Кто придумал вольт

Вольтов столб

  • 15 ноября 2018 г. в 11:46
  • 73

Вольтов столб это прибор, который был изобретен известным итальянским физиком Алессандро Вольта в 1799 году.

Википедия о приборе Вольтов столб

Вот, что пишет народная энциклопедия о Вольтовом столбе.

«Так был изобретён „элемент Вольта“ — первый гальванический элемент. Для удобства Вольта придал ему форму вертикального цилиндра (столба), состоящего из соединённых между собой колец цинка, меди и сукна, пропитанных кислотой. Вольтов столб высотою в полметра развивал напряжение, чувствительное для человека».

Контактное электричество Вольта

Вольта изучал труды итальянского анатома Л. Гальвани, который ранее обнаружил сокращение мышц лягушки при соприкосновении их с различными металлами. Гальвани назвал это явление «животное электричество». Вольта предположил, что электричество вырабатывает не ткань лягушки, а контакт различных металлов в определенной среде.

Вольта провел такой эксперимент. Он использовал четырех человек.

Первый держал в руке мокрую цинковую пластину, второй рукой он касался языка второго человека, второй человек касался другой рукой глаза третьего человека, третий человек держал в руке разрезанную лягушку, четвертый держал лягушку в одной руке и серебряную пластину в другой. Первый и четвертый человек касались разными пластинами. В момент контакта пластин второй человек ощущал кислый вкус на языке, третий видел яркий свет в глазу, а тело лягушки начинало сокращаться.

Алессандро Вольта назвал это явление «контактным электричеством». Вольта пришел к выводу, что для появления электричества необходима и жидкость, которая воздействует на металлы. Вольт ввел классификацию проводников. Металлы он отнес к проводникам первого класса, а жидкости — к проводникам второго класса.

Изобретение Вольтова столба

Вольта изготовил один из первых гальванических элементов, состоящий из металлических пластин и жидкости. Вольта использовал несколько цинковых и медных пластин цилиндрической формы и суконные круги, пропитанные кислотным раствором. Чередуя металлические пластины и и суконные круги, он получил вертикальный гальванический элемент. На концах этой конструкции возникал электрический ток. Это устройство было названо «Вольтовым столбом».

В то время еще не удалось дать химическое объяснение этому процессу. Сам Вольта объяснял появление электричества соприкосновением двух металлов, которое вызывало электродвижущую силу, при этом электричество накапливалось на концах различных пластин.

Вольта понял, что процесс создания электричества возможен только в присутствии жидкости, без жидкости пластины не давали тока. Вольта предположил, что жидкость выполняет роль разделителя между металлами, не давая развиваться встречному потоку частиц.

Так и был изобретен первый гальванический элемент.

Вольта развивал и модернизировал свое изобретение. Электрическая мощность столба напрямую зависела от количества использованных элементов. Самым лучшим по мощности и устойчивости «столбом» оказался «прибор из цепи чашек». Чашки были заполнены электролитом (состоящим из соленой воды), и между собой чашки соединялись медными и цинковыми дугами. Фактически, он выполнял последовательное соединение гальванических элементов. На концах такой системы возникал достаточно сильный ток.

Вольта придумал и другие варианты соединения элементов столба или нескольких столбов в одну систему.

До нашего времени сохранились некоторые приборы, построенные по принципу Вольтова столба.

Сам Вольта получил всемирное признание за изобретение, которое изменило мир.

Источник: https://www.elec.ru/articles/voltov-stolb/

Устройство электродвигателя постоянного тока | Компания

Доброго времени суток, дорогие читатели!

В предыдущих статьях были рассмотрены электромоторы переменного тока. в этой же статье я расскажу про движки, работающие на постоянном токе. будет рассмотрено их устройство и, немного, история и принцип работы. начнем

Принцип действия этих машин основывается на эффекте отталкивания одноименных и притягивания разноименных полюсов магнита. Первым такое устройство придумал русский инженер Якоби. В 38ом году 19го столетия появилась первая модель промышленного масштаба и, с того времени, больших изменений в конструкции не было.

Устройство электродвигателя постоянного тока

Если брать моторы с небольшой мощностью, то в них обязательно явным образом присутствует один из магнитов (он крепится прямо на корпус машины).

