампу. В дорогих ЭПРА есть схемы разогрева нитей и плавного запуска, которые продлевают срок службы лампы.
источник картинки: aliexpress.
com Схожую схемотехнику имеют как блоки для линейных ламп, так и компактные «энергосберегайки», которые вкручиваются в обычный патрон. Поскольку на входе ЭПРА стоит выпрямитель, можно питать всю схему постоянным напряжением.
Светодиодные лампы
Светодиод требует для работы небольшое постоянное напряжение (около 3.5 В, обычно соединяют несколько диодов последовательно) и ограничитель тока. Схемы светодиодных ламп весьма разнообразны, от простых до довольно сложных. Самое простое — последовательно со светодиодами поставить гасящий резистор. На нём упадёт лишнее напряжение, он же будет ограничивать ток. Такая схема имеет чудовищно низкий КПД, поэтому на практике вместо резистора ставят гасящий конденсатор. Он также обладает сопротивлением (для переменного тока), но на нём не рассеивается тепловая мощность. По такой схеме собраны самые дешёвые лампы. Светодиоды в них мерцают с частотой 100 Гц. На постоянном токе такая лампа работать не будет, так как для постоянного тока конденсатор имеет бесконечное сопротивление.
источник картинки: bigclive.com
Источник: https://habr.com/ru/post/372749/
Какой ток в розетке
Современные электроприборы сконструированы максимально дружелюбными к пользователю и чтобы их использовать совершенно не обязательно знать какой ток в розетке, куда они подключаются. Подобные познания могут никогда не пригодится в повседневной жизни – обычно достаточно знать, что в розетке есть ток, благодаря которому работают все бытовые приборы.
Где могут пригодиться знания по электричеству
Хорошо если вопросы о принципах работы электроприборов возникают просто из «спортивного интереса». Хуже бывает в случае поездки в другую страну, где неподготовленные путешественники с удивлением обнаруживают розетки незнакомого типа. Если до этого человек обращал внимание на надписи возле «своих» розеток, то в «чужих» может оказаться другая частота и напряжение. Для понимания почему так происходит, надо хотя бы в общих чертах ознакомиться с основами электротехники.
Сразу необходимо оговориться, что все рассказанное ниже дано в очень упрощенном и утрированном виде. Некоторые аналогии могут полностью не отражать все происходящие в электропроводке процессы и даны исключительно для общего их понимания.
Постоянный и переменный ток
Это одна из важнейших характеристик электрического тока. Каждый электроприбор рассчитан под определенный его вид и при неправильном подключении в лучшем случае просто не будет работать.
Любой из этих токов создается электромагнитным полем, что заставляет двигаться свободные электроны в металлах или других проводниках. Но при постоянном они все время летят в одну сторону, а переменный ток дергает их туда-сюда.
В любом случае они двигаются и совершают работу, но устройства для преобразования электрической энергии в механическую приходится делать разными.
То есть электродвигатель, к примеру, можно сделать как от постоянного, так и от переменного тока, но первый нельзя включать во вторую цепь.
Если большинство электроприборов работает от постоянного тока, то для передачи электроэнергии на большие расстояния выгоднее использовать переменный – он не так чувствителен к сопротивлению проводников. Поэтому не может быть двух мнений по поводу какой ток в бытовой розетке: постоянный или переменный – всегда используется второй вариант.
В этом видео описываются исторические предпосылки использования переменного тока в электросетях:
Фаза и ноль
Эти понятия относятся исключительно к переменному току. Принято считать, что фаза в розетке является аналогом плюса постоянного тока, а ноль – минуса, поэтому ноль «не бьется», если до него дотронуться.
На самом деле все несколько сложнее – в переменном токе плюс и минус постоянно меняются местами, поэтому в замкнутой цепи (при подключенной нагрузке) по нолю тоже протекает ток.
Но дело в том, что он действительно не бьется, даже если брать его голыми руками – при электромонтажных работах ищут где находится фаза в розетке и в обязательном порядке изолируют этот провод, а остальные без особой опаски оставляют оголенными.
В правильно подключенной и нормально работающей электропроводке ноль не бьет человека током потому что применяется так называемая схема подключения потребителей с глухозаземленной нейтралью. Это значит, что нулевой провод на подстанции и в месте ввода в дом заземлены и ток, если он есть в проводе, проходит «мимо» человека.
Есть ряд условий, при которых нулевой провод может ударить током. Если нет соответствующего опыта обращения с электропроводкой, не стоит рассчитывать на то, что нуль всегда безопасен.
Заземление
Розетка без провода заземления не редкость для старых домов, потому что раньше в быту практически не использовались мощные электроприборы. Современные требования к безопасности электроприборов гораздо жестче, поэтому розетки устанавливаемые без заземления просто не могут быть использованы даже в проекте.
Смысл заземления в дополнительной защите. Если используется розетка без защитного заземления, то в большинстве случаев корпус приборов подключен к рабочему нолю.
Как итог – если фаза попадает на корпус устройства (при пробое изоляции), то происходит короткое замыкание и выбивает защитные пробки. Это приводит к порче прибора, и сравнительно безопасно для человека, при одном условии – если он на момент замыкания не касался устройства.
В противном случае, пока не сработает защита, человека бьет ток короткого замыкания, который в десятки раз выше номинального.
Розетки с заземлением разделяют ноль на рабочий, необходимый для функционирования устройства, и защитный. Корпус теперь, соединен с заземлением, а ноль работает в штатном режиме.
Если на корпус попадает фаза, то розеточный заземляющий контакт «уводит» ее от человека, даже если он на этот момент касается устройства, а защитная автоматика выключает питание.
Человека током не бьет, короткого замыкания не происходит и устройство по возможности остается в сохранности. Остается только найти место где повредилась изоляция и устранить неисправность.
Розетка без исправного заземления будет работать точно так же как и с ним, но при возникновении нештатной ситуации не сможет обеспечить должную защиту подключенным устройствам и человеку.
Как итог, вопроса что лучше ставить – розетки работающие без заземления или все-таки с ним, не существует – ПУЭ однозначно требуют поставить устройство второго типа.
Напряжение электрического тока
путь тока от электростанции (кликните для увеличения)
Если не использовать такие научные термины как «напряженность электрического поля» и «разность потенциалов», то понять какое напряжение в сети и почему оно именно такое помогут следующие аналогии:
Потенциальная и кинетическая энергия – пример очень упрощенный, но смысл в том, что напряжение показывает, какие силы могут быть задействованы при перемещении электрического заряда. Главное отличие в том, что потенциальная энергия переходит в кинетическую, а напряжение всегда стабильно.
Использовать эту аналогию можно потому, что пока в розетку не включен никакой прибор, то в ней есть напряжение, готовое начать двигать заряженные частицы, но нет электрического тока.
Движение электрического тока начинается только при подключении к проводам нагрузки (или при замыкании ноля и фазы).
Чем больше напряжение, тем выше его «проталкивающая» способность – это значит, что при достаточно больших его значениях ток «пробьет» диэлектрик между проводами.
В обычных условиях диэлектриком между проводами является воздух, поэтому чем больше напряжение, тем выше вероятность возникновения молнии (замыкания) между ними.
Это свойство используется в пьезозажигалках и механизмах розжига промышленных печей, только в первых расстояние между контактами 0,5 мм и напряжение в несколько Вольт, а во втором случае – между контактами 10-15 сантиметров, а напряжение около 10 тысяч Вольт.
От напряжения зависит насколько удобно передавать ток на большие расстояния – чем оно больше, тем меньше потерь.
