Какой ток в розетке: какое напряжение в розетке, почему в розетке переменный ток
Людям, знающим основы электротехники известно, что в розетке возникает переменный ток. Подобным типом электроэнергии намного проще управлять, в том числе передавать его на дальние расстояния.
В розетке ток или напряжение (+ какое напряжение)
Существует три основных параметра электрической сети:
- Ток – измеряется в Амперах (А).
- 2. Частота – в Герцах (Гц).
- 3. Напряжение – в Вольтах (В).
Что такое сила тока
Величина частоты зависит от генерирующих устройств, поэтому остается постоянной. Напряжение в сети может отличаться от номинального из-за возникновения помех. На показатель оказывает влияние состояние оборудования, нагрузка, а также загруженность трансформаторной подстанции. Параметр может отклоняться от основного в пределах 20 – 25 Вольт.
Важно! Если в электрической сети отмечаются скачки напряжения, то от этого страдает работоспособность техники, и без подключения стабилизаторов не обойтись.
Какое напряжение (постоянное или переменное) и сила тока в квартире, можно узнать по соответствующим маркировкам на розетках заводов-изготовителей.
На розетках указывается символика, по которой можно понять, какая допустимая нагрузка может проходить через устройство. Для того, чтобы исключить выход из строя технического оборудования, необходимо придерживаться предельно допустимых значений. Приборами, потребляющими большое количество электроэнергии, являются кондиционеры, печи СВЧ, плиты и стиральные агрегаты.
В связи с этим обстоятельством обойтись без розетки номиналом меньшим, чем 16А, не представляется возможным.
Измерение напряжения в розетке возможно с помощью индикатора, тестера либо посредством эмпирического отслеживания.
Стандартное напряжение в бытовой сети составляет 220 Вольт – какой ток? В данном случае речь идёт о номинальном показателе для жилых помещений при однофазной проводке.
Проводник
Как определить, какой ток в розетке
Какое напряжение в розетке и сила тока – постоянное или переменное, можно определить несколькими способами:
- Амперметром. Это специализированный прибор для измерения силы показателя. Значения можно увидеть на шкале посредством соединения розетки, потребителя и амперметра.
Вам это будет интересно Особенности индуктивного сопротивленияАмперметр
- Мультиметр. Это комбинированное устройство, объединяющее в своей цепи омметр, вольтметр и амперметр.
- Расчетным способом. Для того, чтобы определить, какой ток в розетке, необходимо знать показатель мощности прибора. В сеть подается ток с напряжением в 220В, поэтому расчет силы прост: значение мощности разделить на напряжение. Так несложно вычислить ток при включении утюга, мощностью 2,0 кВт, получается, 9.09 Ампер. Таким образом, если напряжение в сети 220 В, то какой по показателю ток протекает в сети, зависит от мощности.
Стоит отметить! Погрешность при измерениях зависит от класса точности устройств, перечисленных в пунктах 1 и 2.
Переменный
Почти 98% электроэнергии вырабатываемой домашней электросетью – переменный ток. Этот ток изменяет как направление, так и величину. При передаче электроэнергии внутри сети, напряжение либо увеличивается, либо уменьшается, в связи чем розетки выпускаются для переменного показателя. Существуют электроприборы, питающиеся от источника постоянного показателя, поэтому их следует привести к одному типу с использованием преобразователей.
Закон Ома
Основные преимущества переменного тока:
- Передача на длинные расстояния.
- Позволяет использовать стандартное генераторное оборудование.
- Отсутствует полярность при подключении.
Однако у данного тока также имеется ряд недостатков:
- Потери в цепи обязывают подбирать розетки с учётом понижающего коэффициента 0,7.
- Возникает электромагнитная индукция, в связи, с чем электричество не всегда распределяется равномерно.
- Проверка и измерение значений осуществляются по сложной схеме.
- Увеличение показателя сопротивления, так как кабель не задействован в полном объеме.