Второй же – появляется после подачи напряжения на обмотку якоря. С этой целью применяется устройство особого типа, именуемое коллекторно-щеточным узлом. Коллектор же является кольцом, проводящим ток, которое крепится на вал мотора. К нему подключаются выводы обмоток якоря.

Для возникновения вращающего момента нужна непрерывная смена полюсов якорного магнита. Это должно выполняться в т от момент, когда якорь проходит через «магнитнуюнейтраль». Конструктивным образом это выполняется благодаря разделению коллекторного кольца на части (секторы), при  помощи непроводящих ток пластин.

Выводы якорных обмоток цепляют к секторам поочередно. Для соединения коллектора и сети питания применяются щетки – стержни из графита с высокой электропроводимостью и маленьким коэффициентом трения по скольжению.

Моторы большой мощности не снабжаются физическими магнитами в силу того, что это сильно утяжелит их конструкцию.

В этих машинах, для создания постоянного магнитного поля, применяют металлические стержни с обмотками, подключаемые к положительной, либо отрицательной шине питания. Полюса одноименного типа подключают один за другим (последовательным образом).

Двигатель может иметь одну, либо четыре пары полюсов. Количество же щеток-токосъемников должно соответствовать числу пар полюсов. У моторов с большой мощностью предусматриваются некоторые конструктивные хитрости. Одна из них заключается в сдвигании щеточного узла на некоторый угол по отношению против вращения после старта мотора и смены нагрузки на нем.

Делается это с целью компенсации эффекта «якорной реакции», который приводит к торможению вала, в результате чего происходит уменьшение эффективности мотора.

Мы рассмотрели двигателя коллекторного типа. Однако, кроме них имеются и устройства, не имеющие коллекторов. Движки подобного типа имеют ротор, на котором есть постоянные магниты, и статор с обмотками. Существует два вида таких моторов: Inrunner (с магнитами внутри ротора) и Outrunner (у них магниты находятся снаружи, вращаясь вокруг статора, имеющего обмотки).

Машины первого типа, как правило, используются в моторах с высоким числом оборотов и малым числом полюсов. Второй же тип применяют, если требуется заиметь движок с большим моментом и малыми оборотами. По конструкции же двигателя Inrunner наиболее просты в силу того, что их статор может, одновременно, служить корпусом, а, значит, на него можно смонтировать устройства для крепления.

ЭТО ИНТЕРЕСНО:  Когда появилось электричество в деревнях

У двигателей системы Outrunner вращающейся частью является наружная его часть. Движок же крепится за неподвижный вал, или другие части статора. Если же такой двигатель используется, как мотор-колесо, то крепится он посредством неподвижной оси и заведением проводов статора через его пустотелую ось.

Число полюсов ротора всегда четно. Магниты, используемые в этих движках, обычно, имеют прямоугольную форму. Иногда применяются, конечно, и магниты цилиндрической формы, но это гораздо реже. Монтируются же магниты так, чтобы их полюса чередовались.

Не всегда случается совпадение количества магнитов и полюсов (может случаться так, что несколько магнитов формируют один полюс).

Размеры устанавливаемых в моторах магнитов различны и зависят они от самого движка и его характеристик. От мощности используемых магнитов зависит то, каким будет момент развиваемой на валу силы.

К ротору магниты крепятся при помощи особого клея (встречаются, конечно, варианты с магнитодержателями, но гораздо реже). Сам ротор может быть изготовлен как из магнитопроводящего материала (сталь), так и из немагнитлопроводящего (сплавы алюминия, пластик и пр.), и комбинированным.

Обмотки трехфазных моторов без коллектора наматываются проводом из меди. Провод же используется и одножильный и многожильный. Статоры этих двигателей изготавливают из сложенных листов стали, являющейся магнитопроводящей.

Статор должен иметь столько зубьев, чтобы их количество делилось на количество рабочих фаз. Статор может иметь такое число зубьев, что оно как больше, так и меньше, чем полюсов у ротора.

Наиболее простой движок, имеющий три полюса статора. Однако, используется подобная конструкция весьма редко (поскольку, в любой момент времени в работе лишь пара фаз, в результате чего возникает вибрация и перекос). Чтобы избавиться от этих неприятных явлений, делается много полюсов, а обмотки равномерно распределяются между ними. В таком случае не возникает разбалансировки магнитных сил.