Для линий электропередач между городами используется напряжение 150-600 тыс. Вольт, в пригороде это 4-30 тыс. Вольт, а у потребителей напряжение в розетке уже 100-380 Вольт. В разных странах действуют свои стандарты, поэтому перед поездкой стоит уточнять этот момент.
Частота электрического тока
Один из параметров переменного тока, показывающий сколько раз за секунду он поменяет направление движения от плюса к минусу. Полный цикл изменений – от ноля к плюсу, затем к минусу и обратно к нолю называется Герц. Во всем мире используется два стандарта частоты – 50 и 60 Герц.
От частоты, как и от напряжения, зависят потери тока при его передаче – чем выше частота, тем меньше потерь. Поэтому первый вариант используется при напряжении сети около 220 Вольт, а второй – при 110.
Частота тока зависит от того, с какой скоростью крутятся генераторы на вырабатывающих электричество станциях. Она всегда остается неизменной – в отличие от напряжения допускается погрешность в 0,5-1 Герц.
Сила тока
розетка на 16а (кликните чтобы увидеть надпись на крышке)
На крышке розетки можно увидеть надпись 6, 10 или 16А. Это не значит, что сила тока в розетке будет достигать таких величин – это максимальные его значения, на которые рассчитаны розеточные контакты. Соответственно, чтобы узнать, какая сила тока, а точнее – сколько ампер в розетке на данный момент, следует установить в электрическую цепь измерительное устройство – амперметр.
Примерно силу тока можно высчитать, если известна мощность устройства – по формуле I=P/U (напряжение в сети известно – на постсоветском пространстве это 220 Вольт).
К примеру, если электрочайник потребляет 2000 Ватт, то надо 2000 разделить на 220. Получается примерно 9 Ампер – сила тока, в 18 раз большая чем нужно, чтобы убить человека.
Сложнее подсчитать ампераж, к примеру, компьютера. Во-первых, при его работе в сеть включено сразу несколько устройств. Во вторых – энергосберегающие технологии используют ресурсы процессора по минимуму, разгоняя его только при решении сложных задач. Поэтому сила тока будет периодически изменяться.
Это все основные характеристики электрического тока, которые достаточно знать, чтобы получить про него хотя бы общее представление. При поездке в другую страну, где могу действовать иные нормативы, достаточно будет выяснить какие там в сети напряжение и частота. Если они отличаются от тех, на которые рассчитана зарядка телефона (или другие устройства, которые могут быть взяты в поездку), то дополнительно придется решать, как быть в этой ситуации.
Источник: https://yaelectrik.ru/jelektrojenergija/kakoj-tok-v-rozetke
Постоянный и переменный ток
В 21-веке электроника стала очень популярной. Многие люди хотят узнать больше о радиотехнике и начинают читать специальные книги, хотя многое в книгах не понятно. И поэтому начинают путаться, задавать много вопросов. Не могут найти подходящие и понятные сайты о электронике, где можно вкратце и просто понять что к чему. Но что-то мы далеко ушли, ладно давайте приступим к делу. Задача — рассказать всё подробнее и понятнее о постоянном и переменном токе.
Постоянный ток
До того времени, когда не было радиоприёмников и радиосвязи, был ток который тёк в одну сторону — его назвали постоянным, на графике он изображается прямой линией, как показано на рисунке ниже.
Давайте разберёмся, каков принцип работы этого тока, а он очень прост. Потому что постоянный ток течёт только в одну сторону. На мощных электростанциях вырабатывается переменный ток, его нужно сделать в постоянный. Постоянный ток может создать только гальванический элемент.
Гальванический элемент — это элемент вырабатывающим постоянный ток, то есть обычная батарейка. Принцип работы батарейки разбирать не будем, нам сейчас главное, чтобы в вашей памяти уложился только постоянный и переменный ток.
Допустим, мы выработали постоянный ток, он начнёт двигаться от плюса к минусу, это обязательно запомнить.
Переменный ток
Теперь переходим к переменному току, всё радиосвязь появилась, переменный ток стал изюминкой. Рассмотрим график переменного тока. Вы сразу обратили внимание на эти странные буквы, они нам не нужны, кроме одной – Т. У переменного тока есть особенность, он может менять своё направление, например: он, движется то в одну сторону, потом в другую. Этот процесс называется колебанием или периодом. На рисунке период обозначен этой самой буквой Т.
Видно, что выше оси t волна, и ниже её, тоже волна. Это значит, что выше оси это движение к плюсу, а ниже, движение к минусу, проще говоря, это положительный полупериод, почему полупериод, потому что два полупериода равны T, то есть равны периоду, значит они всё таки полупериоды. Период — то же самое, что и колебание. Несколько колебаний совершённые в 1 секунду называют частотой.
Итак, разобрались, что такое постоянный и переменный ток, думаю что разобрались.
Запомните: В розетке всегда 220 В переменного тока — он очень опасный. Один удар может даже убить человека, поэтому соблюдайте осторожность!
В памяти у вас должно отложиться: движение постоянного и переменного тока; графики постоянного и переменного тока; что такое частота, полупериод, период.
Кстати забыл сказать, в чём измеряется частота. Запомните: частота измеряется в Герцах. Допустим, совершается 50 колебаний в секунду, это значит что частота равна 50 герц. Таким образом можно определять любые другие значения. Всем пока, с вами был Дмитрий Цывцын.
Справочники радиодеталей
Источник: https://elwo.ru/publ/spravochniki/postojannyj_i_peremennyj_tok/2-1-0-903
Сила тока в сети: как узнать, сколько ампер в квартире, и какой ток в розетке – переменный или постоянный?
Человек, хоть частично знакомый с электричеством, знает какой ток протекает в розетке – переменный или постоянный. Но большинство граждан, которые пользуются благами электричества ежедневно, не задумываются об этом, и зря. Ответ на вопрос прост, ведь практически вся производимая электроэнергия относится к переменному току.
Какой ток в розетках постоянный или переменный?
98% вырабатываемой энергии – это переменный ток, и домашняя проводка не исключение. Переменный ток – это тот, который периодически изменяет величину и направление. Частота измеряется в Герцах (период изменения в секунду).
Переменный ток производить намного легче чем постоянный, также не вызывает сложностей передача на большие расстояния. При передачи электроэнергии величина напряжения может как увеличиваться, так и уменьшаться неоднократно, поэтому розетки делаются для переменного значения.
Но также существуют электронные приборы, которые питаются постоянным током, и их нужно приводить к одному типу.
Преимущества:
- легко передавать на большие расстояния;
- простое генераторное оборудование, упрощение устройства электродвигателей;
- отсутствие полярности.
Недостатки:
- расчеты проводятся на максимальное значение, по факту используется не более 70%;
- электромагнитная индукция, приводящая к неравномерному распределению электричества по сечению проводника;
- сложность проверки и измерения параметров;
- увеличивается сопротивление, так как используется не весь кабель.
Для чего нужно знать сколько ампер в розетках в квартире
Сила тока измеряется в Амперах (А). Знать этот показатель необходимо, так как розетки различаются по нему.
Стандартные современные розетки рассчитаны на 6, 10 и 16 А. У советских приборов максимальный номинал равен 6,3 А. Для потребителей с повышенной мощностью выбирают соответствующие розетки, у которых повышенная стойкость к большим значениям.
Знание основ электротехники пригодится при поездке в другую страну. У государств могут различаться стандарты частоты и напряжений, и невозможно будет подключить привезенные с собой приборы к местной сети. Каждая розетка имеет маркировку, на которой указана максимальная сила тока.