Переменное значение
Постоянный
При упорядоченном движении заряженных частиц в едином направлении, ток называется постоянным, и возникает он в сети с неизменным напряжением при стабильной полярности зарядов. Используется в промышленных автономных установках, что исключает необходимость передачи электроэнергии на большие расстояния.
Использование постоянного показателя предусматривается в автономных системах, к примеру, в автотранспорте, летательных средствах, морской технике и электропоездах. Широкое использование он получил при организации питания микросхем электроники, средств связи и иной техники, где количество помех максимально сводится к минимуму, вплоть до их полной ликвидации.
Вам это будет интересно Как узнать амперы и ватты
В некоторых случаях он нашел применение в сварочных агрегатах, а также в железнодорожных локомотивах, медицине при введении в организм лекарственных препаратов посредством электрофореза.
Постоянный ток
Почему в розетке переменный ток
Еще в позапрошлом веке Тесла выдвинул гипотезу, что электричество в жилых помещениях (квартирах и домах) должно быть переменным. Ученый обосновал, что применение токов этого вида наиболее приемлемо, исходя из следующих заключений:
- Передается по проводам с наименьшими потерями.
- Легко поддается трансформации.
- Намного безопаснее по отношению к постоянному.
Постоянный ток отличают противоположные свойства:
- Проходит по проводке с большими потерями.
- Процесс трансформации из одного напряжения в иное проходит сложно.
Основной вывод – использование тока переменного значения непосредственно связано с безопасностью и потерями в линиях электрических проводов. Для снижения расходов на электроэнергии напряженье должно быть высоким.
На вышках электропередач проходит ток высокого напряжения 1000В, 10000В, а также 500000В. Хотя это и представляет опасность для жизни, но обуславливает экономичность.
Для трансформации электроэнергии обустраивают трансформаторные будки, откуда ток на выходе имеет напряжение 380В или 220В.
Можно привести пример: в качестве трансформатора берется зарядное устройство для мобильного телефона, и она полностью безопасна, так как в ней встроен преобразователь.
Стоит лишь закоротить розетку, то ток с переменным значением автоматически перекрывается и электрической дуги не образовывается. По этим причинам использование переменного показателя гораздо выгоднее и безопаснее.
Количество электричества
Какой ток в батарейках
Из розетки выходит ток переменного значения, так как направление потока электронов меняется. У такого рода тока частота и напряжение разных значений. Следовательно, в розетках – 220В при 50Гц. Нагляднее это выглядит так: в одну секунду поток электронов меняется 50 раз, при этом заряды тоже изменяются с положительных на отрицательные.
Вам это будет интересно Напряжение переменного тока
Особенно это заметно при включении или подаче электричества в флуоресцентные лампы. При разгоне электронов лампа мерцает, а это означает, что это меняется поток. Максимальный напор потенциала напряжения составляет 220В, при котором осуществляется движение электронов.
Батарейки
Заряд изменяется при переменном токе. Получается, что напряжение бывает либо 100% или 0%. При показателе 100 % необходимо, чтобы провод был большого диаметра, а если заряд непостоянный, то достаточно провода небольшого сечения. По такому проводнику можно переправить большое количество вольт, после чего трансформатор забирает в себя излишки, и остается 220В на выходе.
Внимание! В батарейках или в аккумуляторах постоянный ток, так как направление электронов не изменяется. Зарядка предназначена для его трансформации из переменного в постоянный, в таком виде его выдают аккумуляторы.
Гальванический элемент
Какой ток в 220В и больше
Значение проходящей электроэнергии из розетки определяется в Амперах, при этом напряжение на выходе составляет 220 В. Получается, что сила тока – физическая величина, равная отношению заряда, который проходит через проводник за определенное время. Если к розетке нет подключения, то электрическая цепь считается разорванной.
Электрооборудование
Когда проводка не защищена автоматикой, то мощность находится под контролем, поэтому значение Ампер в розетке разное при напряжении 220В. Показатель силы в этом случае постоянно растёт до тех пор, пока электрическое оборудование не выйдет из строя.