Помимо всего прочего, такие моторы могут снабжаться, либо не снабжаться датчиками положения ротора. Датчики, в большинстве своем, работают на принципе эффекта Холла. Они реагируют на м агнитные поля и располагаются по статору так, чтобы магниты ротора действовали на них (то есть под углом 120 градусов между собой). Естественно, имеется ввиду 120 электрических градусов.

Датчики могут располагаться и внутри и снаружи двигателя. Вторым способом можно оснащать движки, изначально не имеющие датчиков.

Иногда датчики ставят на специальное приспособление, дающее возможность небольшого перемещения датчиков. В то же время, если необходим реверс такого мотора, то устанавливается второй комплект датчиков Холла, настраиваемых на обратное направление вращения.

Всего доброго.

Источник: http://elektrik-orenburg.ru/node/ustroystvo-elektrodvigatelya-postoyannogo-toka

Что такое Вольт

  • Справочник
  • Электротехника
  • Единицы измерений
  • Что такое Вольт

Вольт (обозначение: В, V) — единица измерения электрического напряжения в системе СИ.

1 Вольт равен электрическому напряжению, вызывающему в электрической цепи постоянный ток силой 1 ампер при мощности 1 ватт.

Вольт (В, V) может быть определён либо как электрическое напряжение на концах проводника, необходимое для выделения в нём тепла мощностью в один ватт (Вт, W) при силе протекающего через этот проводник постоянного тока в один ампер (A), либо как разность потенциалов между двумя точками электростатического поля, при прохождении которой над зарядом величиной 1 кулон (Кл, C) совершается работа величиной 1 джоуль (Дж, J). Выраженный через основные единицы системы СИ, один вольт равен м2 · кг · с−3 · A−1.

\[ \mbox{V} = \dfrac{\mbox{W}}{\mbox{A}} = \dfrac{\mbox{J}}{\mbox{C}} = \dfrac{\mbox{m}2 \cdot \mbox{kg}}{\mbox{s}{3} \cdot \mbox{A}} \]

Единица названа в честь итальянского физика и физиолога Алессандро Вольта.

Этим методом величина вольта однозначно связывается с эталоном частоты, задаваемым цезиевыми часами: при облучении матрицы, состоящей из нескольких тысяч джозефсоновских переходов, микроволновым излучением на частотах от 10 до 80 ГГц, возникает вполне определённое электрическое напряжение, с помощью которого калибруются вольтметры. Эксперименты показали, что этот метод нечувствителен к конкретной реализации установки и не требует введения поправочных коэффициентов.

1 В = 1/300 ед. потенциала СГСЭ.

Что такое Вольт. Определение

Вольт определён как разница потенциалов на концах проводника, рассеивающего мощность в один ватт при силе тока через этот проводник в один ампер.

Отсюда, базируясь на единицах СИ, получим м² · кг · с-3 · A-1, что эквивалентно джоулю энергии на кулон заряда, J/C.

Определение на основе эффекта Джозефсона

Напряжение электрического тока – это величина, характеризующая разность зарядов (потенциалов) между полюсами либо участками цепи, по которой идет ток.

С 1990 года вольт стандартизирован посредством измерения с использованием нестационарного эффекта Джозефсона, при котором используется в качестве привязки к эталону константа Джозефсона, зафиксированная 18-ой Генеральной конференцией по весам и измерениям как:

K{J-90} = 0,4835979 ГГц/мкВ.

Кратные и дольные единицы

Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы вольт пишется со строчной буквы, а её обозначение — с прописной. Такое написание обозначения сохраняется и в обозначениях производных единиц, образованных с использованием вольта. Например, обозначение единицы измерения напряжённости электрического поля «вольт на метр» записывается как В/м.