Сила тока в розетке
Стандартами частоты в России и европейских странах является 50 Гц, в Америке – 60 Гц. Сила тока в квартирах ограничивается 16 Амперами, в частных загородных домах это значение может достигать 25 А.
Токовые измерения проводят различными способами. Можно опытным путем – подключить прибор в розетку, и если он функционирует – электроэнергия есть. Существуют мультиметры, которые замеряют значения, контрольные лампы, тестеры и индикаторы напряжения.
220 В
Номинальным напряжением в домашней сети является 220В, но на практике это значение может варьироваться. Отклонения до 20-25 Вольт.
На этот показатель влияют:
- техническое состояние,
- нагрузки сети,
- загруженность электростанций.
Более 220 В
Для силовой электрической техники используются трехфазные сети, которые питаются напряжением 380 Вольт и выше. Чаще всего их можно встретить в электротранспорте – трамваях, троллейбусах, электричках. Для такого напряжения токовая нагрузка составляет до 32 А.
Сколько ампер в розетке 220В
Домашние розетки делаются на разную силу тока, которую она способна пропустить. Наибольшее значение – 16 А для напряжения в 220 Вольт. Каждая электророзетка промаркирована – если отмечено значение 6 А, то суммарная подключаемая нагрузка не более этого числа.
Нагрузка которую может выдержать соединение определяется по сумме подключенных электроприборов. Например микроволновая печь, стиральная машина подключаются через отдельные розетки не менее чем на 16 А, а для осветительных приборов, телефонов требуются устройства с меньшим номиналом.
Живя в ХХІ веке, используя блага научных открытий, человеку обязательно знать тип и величину тока, протекающего в домашней сети. Без этой информации невозможно купить электророзетку, правильно рассчитать нагрузку для электроприборов. Стандарты различаются для разных стран, и это стоит учитывать при поездке в другое государство.
Источник: https://elektrika.expert/rozetki/kakoj-tok-v-rozetke.html
25.13 Постоянный и переменный ток — история великой битвы
Электроэнергия в современном мире существует в двух видах. Одна её ипостась – постоянный ток, а вторая – переменный. Разница между ними принципиальная и то, что доступно одному виду электричества, недоступно другому.
Так, постоянный ток известен людям очень давно, а переменный был поставлен человеком на службу цивилизации буквально сегодня по историческим меркам.
Данная статья посвящена рассмотрению различий и мест применения электроэнергии с постоянной и переменной составляющей.
Постоянный ток, его происхождение и применение
С источниками постоянного тока мы сталкиваемся ежесекундно. Когда вы читаете эту статью с экрана своего монитора, в том, что вы различаете буквы, есть заслуга постоянного тока. Именно от источников постоянного тока запитан компьютер и все его микросхемы.
Именно перепадами между уровнями сигнала, соответствующим нулю и единице, мы обязаны существованию цифровой вселенной.
Постоянный ток протекает в фонарике и мобильном телефоне, в автомобиле и множестве других устройств бытового и специального назначения, где есть хоть один транзистор или диод.
Вместе с тем, способы получения и применение постоянного тока были известны еще во времена Древнего Мира. Археологами, производящими раскопки в долине Евфрата, были найдены странные керамические сосуды в жилище некоторых ювелиров. Сосуды имели устройство, схожее с гальванической батареей и соединялись между собой медной проволокой.
Каково же было удивление археологов, когда они ради эксперимента заполнили один из сосудов кислотой и получили на его полюсах потенциал, равный полутора вольтам! Оказалось, что блоки батарей древние ювелиры применяли для гальванического покрытия ювелирных изделий различными металлами, что и подтвердили готовые образцы изделий, которые часто попадались ученым ранее.
Есть гипотезы, говорящие в пользу того, что при строительстве пирамид в Египте использовали электричество для освещения залов и коридоров в тех местах, где наносили росписи барельефы.
Ученые спорят до сих пор по этому поводу, так как есть предположение о том, что свет подавали при помощи системы зеркал с поверхности. Как бы то ни было, но следов копоти на стенах древних залов с росписями не обнаружено и это факт, который остается необъяснимым до сих пор.
Ясно одно, что шумеры умели пользоваться электричеством, а жили они раньше египетской цивилизации.
В современном понимании постоянный ток возникает в замкнутой цепи, состоящей из источника постоянного тока, например, аккумуляторной или химической батареи, проводников и нагрузки.
В качестве нагрузки может выступать материал с электрическим сопротивлением, гораздо большим, нежели сопротивление проводников, замыкающих электрическую цепь.
Это может быть лампочка с вольфрамовой спиралью или реостат из нихромовой проволоки или любая другая нагрузка, сопротивление которой имеет значение, отличное от нуля.
Получают постоянный ток различными способами. Самый древний из них – химический, основанный на возникновении разницы потенциалов между проводниками из разных материалов, помещенных в кислотную или щелочную среду.
Химические батареи и аккумуляторы используются людьми не одно тысячелетие и сегодня они в ходу, только в очень усовершенствованном виде по сравнению со своими древними предками.
Более современные источники постоянного тока – фотоэлементы, позволяющие получать разницу потенциалов при облучении их Солнцем и генераторы постоянного тока, которые приводят в действие при помощи механической энергии, прилагаемой снаружи. Сегодня генераторы постоянного тока наиболее распространены в ветроустановках с преобразователем напряжения.
Постоянный ток движет поезда на железной дороге. Электрифицированные участки сегодня составляют значительную величину по протяженности в нашей стране. Постоянный ток применяют и для передачи на большие расстояния значительных мощностей электрической энергии при сверхвысоких потенциалах.
При всей широте применения постоянного тока имеются значительные ограничения, которые препятствуют использованию его в повседневной деятельности для питания бытовых приборов и промышленных установок.
Связано это с большими потерями на омическое сопротивление в проводниках, что сказывается самым негативным образом на работе осветительного и прочего оборудования.
Для того чтобы снизить потери, необходимо применять проводники большего сечения, причем, альтернативы меди здесь практически нет. А медные провода весьма дороги.
Это препятствие заставило ученых искать иные способы получения и передачи электроэнергии на любые расстояния практически без потерь. Ныне в этой области человеческой деятельности главную роль играет переменный ток.
Переменный ток — происхождение и применение
Появление генераторов и систем передачи энергии переменного тока стало одним из важнейших достижений девятнадцатого века. При этом научные изыскания в этой сфере велись с самого начала столетия.
В основу исследований были положены теоретические расчеты, которые показывали, что переменное магнитное поле должно вызывать переменное электрическое поле, которое в свою очередь вызывает снова переменное магнитное поле и процесс этот может протекать до бесконечности.
При значительной частоте колебаний образуются электромагнитные волны, способные свободно распространяться в пространстве, а при незначительной частоте почти вся энергия остается в проводнике, по которому происходит её передача.
Самый простой способ возбудить электрические колебания с переменной амплитудой напряжения – перемещать постоянный магнит внутри рамки с изолированным проводом. При этом, чем больше количество витков в рамке и чем мощнее магнит, тем выше максимальное значение амплитуды напряжения, которое может зарегистрировать вольтметр на зажимах обмотки рамки.
Важной особенностью переменного напряжения является смена полярности при прохождении магнита в обратную сторону. А так же прохождение нулевой отметки значения амплитуды напряжения при смене полярности.
Такое поведение напряжения, а значит и тока при подключении нагрузки, позволяет очень легко преобразовывать переменное напряжение в другие величины при помощи трансформаторов, что открывает отличные перспективы для передачи практически без потерь значительных мощностей на любые расстояния, что недостижимо для установок постоянного тока, кроме работающих на сверхвысоких напряжениях.