Профессионалы советуют выбирать розетки на 16 и более Ампер, так как они надежнее, проводка выполняется из кабеля на 2,5 мм2. При выборе розетки, рассчитанной на меньшее количество Ампер, защита может не срабатывать, что нередко приводит к авариям на линии.
Источник: https://rusenergetics.ru/polezno-znat/kakoy-tok-v-rozetke
Трёхфазный ток, фаза и ноль – что это такое
Что такое однофазная и трёхфазная электропроводка, чем они отличаются и чем трёхфазная круче? По просьбе френдов пишу небольшой технически-популярный пост.
Предисловие. Почему Алекса решила написать не только про гендер, секс и феминизм
Под завершение 2010-х годов у нас произошло важное событие, к которому мы довольно долго шли. Мы с женой купили старый полузаброшенный дом неподалёку от Москвы и стали его ремонтировать; работы там очень много, но по цене вариант был заметно интереснее и готового загородного коттеджа, и приличной городской квартиры.
А поскольку я по первому образованию физик и до сих пор зарабатываю на жизнь преимущественно научно-популярными текстами, то вот текст о проводке простым языком.
Самые азы. Переменное напряжение. Сколько вольт в розетках
Вообще фазой – вне электротехники – называют то, что описывает всякие колебания. Вот такие:
Это называют синусоидой. По горизонтали время, а по вертикали почти всё, что угодно. Угол отклонения маятника, уровень воды при прохождении волны, напряжение в сети
В случае с электропроводкой колеблется напряжение в сети – поэтому возникающий при подключении чего-либо ток и называют переменным. Когда говорят, что в розетке 220 вольт – это не означает, что там постоянно 220 вольт. Нет, напряжение на самом деле непрерывно меняется с +310 до -310 вольт! А в какой-то момент оно вообще равно нулю; отрицательные значения соответствуют случаю, когда ток течёт “в обратную сторону”, то есть не туда, куда он тёк при положительном напряжении.
Вот уже не просто синусоида – какие угодно колебания – а синусоида переменного тока. По вертикали отмечено напряжение в вольтах:
Рисунок: Pieter Kuiper / Wikimedia
Если вы в США, то у вас напряжение такое, как показано красной линией. А в Беларуси, России, Украине и в большинстве стран мира – синяя линия.
Пресловутые 220 (на самом деле уже давно 230, если смотреть на картинку и на новый стандарт*) вольт – это так называемое действующее напряжение. Которое, будь ток не переменным, а постоянным, оказывало бы такое же действие, как меняющееся 50 раз в секунду переменное напряжение от минус 325 до плюс 325 вольт.
Переменное, то есть постоянно меняющееся напряжение было выбрано не случайно.
Этому предшествовала настоящая “война токов” (с показательными казнями слонов) и в пользу переменного решающим аргументом оказалось то, что переменное проще преобразовывать – легче сделать напряжение повыше или пониже.
Повыше для передачи в другой город или для какого-нибудь завода, пониже для использования в квартирах. Ну и ещё пресловутая трёхфазная система, но про неё чуть позже, а пока давайте посмотрим на переменное напряжение поближе.
*) ГОСТ 29322-2014 в Беларуси и в России, CENELEC EN 50160:2010 в Украине; всё это по сути европейские стандарты.
Самые азы. Ремарка про напряжение
Выше я писала про напряжение. Напряжение – это такая физическая величина, которая выражает – если цитировать Википедию – “работу по переносу заряда между теми точками, между которыми мы измеряем напряжение”.
Слова про “перенос заряда” не случайны, так как электрический ток это поток заряженных частиц – как правило, электронов*. Чем больше переносится по проводу электронов, тем больше сила тока; а вот напряжение показывает то, какую работу может совершить ток.
При малом напряжении точно такой же ток совершит меньшую работу, чем при напряжении побольше; сила тока измеряется в амперах.
*) если говорить о металлических проводах, а не о погружённых в банку с солёной водой электродах. В воде будут не только электроны, но и ионы. Ток внутри наших нервных клеток, кстати, тоже ионный.