Шкала напряжений

  • Разность потенциалов на мембране нейрона — 70 мВ.
  • NiCd аккумулятор — 1.2 В.
  • Щелочной элемент — 1.5 В.
  • Литий-железо-фосфатный аккумулятор (LiFePO4) — 3.3 В.
  • Батарейка «Крона» — 9 В.
  • Автомобильный аккумулятор — 12 В (для тяжёлых грузовиков — 24 В).
  • Напряжение бытовой сети — 220 В (среднеквадратичное).
  • Напряжение в контактной сети трамвая, троллейбуса — 600 В.
  • Электрифицированные железные дороги — 3 кВ (постоянный ток), 25 кВ (переменный ток).
  • Магистральные ЛЭП — 110 кВ, 220 кВ.
  • Максимальное напряжение на ЛЭП (Экибастуз-Кокчетав) — 1.15 МВ.
  • Самое высокое постоянное напряжение, полученное в лаборатории на пеллетроне — 25 МВ.
  • Молния — от 100 МВ и выше.
ЭТО ИНТЕРЕСНО:  Как пишется вольт и ватт

ЭлектротехникаФормулы Физика Теория Электричество

Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!

  • Сколько в ампере ватт, как перевести амперы в ватты и киловаттыМощность – это скорость расходования энергии, выраженная в отношении энергии ко времени: 1 Вт = 1 Дж/1 с. Один ватт равен отношению одного джоуля (единице измерения работы) к одной секунде.
  • 1 ватт определяется как мощность, при которой за 1 секунду времени совершается работа в 1 джоуль.
  • Сименс — единица измерения электропроводности (проводимости) в системе СИ. Она эквивалентна ранее использовавшейся единице mho
  • 1 ом представляет собой электрическое сопротивление между двумя точками проводника, когда постоянная разность потенциалов 1 вольт, приложенная к этим точкам, создаёт в проводнике ток 1 ампер, а в проводнике не действует какая-либо электродвижущая сила.
  • 1 Ампер это сила тока, при которой через проводник проходит заряд 1 Кл за 1 сек.
  • Конвертер текста в юникодКонвертер для перевода любого текста (не только кириллицы) в Юникод.
  • Парциальное давление каждого газа, входящего в состав смеси, это давление, которое создавалось бы той же массой данного газа, если он будет занимать весь объем смеси при той же температуре.
  • Сколько километров в узле?Один морской узел равен одной тысяче восемьсот пятьдесят двум метрам или одному километру восемьсот пятьдесят двум метрам
  • Я́года — маленький сочный или мясистый плод, обычно кустарниковых или травянистых растений, который при употреблении в пищу не требуется откусывать или разрезать.

Источник: https://calcsbox.com/post/cto-takoe-volt.html

Что за величины Ватты, вольты и амперы в электросети дома?

Май 14, 2014

48767 просмотров

Практически каждый человек слышал про параметры электричества как Вольт, Ампер и Ватты. Но на вопросы: что они означают и как измерить большинство из нас не сможет правильно ответить. Прочитайте эту статью до конца и Вы узнаете все по этой теме.

Определение величин

Напряжение— это физическая величина, характеризующая величину отношения работы электрического поля в процессе переноса заряда из одной точки A в другую точку B к величине этого самого заряда. Проще говоря это разность потенциалов между двумя точками. Измеряется в Вольтах. Напряжение схоже по сути с величиной давления воды в трубе, чем оно выше тем быстрее вода течет из крана.

Величина стандартизированная и одинаковая для всех квартир, домов и гаражей равная 220 Вольт при однофазном электроснабжении.  А для трехфазного подключения (изредка подключаются гаражи или отдельные большие частные дома)- она равна 380 Вольтам между тремя разноименными фазами, но между каждой отдельной фазой и нулем она опять будет равна 220 Вольтам.

Учитывайте, что допускается по ГОСТ 10 процентное отклонение для домашней электросети. Величина напряжения должна быть не менее 198 и не более 242 Вольт.

Сила тока— это физическая величина, равная отношению количества заряда за определенный промежуток времени протекающего через проводник к величине этого самого промежутка времени. Измеряется в Амперах.

Проще говоря, это количественный показатель потребляемой электроэнергии вашим каждым электроприбором в отдельности или всей квартиры в целом!  Силу тока приблизительно можно сравнить с потоком воды из крана, чем больше Мы его открываем, тем больше воды выливается за единицу времени или наоборот.

Напряжение (U), ток (I) и сопротивление (R) участка цепи тесно взаимосвязаны и пропорциональны между собой по закону ОМА: I = U/R. Он  звучит следующим образом- Сила тока в участке цепи обратно пропорциональна сопротивлению участка цепи и прямо пропорциональна его напряжению на концах. Напряжение всегда равно 220 В в квартире и доме или 380 В в трехфазной сети.