Первые генераторы переменного тока были разработаны Теслой и Эдисоном. Тесла разработал трехфазную схему производства и передачи электроэнергии на большие расстояния. Он же предложил принцип трансформации напряжения в зависимости от решаемых задач.
Так, для потребления электроэнергии конечными установками он предложил ввести переменное напряжение частотой 50 или 60 Гц с амплитудой 110, 127 или 220 вольт, а для передачи на большие расстояния рекомендовал повышать напряжение до 10 тысяч вольт и выше.
При высоких напряжениях для передачи по проводнику одинаковой мощности требуется меньший ток, а чем он меньше, тем меньше потери в проводнике. Поэтому сегодня в линии электропередач подают переменное напряжение с амплитудой до 330 кВ.
Простое преобразование напряжений открывает очень широкие возможности для прямого использования переменного тока.
Так, существующие асинхронные трехфазные и однофазные двигатели, осветительные приборы, обогреватели и многие другие бытовые приборы могут работать непосредственно от сети, а более сложная радиотехника и устройства с автоматикой, требующие для работы наличие постоянного напряжения, приспособлены для получения его прямо на месте из переменного сетевого напряжения. Так сводят к минимуму потери постоянного тока в проводниках.
К сожалению, на сегодняшний день в мире нет единого сетевого напряжения.
Так, для стран Европы и России принят стандарт 230 вольт при частоте 50 Гц, Северная Америка осталась верна напряжению 127 вольт при частоте 60 Гц, в Японии можно встретить и то, и другое напряжение, а в некоторых странах до сих пор в ходу генераторы, вырабатывающие напряжение 100 вольт при частоте 50 Гц.
Поэтому, отправляясь в путешествие, сегодня кроме погоды и особенностей национальной кухни в стране пребывания туристов интересует напряжение и частота в сети переменного тока. Ведь в эпоху цифровых технологий важно иметь возможность зарядить свой ноутбук, мобильный телефон и фотоаппарат, чтобы запечатлеть и поделиться с друзьями всеми моментами своего путешествия.
Перспективы совместного существования переменного и постоянного тока
Ученых и практиков от электротехники давно занимает вопрос соединения воедино положительных качеств переменного и постоянного тока. Подобные решения стали возможны, благодаря появлению мощных импульсных полупроводниковых вентилей.
Сегодня ни у кого не вызывают удивления инверторные устройства, преобразующие постоянное напряжение в переменное, промышленной частоты, и наоборот.
Импульсные источники питания в радиоэлектронной аппаратуре и компьютерной технике стали компактными и мощными, в десятки раз более эффективными по сравнению с источниками питания на обычных трансформаторах.
Сегодня можно утверждать о настоящей революции в сварочном деле, которая произошла благодаря появлению инверторов, значительно облегчивших в прямом и переносном смыслах сварочные аппараты и процессы.
Теперь даже те виды сварки, которые считались прерогативой закрытых оборонных предприятий стали доступны любому сварщику, а стоимость производства таких работ, как аргонно-дуговая сварка и полуавтоматическая сварка значительно снизилась.
Доступные по цене, легкие переносные сварочные аппараты, которые можно запитывать от обычной розетки в любой квартире, дали возможность проявить свой творческий потенциал многим любителям и профессионалам работы с металлом.
Не менее впечатляющими достижениями импульсной техники могут похвастаться производители источников бесперебойного питания, сетевых импульсных стабилизаторов напряжения, систем получения электроэнергии от альтернативных источников с возможностью аккумулирования и последующего преобразования запасенной энергии при возникновении потребности. Возможности импульсной техники изучены и использованы далеко не полностью. Мы в самом начале этого пути единения постоянного и переменного тока. Совсем не за горами автомобили на электричестве и прочие чудеса, которые станут явью с внедрением новых открытий и разработок в области импульсных источников электроэнергии.
Источник: http://5sklad.ru/kabel-i-elektroarmatura-sistemy-obogreva/postoyannyj-i-peremennyj-tok-istoriya-velikoj-bitvy/
В розетке постоянный ток или переменный?
> Выключатели и розетки > В розетке постоянный ток или переменный?
Люди давно привыкли к благам электричества и многим все равно, какой ток в розетке. На планете 98% вырабатываемой электроэнергии – это переменный ток. Его намного легче производить и передавать на значительные расстояния, чем постоянный. При этом напряжение может многократно изменяться по величине в сторону понижения и повышения. Сила тока существенно влияет на потери в проводах.
Передача электроэнергии на расстояние
Параметры домашней сети всегда известны: переменный ток, напряжение 220 вольт и частота 50 герц. Они подходят преимущественно для электродвигателей, холодильников и пылесосов, а также ламп накаливания и многих других приборов.
Многие потребители работают при постоянном напряжении в 6-12 вольт. Особенно это относится к электронике. Но питание приборов должно приводиться к одному типу.
Поэтому для всех потребителей ток в розетке должен быть переменным, с одним напряжением и частотой.
Различие между токами
Переменный ток периодически изменяется по величине и направлению. С генераторов электростанции выходит переменный ток с напряжением 220-400 тыс. вольт. До многоэтажного дома оно снижается до 12 тыс. вольт, а затем на трансформаторной подстанции преобразуется до 380 вольт.
Ввод в частный дом может быть трехфазным или однофазным. Три фазы заходят в многоэтажный дом, а затем в каждую квартиру с межэтажного щитка, через пакетный выключатель снимается 220 вольт между нейтральным проводом и фазой.
Схема подключений в квартире от однофазной сети переменного тока
В квартире напряжение подается на счетчик, а с него поступает через отдельные автоматы на соединительные коробки каждого помещения. С коробок делается разводка по комнате на две цепи осветительных приборов и розеток. В схеме рисунка на каждое помещение приходится по одному автомату. Возможен другой способ подключений, когда на осветительную и розеточную цепи устанавливается по одному защитному устройству.
В зависимости от того, на сколько ампер рассчитана розетка, она может быть в группе или к ней подключается отдельный автомат. Постоянный ток отличается тем, что его направление и свойства не изменяются со временем. Он применяется во всей электронике дома, светодиодной подсветке и в бытовых приборах. При этом многие не знают, какой ток в розетке.
Он приходит из сети переменным, а затем преобразуется в постоянный внутри электроприборов, если в этом есть необходимость.
Если сделать схему снабжения квартиры постоянным током, обратное его преобразование в переменный обойдется значительно дороже.
Преобразователь постоянного тока
Параметры розеток
Как расположить розетки на кухне
Определяющими характеристиками для розеток являются уровень защиты и контактная группа. Для хозяина квартиры при выборе розетки необходимо учитывать:
- место установки: внешняя, скрытая, в помещении или снаружи;
- форма и соответствие друг другу вилки и розетки, безопасность использования;
- характеристики сети, особенно, сколько ампер через нее может проходить.
Требования к штепсельным соединениям
Для подключения электроприбора к сети розетка с вилкой являются соответственно источником и приемником энергии, образуя штепсельное соединение. К нему предъявляются следующие требования.
- Надежный контакт. Слабое соединение приводит к разогреву и выходу его из строя. Важно также обеспечить надежную фиксацию от самопроизвольного отключения. Здесь удобно применять пружинящие контакты в розетке.
- Изоляция токонесущих частей друг от друга.
- Защита от прикосновения руками или разными предметами к деталям, находящимся под напряжением. Для защиты от детей в розетках предусматриваются специальные шторки, открывающиеся только тогда, когда вставляется вилка.
- Обеспечение полярности при подключении. Это важно, если через соединение течет постоянный ток или устройство применяется в сочетании с однополюсным выключателем. Конструкция розетки не допускает неправильного подключения.