Что такое “фаза” и где она в проводах. Для тока нужно два провода
Для того, чтобы потёк ток – нужно минимум два провода. Ну или один провод и земля, куда уйдёт ток – но последний вариант, прямо скажем, не очень подходит для большинства случаев в силу требований техники безопасности. Посмотрим на какой-нибудь простой кабель поближе – вот я открою соседнюю вкладку браузера, где как раз выбираю всё для обустройства электропроводки в нашем новом доме:
Скриншот из магазина “Петрович”. 2х4 означает “две жилы по 4 мм² каждая”, а ВВГ – это марка кабеля, расшифровывать которую я сейчас не буду.
По одной жиле ток пришёл, по второй ушёл. Затем напряжение поменялось и стало наоборот – в одну жилу ток “всосало”, из второй “высосало”. А потом снова поменялось – и так 50 раз в секунду, так как напряжение переменное и частота его 50 герц, 50 колебаний туда-сюда за секунду.
Самое важное место во всём тексте. Провод под напряжением относительно земли – это и есть фаза
Напряжение, как я уже сказала, измеряется между двумя точками. Но ещё его можно измерять относительно земли – что, кстати, чаще всего и делают.
220 вольт* – это напряжение на одной из жил относительно земли! Вторая же жила, если померять напряжение между ней и землёй, покажет ноль вольт: поэтому я и написала выше, что ток из неё “высосет”.
Это ни разу не электротехнический термин, я специально его закавычила, но он позволяет понять физику процесса: когда в первой жиле окажется отрицательное напряжение, ток потечёт в обратную сторону подобно тому, как вода течёт не только в сторону от нагнетания, но и в сторону разрежения.
*) далее я буду говорить про действующее напряжение и не упоминать больше то, что оно меняется от -310 до +310 вольт.
Всё, что находится относительно земли под напряжением – называют “фазой”. Фазный провод – тот, где напряжение относительно земли не равно нулю. А где относительно земли ноль – это “ноль” и есть. Соединяем “фазу” с “нулём” какой-нибудь лампочкой – цепь замыкается и течёт ток, лампочка зажигается.
Ноль очень важно отделять от фазы на практике так, чтоб их нельзя было спутать. Синяя жила кабеля на фотографии предполагает, что там будет ноль. “Нулевые” провода можно, в принципе, брать за неизолированные участки руками – напряжение между ними и землёй должно в норме быть равным нулю и никакого удара током вы не получите. А вот “фаза” – однозначно ударит током, если вы ещё как-то будете прикасаться к земле, нулевому проводу или всему, что связано с землей проводящими ток частями.
Занимательная пауза: что будет при замыкании фазы с нулём
Если замкнуть фазу на ноль (с этого места я перестаю заключать эти термины в кавычки), соединив провода напрямую – будет короткое замыкание. Через провода потечёт очень большой ток и сработают защитные устройства в щитке после того, как у вас в руках как следует пыхнет и хлопнет.
Вот что бывает, если высоковольтная линия с очень высоким напряжением оказывается соединена с землёй неудачно выросшим деревом. Это вариант короткого замыкания. “Короткое” оно в силу того, что ток вместо “длинного” пути через какое-либо устройство идёт к земле (или к нулевому проводу – где такое же напряжение, как на земле) через что-то с гораздо меньшим сопротивлением, по “короткому” пути. И раз сопротивление меньше, то и ток много больше, причём в неподобающем месте.
Почему она “фаза” и что такое “трёхфазная система”
Но почему провод под напряжением называется именно “фазой”? Откуда такое название? В самом начале я сказала, что фаза это такая физическая величина, которая описывает колебания, причём тут провода?
Одни колебания могут запаздывать относительно других. Этот сдвиг – буква θ на графике ниже – называют сдвигом фаз.
Иллюстрация: Peppergrower / Wikimedia
Колебаться может электрическое напряжение между проводом-фазой и тем проводом, который называют нулём. А ещё у нас может быть не один фазовый провод, а несколько – и тогда в них колебания как раз могут не совпадать друг с другом, то есть иметь сдвиг фаз. Реальные электросети устроены как раз так, что в них не один фазовый провод, а три, причём именно со сдвигом колеблющегося напряжения по фазе.