Переменными (изменяющимися ) будут две величины Сила тока и сопротивление, которые тесно напрямую взаимосвязаны, во сколько раз уменьшается сопротивление участка цепи- во столько раз увеличивается ток в этом же участке цепи. Сопротивление участка цепи измеряется в Омах и практически не применяется для описания характеристик электросети дома.

Вместо него используется потребляемая мощность, которая зависит от подключенной нагрузки или мощности потребителей электрической энергии.

Мощность вычисляется путем умножения величины напряжения на потребляемый ток электроприбором.  Иными словами, ее можно сравнить с количеством воды в литрах, которое выльется из крана. Измеряется в Ваттах. А Ватт (Киловатт= 1000 Ватт)/часах ведется учет электроэнергии. Так если в течении часа будет работать телевизор мощностью 50 Ватт, то его потребление составит 50 Ватт/час, а за 2 часа соответственно- 100 Ватт/час или 0.1 кВт\ч.

Пример расчета потребляемой мощности- стиральная машина потребляет из розетки 220 Вольт силу тока величиной 10 А, 10 А *220 В= 2200 Вт или 2.2 Киловатта, т. к. один Киловатт равен 1000 Ватт.

Измерение величин тока и напряжения

  1. Для того что бы измерить напряжение необходимо мультиметр переключить в режим измерения переменного напряжения, при это установите верхний предел как можно выше. Я ставлю 400 Вольт. А затем коснуться измерительными щупами ноля и фазы в розетке или клемнике и на экране Вы увидите величину напряжения.

    Рекомендую более подробно прочитать в статье «Как измерить или проверить напряжение«.

  2. Ток измерять тяжелее, для его измерения необходимо переключить в режим измерения тока в Амперах и подключиться так, что  бы ток проходил через электроизмерительный прибор, как показано выше на рисунке мультиметр необходимо подключить последовательно с источником энергопотребления.

    Или в более дорогих моделях мультиметров есть сверху два разводных дополнительных щупа, которые необходимо нажатием клавиши развести и пропустить внутрь провод, на котором необходимо измерить величину тока. Здесь два важных момента: заводить только один фазный провод и следить за тем, что бы плотно смыкались электроизмерительные щупы.

      Более подробно об измерении тока Вы узнаете из этой инструкции.

Рекомендую дополнительно прочитать нашу статью- Принципы работы электрического тока.

Источник: http://jelektro.ru/elektricheskie-terminy/v-a-watt.html

Напряжение в 1 Вольт, физический смыл, простое определение

Напряжение электрического тока – это величина, характеризующая разность зарядов (потенциалов) между полюсами либо участками цепи, по которой идет ток. Классическое определение: напряжение это величина, которая показывает разность потенциалов между двумя точками. Оно равно 1 вольту (это единица измерения напряжения), когда необходимо переместить единичный заряд в 1 кулон, приложив для этого усилие всего в 1 джоуль выполненной работы.

Наиболее простое сравнение

Для понимания данной величины, можно описать на примере работы водопровода или резервуара с водой, где напряжение соответствует давлению воды в емкости, трубе. Вода в нашем примере – это заряд, а скорость потока, который возникает под давлением – и есть электрический ток. Чем больше давление воды – напряжение, тем больше скорость струи в трубе – больше тока получает потребитель.

Как в водопроводе, так и в электрических сетях важное значение имеет диаметр проводника. При большом диаметре трубы и достаточном давлении через нее проходит много воды.

Так и в электрической сети: при требуемом сечении проводника и высоком напряжении ваши электроприборы будут получать достаточно электроэнергии для работы. Если не рассчитать сеть и перегрузить ее, то на примере водопровода это закончится аварией: трубу от избыточного давления может разорвать.

Так и с электрической сетью: если ваши провода и приборы рассчитанные на 10 ампер и внезапно по ним начнет протекать ток в 30А, то они могут элементарно оплавиться или сгореть.

Исходя из этого становится понятно, почему одни напряжения неопасны для человека, а другие – смертельны? Сравним снова водой. Например, вода в океане – это огромный источник давления.

Если человека поместить на глубину больше 5 метров, то ему становится плохо от давления воды на его ткани.

Так же и с током: когда источник тока мощный, а человек содержит в себе незначительный заряд, то между источником тока и человеком возникает огромное напряжение, способное человека травмировать или убить.