- Наличие заземления для приборов 1 класса защиты. В розетках важно правильно подключить заземление.
Виды розеток
Как перенести розетку в другое место
В зависимости от условий эксплуатации розетки выполняют с разными уровнями защиты, которые обозначаются кодом IP и следующими за ним двумя числами. Первое (0-6) означает, насколько устройство не допускает попадание внутрь предметов, пыли и т.п. Следующее (0-8) предусматривает защиту от воды. Если розетка обозначена кодом IP68, значит, она имеет самую высокую защиту от внешних воздействий.
По типам изделия обозначаются латинскими буквами. Отечественные выпускаются без заземления (С) и с заземлением (F).
Приборы группы AC (~) предназначены для переменного тока. Постоянный ток обозначается DC (-).
Главным показателем является сила тока, которая допускается для той или иной розетки. Если на ней есть обозначение 6 А, то суммарная подключаемая нагрузка не должна превышать указанного количества ампер. При этом не имеет особого значения, переменный ток через нее проходит или постоянный.
Сколько нагрузки выдержит соединение, оценивают по общей мощности всех подключенных приборов. Для таких потребителей, как микроволновая печь, посудомоечная или стиральная машина используются отдельные розетки не менее чем на 16 ампер с обозначением типа тока.
Особое место занимает электроплита, для которой сила номинального тока составляет 25 ампер или больше. Ее следует подключать через отдельное УЗО. За основу берется номинальный ток – количество ампер, которое способна пропустить розетка в течение длительного времени.
Ампер – это единица измерения, по которой измеряется сила тока. Если указана только паспортная мощность, допустимый ток составит I = P/U, где U = 220 вольт. Тогда при мощности 2200 ватт сила тока будет равна 10 ампер.
Обратите внимание на подключение к розеткам электроприборов через удлинители. Здесь легко можно ошибиться с определением, сколько потребуется суммарной мощности нагрузки. Кроме того, удлинитель также должен соответствовать предъявляемым требованиям, поскольку у него имеются свои розетки с маркировкой.
Для переменного тока полярность в штепсельных соединениях особенно не нужна. Фазу обычно находят, если надо подключать к светильникам автомат или однополюсный выключатель. При их отключении прикосновение к нулевому проводу будет не таким опасным.
Розетки расширенной функциональности
Сейчас выпускают новые типы розеток с новыми функциями:
- Встроенные таймеры отключения.
- Переключение типа тока.
- С индикацией величины нагрузки (цвет меняется от зеленого до красного).
- Со встроенным УЗО.
- С автоматической блокировкой.
Проверка подключения
Розетка для варочной панели и духового шкафа
Напряжение проверяется в розетке подключением вольтметра или тестера. При его наличии прибор укажет, сколько в ней вольт.
Тестер напряжения в розетке
Сила тока может определяться амперметром, подключенным последовательно с работающей нагрузкой.
Электрики проверяют наличие напряжения индикатором. Однополюсный – выполняется в виде отвертки с лампочкой. С его помощью можно найти фазу, но подключение нулевого провода он не покажет. Это можно сделать двухполюсным индикатором, подключив его между фазой и нулем. Легко можно проверить напряжение в розетке контрольной лампой, которому она должна соответствовать.
Монтаж.
Про монтаж подрозетника в бетон рассказывается в этом видео.
В быту и промышленности преобладает переменный электрический ток. Его проще передавать на расстояния и изменять по величине. Для бытовых нужд переменный ток подается на освещение и к розеткам в доме, где подключаются электроприборы.
Источник: https://elquanta.ru/vyklyuchateli/elektrichestvo-v-kvartire.html
Зарядка электромобилей: постоянный или переменный ток?
- 15 июня 2020 г. в 11:01
- 109
Основной недостаток легковых электромобилей — значительное время зарядки аккумуляторов, обычно составляющее не менее 3 часов. Уменьшение этого времени до получаса делает зарядку электромобиля сопоставимой с заправкой обычного авто бензином.
Все равно полчаса на автозаправке вы и так потратите за чашкой кофе и покупкой в местном магазине. Такое короткое время зарядки уже стало реальностью, если заряжать автомобиль от постоянного тока.
Почему же тогда зарядные станции на переменном токе не ушли в прошлое?
Практически любой современный электромобиль (кроме отдельных спортивных моделей, не имеющих широкого распространения) может заряжаться от обычной электрической розетки. Наличие такой функции позволяет не остаться без движения в местностях, где нет специальных зарядных станций. Например, аккумуляторы сели недалеко от глухой деревни, и вы попросились на постой к сердобольным местным жителям.
Зарядка от бытовой розетки имеет свои ограничения. Напряжение питания 230 В (по старому стандарту — 220 В) переменного тока. Конструкция розетки и используемые провода ограничивают силу тока значением 16 А. Для того, чтобы полностью зарядить батарею аккумуляторов электромобиля Tesla Model S 75D, потребуется примерно 21 час — почти сутки!
Но в экстренной ситуации и не ставится задача зарядить аккумуляторную батарею полностью, главное — дотянуть до ближайшей станции зарядки. Многие (но не все!) модели электромобилей поддерживают заряд на переменном токе как принятый в России и Евросоюзе стандарт 230 В, так и американский 120 В и даже японский 100 В.
Наиболее распространенный тип разъема для зарядки переменным током — Type 2
Самостоятельно заряжать электромобиль у себя дома можно в том случае, если вы живете в отдельном коттедже или таунхаусе. В таких зданиях обычно имеются еще и трехфазные розетки 400 В (по старому стандарту — 380 В) переменного тока. Зарядка той же Tesla Model S 75D от трехфазной розетки займет уже 7 часов. Можно заряжать авто ночью, пока вы спите, а днем зарядки хватит примерно на 500 км пробега.
В том случае, если линия, подающая электроэнергию в коттедж или секцию таунхауса, способна выдерживать ток порядка 80–100 А, можно дополнительно ускорить процесс, установив личную зарядную станцию на переменном токе. Она подключается напрямую к электрическому щиту дома, поэтому на ее работу не оказывают влияние ограничения, связанные с розетками и проводкой. Время зарядки сокращается до 4 часов.
К зарядным станциям коллективного пользования, как правило, прокладывают линии, способные передавать мощность порядка десятков кВт. Зарядка электромобиля производится трехфазным переменным током.
Наиболее распространенный разъем для такого рода зарядки в европейских странах, в том числе и в России, — Type 2.
Массовое распространение на парковках офисов, торговых центров и прочих публичных мест получили зарядные станции мощностью 22 кВт, у которых ток зарядки не равен 32 А. Полностью «заправить» электромобиль Tesla Model S 75D на них можно за 3 часа.
Поскольку на таких стоянках оставляют машину на время работы, шоппинга или посещения ресторана, делать более быстродействующие, а значит, и дорогие зарядные станции не имеет экономического смысла.
Максимальная сила тока, которую выдерживает разъем Type 2, — 3 А. Это соответствует мощности зарядной станции на трехфазном переменном токе 43 Вт. Но такой режим поддерживают не все электромобили.
Преимущества и недостатки переменного тока
Непосредственно аккумуляторы всегда заряжаются постоянным током. Поэтому в электромобиль встроено зарядное устройство, которое преобразует поступающий со станции переменный ток в постоянный и регулирует параметры зарядки. Как уже отмечалось, наличие такого устройства для любого электромобиля обязательно, иначе он не сможет подзарядиться в критической ситуации.