Поэтому и говорят о трёхфазной системе электроснабжения. Снова рисунок:
Источник: http://freeresearcher.net/2019/12/30/3phases/
Природа электрического тока
Движение электронов в проводнике
Чтобы понимать что такое ток и откуда он берётся, нужно иметь немного знаний о строении атомов и законах их поведения. Атомы состоят из нейтронов (с нейтральным зарядом), протонов (положительный заряд) и электронов (отрицательный заряд).
Электрический ток возникает в результате направленного перемещения протонов и электронов, а также ионов. Как можно направить движение этих частиц? Во время любой химической операции электроны «отрываются» и переходят от одного атома к другому.
Те атомы, от которых «оторвался» электрон становятся положительно заряженным (анионы), а те к которым присоединился – отрицательно заряженными и называются катионами. В результате этих «перебеганий» электронов возникает электрический ток.
Естественно, этот процесс не может продолжаться вечно, электрический ток исчезнет когда все атомы системы стабилизируются и будут иметь нейтральных заряд (отличный бытовой пример – обычная батарейка, которая «садится» в результате окончания химической реакции).
История изучения
Древние греки первыми заметили интересное явление: если потереть камень янтаря об шерстяную ткань, то он начинает притягивать мелкие предметы. Следующие шаги начали делать ученые и изобретатели эпохи ренессанса, которые построили несколько интересных устройств, демонстрировавших это явление.
Новым этапом изучения электричества стали работы американца Бенджамина Франклина, в частности его опыты с Лейденовской банкой – первым в мире электроконденсатором.
Именно Франклин ввёл понятия положительных и отрицательных зарядов, а также он придумал громоотвод. И наконец, изучение электротока стало точной наукой после описания закона Кулона.
Основные закономерности и силы в электрическом токе
Закон Ома – его формула описывает взаимосвязь силы, напряжения и сопротивления. Открыт в 19м веке немецким ученым Георгом Симоном Омом. Единица измерения электросопротивления названа в его честь. Его открытия были очень полезны непосредственно для практического использования.
Закон Джоуля – Ленца говорит, что на любом участке электрической цепи совершается работа. В результате этой работы нагревается проводник. Такой тепловой эффект часто используется на практике в инженерии и технике (отличный пример – лампа накаливания).
Движение зарядов при этом совершается работа
Эта закономерность получила такое название потому что сразу 2 ученых примерно одновременно и независимо, вывели её с помощью опытов
закона электромагнитной индукции.
В начале 19го века британский ученый Фарадей догадался, что изменяя количество линий индукции, которые пронизывают поверхность ограниченную замкнутым контуром, можно сделать индукционный ток. Посторонние силы, действующие на свободные частицы, называют электродвижущей силой (ЭДС индукции).
Разновидности, характеристики и единицы измерения
Электрический ток может быть или переменным, или постоянным.
Постоянный электроток — это ток, который не меняет своё направление и знак во времени, однако он может менять свою величину. Постоянный электроток в качестве источника чаще всего использует гальванические элементы.
Переменным называется тот, который меняет направление и знак по закону косинуса. Его характеристикой является частота. Единицы измерения в системе СИ – Герцы (Гц).
В последние десятилетия очень большое распространение получил трехфазный ток. Это вид переменного тока, который включает в себя 3 цепи. В этих цепях действует переменные ЭДС одинаковой частоты, но развернутые по фазе одна относительно другой на треть периода. Фазой называют каждую отдельную электроцепь.
Почти все современные генераторы производят трёхфазный электроток.
Сила тока зависит от величины заряда, протекающего в электроцепи за единицу времени. Сила тока это отношение электрозаряда, проходящего сквозь сечение проводника, ко времени его прохождения.