А кто это все придумал?

Изучение электричества, согласно историческим данным, началось в 15 веке, хотя о действии данных сил люди знали давно: кто-то находил намагниченные куски металла, кто-то наблюдал и задумывался, откуда берутся молнии, а кто-то не мог избавиться от пыли, которую удерживает на поверхности статическое электричество. После было три столетия опытов, споров, разработки различных теорий. Прорыв в изучении темы случился в конце 16 века, когда был изобретен первый конденсатор. Это время и выпало на молодость и взросление талантливого ученого из Италии — Алессандро Вольты (1745—1827).

Вольт был химиком, физиком и физиологом, основательно знал математику, с трудами Ньютона он познакомился в 13 лет, а к своим 55 годам изобрёл первую электрическую батарею в мире.

Этот простейший гальванический элемент произвел переворот в мире электричества: так людям открылись электролиз, который сегодня повсеместно применяется при производстве и обработке металлов и электрическая дуга.

В честь заслуг Алессандро Вольты в изучении электричества, и было присвоено его имя единице измерения напряжения.

Источник: https://pue8.ru/elektrotekhnik/927-napryazhenie-v-1-volt-fizicheskij-smyl-prostoe-opredelenie.html

История создания электродвигателя

Электромеханика является относительно молодой, по историческим меркам, отраслью науки и техники.

Итальянский физик, химик и физиолог, Алессандро Вольта, первый в мире создал химический источник тока.

1820, Эрстед

Датский ученый, физик, Ханс Кристиан Эрстед, обнаружил на опыте отклоняющее действие тока на магнитную стрелку.

1821, Фарадей

Первый электродвигатель Фарадея, 1821 г.

Британский физик-экспериментатор и химик, Майкл Фарадей, опубликовал трактат «О некоторых новых электромагнитных движениях и о теории магнетизма», где описал, как заставить намагниченную стрелку непрерывно вращаться вокруг одного из магнитных полюсов. Эта конструкция впервые реализовала непрерывное преобразование электрической энергии в механическую. Принято считать ее первым электродвигателем в истории.

1822, Ампер

Французский физик, Андре Мари Ампер, открыл магнитный эффект соленоида (катушки с током), откуда следовала идея эквивалентности соленоида постоянному магниту. Среди прочего Ампер предложил использовать железный сердечник, помещенный внутрь соленоида, для усиления магнитного поля. В 1820 году им был открыт закон Ампера.

1822, Барлоу

Английский физик и математик, Питер Барлоу, изобрел колесо Барлоу, по сути, униполярный электродвигатель.

1825, Араго

Французский физик и астроном, Доминик Франсуа Жан Араго, опубликовал опыт показывающий, что вращающийся медный диск заставляет вращаться магнитную стрелку, подвешенную над ним.

1825, Стёрджен

Британский физик, электротехник и изобретатель, Уильям Стёрджен, в 1825 изготовил первый электромагнит, который представлял из себя согнутый стержень из мягкого железа с обмоткой из толстой медной проволоки.

Вращающееся устройство Йедлика, 1827/28 гг.

1827, Йедлик

Венгерский физик и электротехник, Аньош Иштван Йедлик, изобрел первую в мире динамо-машину (генератор постоянного тока), однако практически не объявлял о своем изобретении до конца 1850-х годов.

1831, Фарадей

Английский физик, Майкл Фарадей, открыл электромагнитную индукцию, то есть явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Формулировка закона электромагнитной индукции.

1831, Генри

Американский физик, Джозеф Генри, независимо от Фарадея обнаружил взаимоиндукцию, но Фарадей раньше опубликовал свои результаты.

1832, Пикси

Генератор постоянного тока Пикси

Француз, Ипполит Пикси, сконструировал первый генератор переменного тока. Устройство состояло из двух катушек индуктивности с железным сердечником напротив которых располагался вращающийся магнит подковообразной формы, который приводился в движение вращением рычага. Позже для получения постоянного пульсирующего тока к этому устройству был добавлен коммутатор.

Источник: https://engineering-solutions.ru/motorcontrol/history/

Понравилась статья? Поделиться с друзьями:
Электро Дело
Когда нужно включать задние противотуманные фары

Закрыть
Для любых предложений по сайту: [email protected]