Зарядные станции на переменном токе компактны и имеют простую
конструкцию, что обусловило их массовое использование
Конструкция станции на переменном токе предельно простая. В ней есть системы защиты как электромобиля, так и электрической сети от нештатных ситуаций, и, при необходимости, биллинговая система, позволяющая продавать услугу зарядки.
Тем не менее размещение основных узлов зарядного устройства на борту электромобиля ограничивает скорость зарядки на переменном токе. Чем выше скорость зарядки, тем больше сила тока.
В свою очередь, это влечет за собой увеличение массы и габаритов электронных узлов, отвечающих за зарядку. А еще увеличение скорости зарядки потребует улучшения отвода тепла от электронных узлов.
Ограничения по массе, габаритам и возможностям отвода тепла в легковом электромобиле определили предел тока зарядки в 32 А. Он характерен как для большинства массовых моделей электромобилей.
Некоторые электромобили поддерживают зарядку переменным током 63 А. Например, она есть в автомобилях Renault Zoe. Время «заправки» для пробега в 500 км сокращается до 1,5 ч.
Зарядка постоянным током
Значительно ускорить зарядку можно, если на станции подключаться к аккумулятору напрямую. При таком подходе уже нет ограничений по размерам и массе зарядного устройства, так как все его узлы размещены вне кузова электромобиля. Естественно, напрямую на аккумуляторы можно подавать только постоянный ток.
Рабочее напряжение аккумуляторной батареи в современных электромобилях обычно составляет 400–450 В. Поэтому в качестве стандарта для зарядки на постоянном токе приняли напряжение 500 В.
Параметры зарядных станций для электромобилей в России регламентируются ГОСТ Р МЭК 61851-1-2013 «Системы токопроводящей зарядки электромобилей», являющимся адаптацией международного стандарта IEC 61851-1.
Стандартизация вилок и розеток на зарядных станциях осуществляется на основании ГОСТ Р МЭК 62196-1-2013 и ГОСТ Р МЭК 62196-2-2013 «Вилки, штепсельные розетки, соединители и вводы для транспортных средств. Кондуктивная зарядка для электромобилей», части 1 и 2.
Эти стандарты являются адаптацией IEC 62196-1 и IEC 62196-2.
При зарядке постоянным током интерфейс между станцией и электромобилем обязательно должен содержать канал передачи данных от транспортного средства к зарядке. На основании этой информации станция определяет тип и текущее состояние аккумуляторной батареи, точно подстраивая напряжение и некоторые другие параметры зарядки.
Для зарядки на постоянном токе используются разъемы CHAdeMO, CCS и Tesla Type 2. Зарядные станции с разъемами CHAdeMO и CCS имеют мощность 50 кВт. Такая мощность позволяет за 1,5 часа зарядить электромобиль для пробега 500 км.
Следует отметить, что наличие разъема CHAdeMO или CCS в электромобиле автоматически означает поддержку ультрабыстрой зарядки мощностью 50 кВт, даже если такая зарядка на переменном токе не поддерживается.
Например, Nissan Leaf (кроме отдельных серий) поддерживает ультрабыструю зарядку только на постоянном токе.
Rеnault Zoe — один из немногих легковых электромобилей, поддерживающий зарядку переменным током 63 А
Электромобили Tesla для зарядки на постоянном токе используют собственный разъем Tesla Type 2. Тем не менее предусмотрена возможность зарядки электромобилей данной марки через разъемы CHAdeMO или CCS с использованием специальных адаптеров, приобретаемых пользователем отдельно.
Разъем Tesla Type 2 имеют зарядные станции Tesla Supercharger, специально предназначенные для легковых и грузовых электромобилей данной марки. Рабочее напряжение такой станции составляет 480 В, мощность может достигать 150 кВт. Уже упоминавшийся в качестве примера электромобиль Tesla Model S 75D заряжается от подобной станции на 80 % за полчаса.
Столь высокая скорость зарядки достигается благодаря тому, что аккумуляторные батареи и зарядная станция идеально подогнаны друг к другу. Станции других типов ориентированы на обслуживание электромобилей разных марок, из-за чего приходится идти на компромиссы.
Помимо мировых лидеров вроде Tesla, Schneider Electric и ABB, выпуск зарядных станций на постоянном токе освоили и российские компании. Первой такой станцией стала «Фора ЭЗС-DC» производства Рязанского радиотехнического завода (входит в госкорпорацию «Ростех»). Она поддерживает интерфейсы CHAdeMO или CCS, а также ультраскоростную зарядку на переменном токе через Type 2. Компания «Промэлектро» создала недавно свою бюджетную модель зарядной станции на постоянном токе.
Российская зарядная станция на постоянном токе «Фора ЭЗС-DC»
производства Рязанского радиотехнического завода
К недостаткам постоянного тока следует отнести высокую стоимость зарядной станции в комплекте с кабелем — от 5000 долл. Для сравнения, цены на зарядные станции, работающие на переменном токе, начинаются с 1500 долл., с учетом стоимости кабеля.
Также распространено мнение, что зарядные станции на постоянном токе снижают срок службы аккумуляторов. На самом деле, ресурс аккумуляторов снижается при любых способах ускоренной зарядки. Чтобы уменьшить влияние данного фактора, на некоторых станциях ультрабыстрая зарядка ограничивается 80 % емкости аккумуляторной батареи.
Неоднозначные перспективы
Действующий стандарт зарядки электромобилей на постоянном токе рассчитан на аккумуляторные батареи с рабочим напряжением 450 В. Таково сегодняшнее видение ситуации конструкторами электромобилей.
Но уже сейчас проводятся исследования, показывающие, что для повышения эффективности и ходовых качеств электромобилей потребуется повышать напряжение батареи, вплоть до 900 В. Также ожидается, что в ближайшее время аккумуляторы в электромобилях будут вытеснены суперконденсаторами.
Оба события потребуют переделывать или просто заменять оборудование зарядных станций на постоянном токе. В то же время зарядные станции на переменном токе смогут без проблем обслуживать как машины с 900 В аккумуляторами, так и электромобили на суперконденсаторах.
Поэтому развитие сетей зарядных станций на переменном токе еще долго будет интересовать инвесторов. Такие станции не только стоят недорого, но еще и защищают инвестиции, поскольку совместимы с электромобилями будущего.
Тем не менее и станции на постоянном токе способны занять свою нишу на рынке при установке их на крупных магистралях федерального значения. За счет обслуживания большого потока машин инвестиции окупятся быстрее, чем поменяются стандарты.
Источник: https://www.elec.ru/articles/zaryadka-elektromobilej-postoyannyj-ili-peremennyj/
IT News
Дата Категория: Физика
Используемая человеком электрическая энергия в основном вырабатывается на крупных электростанциях. Эти предприятия передают электричество на районные подстанции, которые затем распределяют его по потребителям.
Так как линии электропередач обладают электрическим сопротивлением, часть энергии электрического тока теряется, превращаясь в теплоту. Постоянный ток (DC) течет в одном направлении; переменный ток (АС) периодически изменяет свое направление.
Первоначально для электроснабжения применялся только постоянный ток. По ряду причин передача и преобразование постоянного тока связаны со значительными трудностями, поэтому по соображениям безопасности электростанции передавали его под низким напряжением.
Однако к тому времени, когда постоянный ток достигал потребителей, сопротивление съедало 45 процентов его энергии.
Выход был найден в передаче переменного тока высокого напряжения, которое может быть легко изменено при помощи трансформатора (рисунок внизу).
Так как высоковольтным линиям требуется меньший ток для передачи одного и того же количества энергии, ее потери на преодоление сопротивления стали намного меньшими.