В системе СИ единица измерения силы заряда – кулон (Кл), времени – секунда (с). В итоге получаем Кл/с, данную единицу называют Ампер (A). Измеряется сила электротока с помощью прибора – амперметра.
Напряжение — это соотношение работы к величине заряда. Работа измеряется в джоулях (Дж), заряд в кулонах. Данная единица называется Вольт (В).
- Электрическое сопротивление
Показания амперметра на различных проводниках дают разные значения. А для того чтобы замерять мощность электроцепи пришлось бы использовать 3 прибора. Явление объясняется тем, что у каждого проводника различная проводимость. Единица измерения называется Ом и обозначается латинской буквой R. Сопротивление также зависит и от длины проводника.
Два проводника, которые изолированы один от второго, могут накапливать электрические заряды. Данное явление характеризуется физ. величиной, которую называют электрической емкостью. Её единицей измерения – фарад (Ф).
- Мощность и работа электрического тока
Работа электротока на конкретном участке цепи равняется перемножению напряжения тока на силу и время. Напряжение меряют вольтами, силу амперами, время секундами. Единицей измерения работы приняли джоуль (Дж).
Мощность электротока – это отношение работы ко времени её совершения. Мощность обозначают буквой P и измеряют ваттами (Вт). Формула мощности очень простая: Сила тока умноженная на напряжение тока.
Существует также единица именуемая ватт-час. Её не следует путать с ваттами, это 2 разные физические величины. В ваттах измеряют мощность ( скорость потребления или передачи энергии), а в ватт-часах выражается энергия произведённая за конкретное время. Это измерение часто применяют в отношении бытовых электроприборов.
Например, лампа мощность которой равняется 100 Вт работала в течении одного часа, то она потребила 100 Вт*ч, а лампочка мощность которой 40 ватт потребит столько же электроэнергии за 2.5 часа.
Для того, чтобы замерять мощность электроцепи используют ваттметр
Какой вид тока эффективнее и какая между ними разница?
Постоянный электроток легко использовать в случае параллельного подключения генераторов, для переменного необходима синхронизация генератора и энергосистемы.
В истории произошло событие под названием «Война токов». Эта «война» произошла между двумя гениальными изобретателями – Томасом Эдисоном и Николой Теслой. Первый поддерживал и активно продвигал постоянный электроток, а второй переменный. «Война» закончилась победой Теслы в 2007 году, когда Нью-Йорк окончательно перешел на переменный.
Разница в эффективности передачи энергии на расстоянии оказалось огромной в пользу переменного тока. Постоянный электроток невозможно использовать, если станция находятся далеко от потребителя.
Но постоянный всё равно нашел сферу применения: он широко используется в электротехнике, гальванизации, некоторых видах сварки. Также постоянный электроток получил очень большое распространение в сфере городского транспорта (троллейбусы, трамваи, метро).
Естественно, не бывает плохих или хороших токов, у каждого вида есть свои преимущества и недостатки, самое главное – правильно их использовать.
Источник: http://infoelectrik.ru/nemnogo-osnov-elektrotehniki/priroda-elektricheskogo-toka.html
В розетке постоянный ток или переменный?
> Выключатели и розетки > В розетке постоянный ток или переменный?
Люди давно привыкли к благам электричества и многим все равно, какой ток в розетке. На планете 98% вырабатываемой электроэнергии – это переменный ток. Его намного легче производить и передавать на значительные расстояния, чем постоянный. При этом напряжение может многократно изменяться по величине в сторону понижения и повышения. Сила тока существенно влияет на потери в проводах.
Передача электроэнергии на расстояние
Параметры домашней сети всегда известны: переменный ток, напряжение 220 вольт и частота 50 герц. Они подходят преимущественно для электродвигателей, холодильников и пылесосов, а также ламп накаливания и многих других приборов.
Многие потребители работают при постоянном напряжении в 6-12 вольт. Особенно это относится к электронике. Но питание приборов должно приводиться к одному типу.
Поэтому для всех потребителей ток в розетке должен быть переменным, с одним напряжением и частотой.