Когда переменный ток покидает электростанцию, повышающие трансформаторы увеличивают его напряжение с 22 000 до 765 000 вольт, а перед поступлением в дома другие трансформаторы, понижающие, уменьшают его до ПО или 220 вольт.
Принцип действия трансформатора
Трансформаторы увеличивают или уменьшают напряжение переменного тока. Преобразуемый переменный ток проходит по первичной обмотке, охватывающей стальной сердечник (рисунок сверху). Периодически изменяющийся ток создает в сердечнике переменное магнитное поле. При перемещении во вторичную обмотку это магнитное поле генерирует в ней переменный ток. Если вторичная обмотка имеет больше витков, чем первичная, выходное напряжение будет выше, чем входное.
Потери энергии при протекании постоянного тока
Электрическая мощность (Р) вычисляется путем умножения силы тока (I) на напряжение (V), т.е. Р = I х V. Если напряжение возрастает, сила тока, необходимая для обеспечения заданной мощности, уменьшается. Низковольтная мощность постоянного тока требует большей силы тока, чем высоковольтная мощность переменного, чтобы передать одно и то же количество электроэнергии.
Переменный ток легко трансформируется
В отличие от постоянного, переменный ток периодически изменяет свое направление. Если переменный ток проходит по первичной обмотке трансформатора (рисунок слева), образующееся переменное магнитное поле индуцирует ток во вторичной обмотке. При протекании по первичной обмотке постоянного тока (рисунок справа), во вторичной обмотке ток не возникает.
Источник: http://information-technology.ru/sci-pop-articles/23-physics/235-kak-rabotaet-transformator
Постоянный и переменный ток: преимущества и недостатки ⋆ diodov.net
Какой электрический ток лучше: постоянный или переменный ток? Чтобы дать ответ на данный вопрос нужно оценить их преимущества и недостатки по следующим основным направлениям: выработка, передача, распределение и потребление электроэнергии. Проще говоря, нужно ответить на следующие вопросы. Какой род тока проще и дешевле получить, затем передать его на большое расстояние, после чего распределить электроэнергию между потребителями. Потребители какого рода энергии более эффективны?
Сегодня преимущественное большинство электрической энергии, добываемой или генерируемой в мире, выпадет на переменный ток. И в первую очередь это связано с тем, что переменный ток проще преобразовывать из более низкого напряжения в более высокое и наоборот, то есть он проще в трансформации.
Место производство электрической энергии большой мощности, к сожалению пока что невозможно базировать в тех местах, где хотелось бы, то есть непосредственно рядом с потребителями. Например, мощную гидроэлектростанцию можно соорудить только на полноводной реке и то не в каждом месте. А конечный потребитель может находиться на расстоянии сотни и тысячи километров от электростанции.
Поэтому очень важно обеспечить такие условия, чтобы минимизировать потери мощности в проводах линии электропередачи ЛЭП. В этом случае потери электроэнергии снижаются с ростом напряжения. Давайте остановимся на этом более подробно.
Предположим, имеется некая электростанция, а точнее ее генератор, выдающий мощность 1000 кВт и нам необходимо передать эту мощность потребителю, который находится на расстоянии, например на 100 км от генератора.
Для сравнения электрическую энергию будем передавать напряжением 10 кВ и 100 кВ. При заданных мощности и напряжениях определим величины токов, протекающих в проводах.
I1 = P/U1 = 1000 кВт/10 кВ = 100 А.
I2 = P/U2 = 1000 кВт/100 кВ = 10 А.
Как мы видим, при увеличении напряжения в 10 раз, ток снижается тоже в 10 раз.
Потери электроэнергии в проводах ЛЭП и не только в них определяются квадратом тока, протекающего в них и сопротивлением самого провода. Для простоты расчет примем сопротивление проводов, равным 10 Ом. Подсчитаем потери мощности для обоих случаев.
Pпот1 = I12∙R = 1002∙10 = 100000 Вт = 100 кВт.
Pпот2 = I22∙R = 102∙10 = 1000 Вт = 1 кВт.
Теперь, как мы видим, с ростом напряжения в 10 раз потери электроэнергии снижаются в 100 раз! При более низком напряжении доля потерь в проводах составляет 10 % от мощности, выдаваемой генератором. А при более высоком напряжении эта доля составляет всего 0,1 %. Поэтому очень важным параметров сравнения родов тока является возможность повышать напряжение, а затем его снижать в конечных пунктах.
Можно было бы и не повышать напряжение, а для снижения потерь применять более толстые провода, но такой подход экономически не оправдан, поскольку медные провода стоят денег.
Также можно было бы и не повышать напряжение генератора, а создать такой генератор, который сразу бы выдавал высокое напряжения. Но здесь возникают сложности при изготовлении таких генераторов. Сложности связаны в основном с изоляцией высоковольтных элементов генератора. Короче говоря, изготовить трансформатор на высокое напряжение гораздо проще и дешевле, нежели генератор.
Преимущества переменного тока
Вопрос повышения и снижения переменного напряжения при нынешнем уровне технического развития решается гораздо проще, чем постоянного электрического тока.
Такие преобразования довольно просто выполняются с помощью относительно простого устройства – трансформатора. Трансформатор обладает высоким коэффициентом полезного действия, который достигает 99 %. Это значит, что не более одного процента мощности теряется при повышении или снижении напряжения. К тому же трансформатор позволяет развязать высокое напряжение с более низким, что для большинства электроустановок является очень весомым аргументом.
Применение трехфазной системы переменного тока позволяет еще больше повысить эффективность системы электроснабжения. Для передачи электричества аналогичной мощности потребуется меньше проводов, чем при однофазном переменном токе. К тому же трехфазный трансформатор меньше габаритов однофазного трансформатора равной мощности.
Электрические машины переменного тока, в частности асинхронные двигатели с короткозамкнутым ротором имеют гораздо проще конструкцию, чем двигатели постоянного тока.
Главным преимуществом трехфазных асинхронных двигателей является отсутствие коллекторно-щеточного узла. Благодаря чему снижаются расходы на изготовление и эксплуатацию таких электрических машин.
Кроме того за счет отсутствия коллекторно-щеточного узла асинхронные двигатели имеют в разы большую мощность по сравнению с двигателями постоянного тока.
Недостатки постоянного тока
Из выше изложенного следуют такие недостатки.
- Сложность повышения и снижения напряжения, то есть преобразования электроэнергии постоянного тока. В первую очередь это вызвано сложность конструкций преобразователей. Поскольку необходимы мощные полупроводниковые ключи, рассчитанные на высокое напряжение. Отсутствие которых приводит к большому числу последовательно и параллельно соединенных полупроводниковых приборов. В результате снижается надежность всего преобразователя, увеличивается стоимость и возрастают потери мощности.
- Электрические машины имеют более сложную конструкцию, поэтому менее надежны и более затратные, как в производстве, так и в эксплуатации.
- Сложности в развязке высокого и низкого напряжений.
Недостатки переменного тока
- Важнейшим недостатком переменного тока является наличие реактивной мощности. Как известно, конденсатор и катушка индуктивности проявляют свои реактивные свойства только в цепях переменного тока. Проще говоря, катушка и конденсатор создают реактивное сопротивление переменному току, но не потребляю его.
В результате этого из полной мощности, отдаваемой генератором переменного тока, часть мощности не затрачивается на выполнение полезной работы, а лишь бесполезно циркулирует межу генератором и нагрузкой. Такая мощность называется реактивной и является вредной. Поэтому ее стараются минимизировать.
Однако большинство нагрузок – двигатели, трансформаторы и сами провода являются индуктивными элементами.
А чем больше индуктивность, тем большую долю составляет реактивная мощность от полной и с этим нужно бороться.