Различие между токами
Переменный ток периодически изменяется по величине и направлению. С генераторов электростанции выходит переменный ток с напряжением 220-400 тыс. вольт. До многоэтажного дома оно снижается до 12 тыс. вольт, а затем на трансформаторной подстанции преобразуется до 380 вольт.
Ввод в частный дом может быть трехфазным или однофазным. Три фазы заходят в многоэтажный дом, а затем в каждую квартиру с межэтажного щитка, через пакетный выключатель снимается 220 вольт между нейтральным проводом и фазой.
Схема подключений в квартире от однофазной сети переменного тока
В квартире напряжение подается на счетчик, а с него поступает через отдельные автоматы на соединительные коробки каждого помещения. С коробок делается разводка по комнате на две цепи осветительных приборов и розеток. В схеме рисунка на каждое помещение приходится по одному автомату. Возможен другой способ подключений, когда на осветительную и розеточную цепи устанавливается по одному защитному устройству.
В зависимости от того, на сколько ампер рассчитана розетка, она может быть в группе или к ней подключается отдельный автомат. Постоянный ток отличается тем, что его направление и свойства не изменяются со временем. Он применяется во всей электронике дома, светодиодной подсветке и в бытовых приборах. При этом многие не знают, какой ток в розетке.
Он приходит из сети переменным, а затем преобразуется в постоянный внутри электроприборов, если в этом есть необходимость.
Если сделать схему снабжения квартиры постоянным током, обратное его преобразование в переменный обойдется значительно дороже.
Преобразователь постоянного тока
Параметры розеток
Как расположить розетки на кухне
Определяющими характеристиками для розеток являются уровень защиты и контактная группа. Для хозяина квартиры при выборе розетки необходимо учитывать:
- место установки: внешняя, скрытая, в помещении или снаружи;
- форма и соответствие друг другу вилки и розетки, безопасность использования;
- характеристики сети, особенно, сколько ампер через нее может проходить.
Требования к штепсельным соединениям
Для подключения электроприбора к сети розетка с вилкой являются соответственно источником и приемником энергии, образуя штепсельное соединение. К нему предъявляются следующие требования.
- Надежный контакт. Слабое соединение приводит к разогреву и выходу его из строя. Важно также обеспечить надежную фиксацию от самопроизвольного отключения. Здесь удобно применять пружинящие контакты в розетке.
- Изоляция токонесущих частей друг от друга.
- Защита от прикосновения руками или разными предметами к деталям, находящимся под напряжением. Для защиты от детей в розетках предусматриваются специальные шторки, открывающиеся только тогда, когда вставляется вилка.
- Обеспечение полярности при подключении. Это важно, если через соединение течет постоянный ток или устройство применяется в сочетании с однополюсным выключателем. Конструкция розетки не допускает неправильного подключения.
- Наличие заземления для приборов 1 класса защиты. В розетках важно правильно подключить заземление.
Виды розеток
Как перенести розетку в другое место
В зависимости от условий эксплуатации розетки выполняют с разными уровнями защиты, которые обозначаются кодом IP и следующими за ним двумя числами. Первое (0-6) означает, насколько устройство не допускает попадание внутрь предметов, пыли и т.п. Следующее (0-8) предусматривает защиту от воды. Если розетка обозначена кодом IP68, значит, она имеет самую высокую защиту от внешних воздействий.
По типам изделия обозначаются латинскими буквами. Отечественные выпускаются без заземления (С) и с заземлением (F).
Приборы группы AC (~) предназначены для переменного тока. Постоянный ток обозначается DC (-).
Главным показателем является сила тока, которая допускается для той или иной розетки. Если на ней есть обозначение 6 А, то суммарная подключаемая нагрузка не должна превышать указанного количества ампер. При этом не имеет особого значения, переменный ток через нее проходит или постоянный.
Сколько нагрузки выдержит соединение, оценивают по общей мощности всех подключенных приборов. Для таких потребителей, как микроволновая печь, посудомоечная или стиральная машина используются отдельные розетки не менее чем на 16 ампер с обозначением типа тока.