- Второй главный недостаток переменного тока заключается в том, что он протекает не по всему сечению проводника, а вытесняется ближе к его поверхности. В результате снижается площадь, по которой протекает электрический ток, что в свою очередь приводит к увеличению сопротивления проводника и к росту потерь мощности в нем.
Чем выше частота, тем сильнее вытесняется ток к поверхности проводника и в конечном счете, тем выше потери мощности.
Преимущества постоянного тока
- Главное преимущество электрической энергии постоянного тока – это отсутствие реактивной мощности. А это значит, что вся мощность, выработанная генератором, потребляется нагрузкой за вычетом потерь в проводах.
- Постоянный ток в отличие от переменного протекает по всему сечению проводника.
Указанные два пункта приводят к тому, что если передавать одну и ту же мощность при равных напряжениях постоянным и переменным токами, то потери мощности электроэнергии постоянным током были бы почти в два раза меньше, чем при переменном токе.
К тому же, если рассматривать такие бытовые электронные устройства как ноутбуки, компьютеры, телевизоры и т. п., то все они имеют блоки питания, преобразующие переменное напряжение 220 В (230 В) в постоянное напряжение более низкой величины. А такие преобразования связаны с частичной потерей мощности.
Кроме того, как было сказано ранее, трехфазный асинхронный двигатель (АД) можно подключить напрямую к сети 380 В, что вполне оправдано в том случае, когда не требуется изменять режим работы двигателя.
Но если необходимо изменять частоту вращения его вала, то нужно на обмотки статора подавать напряжение, частота и амплитуда которого должны изменяться пропорционально, согласно закону Костенка. Для этого применяют трехфазные автономные инверторы (АИ), чаще всего инверторы напряжения.
Такие инверторы должны получать питание от источника постоянного напряжения.
Также следует заметить, что последним временем начали очень широко применяться солнечные батареи, которые вырабатывают постоянный ток. К тому же, значительно возросла мощность аккумуляторных батарей и повысилась емкость суперконденсаторов, которые также относятся к источникам постоянного тока и с каждым днем находят все большее практическое применение.
Выводы: постоянный или переменный ток
Несмотря на все преимущества постоянного тока, значительная сложность, вызванная преобразованием больших мощностей, главным образом сказывается сложность повышения и понижения постоянного напряжения, сводит на нет указанные выше преимущества.
Поэтому, до тех пор, пока не будут разработаны полупроводниковые ключи огромной мощности и соответствующие преобразователи на их основе, переменный ток остается вне конкуренции.
К тому же сейчас уже применяются четырехквадрантные преобразователи или активные выпрямители, позволяющие скомпенсировать реактивную составляющую нагрузки, что позволяет получить коэффициент мощности, равный почти единице. Благодаря чему исключается потребление реактивной мощности.
Как вы видите, однозначного ответа на вопрос, какой ток лучше: постоянный или переменный, не существует. Следует сравнивать все преимущества и недостатки для конкретного случая.
Источник: https://diodov.net/postoyannyj-i-peremennyj-tok-preimushhestva-i-nedostatki/
AC, DC — что это такое?
АС, DC – это устоявшиеся термины, буквально означающие: переменный ток, постоянный ток (англ.: alternating current, direct current). Термин применяют как для обозначения характера тока, так и для обозначения режима работы устройства, соответственно, поддерживающего режим работы по переменному и постоянному току.
Иногда с аббревиатурой DC связывают постоянную составляющую сигнала, а с AC – переменную.
Обозначения DC+AC, AC+DC или AC/DC в технической литературе – это совсем не название известной рок-группы :), а обозначение, буквально означающее: постоянный и переменный ток.
Заметим, что термин переменный ток традиционно относят не к величине тока, а к направлению тока. Например, пульсирующий ток одного направления обычно называют постоянным током (DC), а не переменным (АС), поскольку этот ток не меняет направления. Хотя, если в этом примере рассматривать по отдельности составляющие тока, то, безусловно, он состоит из постоянной (DC) и переменной (AC) составляющих.
По аналогии эти термины применяют и к напряжению переменного тока и напряжению постоянного тока, поскольку, как известно из ТОЭ, напряжения без тока не существует.
В условных графических обозначениях символами постоянного и переменного тока являются значки – , ~ , которые означают то же cамое, что и DC, AC.
Если оцифрованную DC-составляющую сигнала вычисляют простым усреднением за выбранный промежуток времени, то AC — составляющую вычисляют как среднеквадратическое значение сигнала (RMS) за вычетом DC-составляющей за выбранный промежуток времени.
Эти общеизвестные термины широко применяются в эксплуатационной документации при описании технических характеристик систем сбора данных, например, следующих семейств, производимых OOO “Л Кард”:
Платы АЦП/ЦАП на шину PCI
Источник: https://www.lcard.ru/lexicon/ac_dc_term
Постоянный ток и переменный ток отличия
Солнечные панели вырабатывают напряжение постоянного тока в 12, 24, 48 вольт и выше. Так как большинство электрических устройств работают от напряжения переменного тока, то подключать питание от солнечных батарей необходимо через специальный инвертор. Рассмотрим, чем отличаются эти напряжения и как происходит их преобразование.
Переменное напряжение и его отличия от постоянного
Под переменным понимают электрический ток, имеющий возможность изменяться в зависимости от того, в каком направлении движутся частицы имеющие заряд. Самыми важными характеристиками переменного тока можно назвать напряжение с частотой. На объектах разного типа, в зависимости от технических требований, может применяться переменное напряжение с определенной частотой.
Стандартные параметры, от которых работают все бытовые приборы, это напряжение 220 вольт при условии, что частота составляет 50 Гц. Стоит сказать, что под частотой понимают то, сколько раз в течение одной секунды менялось направление частиц, имеющих заряд. Следовательно, если частота напряжения составляет 50 Гц, то направление движения электронов за секунду меняется 50 раз.
Отсюда сами собой напрашиваются выводы, что переменный ток отличается от постоянного изменчивостью движения его заряженных частиц.
Основная причина, почему по централизованным сетям подается переменный ток, объясняется более простой и дешевой схемой его транспортировки. Кроме того, величину переменного напряжения можно легко преобразовать до требуемых значений, выполняя подключение оборудования через трансформаторы, работа которых приводит к минимальным потерям электроэнергии. В конечном результате переменный ток выводится к потребителю через розетки электропитания.
Преобразование тока из постоянного в переменный
Как говорилось выше, вырабатываемый солнечными панелями постоянный ток мало для чего пригоден. Особенно, когда солнечная электростанция подключена к зеленому тарифу, получаемое электричество необходимо преобразовать в переменное, а также выпрямить до стандартных параметров. Для этой цели используются следующие типы инверторов:
- автономные – предназначены для локальной электрической сети и зарядки аккумуляторных батарей;
- сетевые инверторы – преобразовывают ток в переменный, чтобы транспортировать по общей сети;
- гибридные – обладают двумя функциями, позволяя и аккумуляторы заряжать, и выпрямлять напряжение под параметры общей сети.
Преобразование тока в переменный из постоянного происходит за счет того, что инвертор следит за фазой сети и непрерывно поддерживает напряжение на выходе немного выше сетевого. Следит за процессом микропроцессор в конструкции инвертора.
Он отслеживает текущую форму переменного напряжения в сети и выводит аналогичное напряжение преобразованного из постоянного тока.
Чтобы исключить сбой в работе инвертора, необходимо периодически проверять выходное напряжение на соответствие сетевых параметров.
еще не добавлены
Источник: https://elektro.in.ua/postoyannyj-tok-i-peremennyj-tok-otlichiya.html