Особое место занимает электроплита, для которой сила номинального тока составляет 25 ампер или больше. Ее следует подключать через отдельное УЗО. За основу берется номинальный ток – количество ампер, которое способна пропустить розетка в течение длительного времени.
Ампер – это единица измерения, по которой измеряется сила тока. Если указана только паспортная мощность, допустимый ток составит I = P/U, где U = 220 вольт. Тогда при мощности 2200 ватт сила тока будет равна 10 ампер.
Обратите внимание на подключение к розеткам электроприборов через удлинители. Здесь легко можно ошибиться с определением, сколько потребуется суммарной мощности нагрузки. Кроме того, удлинитель также должен соответствовать предъявляемым требованиям, поскольку у него имеются свои розетки с маркировкой.
Для переменного тока полярность в штепсельных соединениях особенно не нужна. Фазу обычно находят, если надо подключать к светильникам автомат или однополюсный выключатель. При их отключении прикосновение к нулевому проводу будет не таким опасным.
Розетки расширенной функциональности
Сейчас выпускают новые типы розеток с новыми функциями:
- Встроенные таймеры отключения.
- Переключение типа тока.
- С индикацией величины нагрузки (цвет меняется от зеленого до красного).
- Со встроенным УЗО.
- С автоматической блокировкой.
Проверка подключения
Розетка для варочной панели и духового шкафа
Напряжение проверяется в розетке подключением вольтметра или тестера. При его наличии прибор укажет, сколько в ней вольт.
Тестер напряжения в розетке
Сила тока может определяться амперметром, подключенным последовательно с работающей нагрузкой.
Электрики проверяют наличие напряжения индикатором. Однополюсный – выполняется в виде отвертки с лампочкой. С его помощью можно найти фазу, но подключение нулевого провода он не покажет. Это можно сделать двухполюсным индикатором, подключив его между фазой и нулем. Легко можно проверить напряжение в розетке контрольной лампой, которому она должна соответствовать.
Монтаж.
Про монтаж подрозетника в бетон рассказывается в этом видео.
В быту и промышленности преобладает переменный электрический ток. Его проще передавать на расстояния и изменять по величине. Для бытовых нужд переменный ток подается на освещение и к розеткам в доме, где подключаются электроприборы.
Источник: https://elquanta.ru/vyklyuchateli/elektrichestvo-v-kvartire.html
Электрический ток, откуда он берется и как добирается до наших домов?
Дороги и тропинки эти отнюдь не просты, порой извилисты и многократно меняют направление, но знать, как они выглядят – обязанность каждого культурного человека XXI века.
Века, облик которого во многом определяет покорившаяся нам электроэнергия, которую мы научились преобразовывать так, чтобы были удовлетворены все наши потребности – как в промышленности, так и в частном пользовании. Ток в проводах линий электропередач и ток в батарейках наших гаджетов – очень разные токи, но они остаются все тем же электричеством.
Какие усилия приходится прилагать электроэнергетикам, инженерам, чтобы обеспечить мощнейшие токи сталеплавильных заводов и маленькие, крошечные токи, допустим, наручных часов? Сколько работы приходится проделывать всем тем, кто поддерживает систему преобразований, передачи и распределения электроэнергии, какими такими методами обеспечена стабильность этой системы? Чем «Системный Оператор» отличается от «Федеральной Сетевой Компании», почему обе этих компании были, есть и будут в России не частными а государственными?
Вопросов очень много, ответы на них надо знать, чтобы более менее представлять, зачем нам так много энергетиков и чем же они, грубо говоря, занимаются? Мы ведь настолько привыкли, что с электричеством в домах и в городах все в полном порядке, что про электроинженеров вспоминаем только тогда, когда что-то вдруг перестает работать, когда мы выпадаем из зоны привычного уровня комфорта. Темно и холодно – вот только тогда мы с вами и говорим об энергетиках, причем говорим такие слова, которые мы печатать точно не будем.
Мы уверены, что нам откровенно повезло – взяться за эту не простую, нужную, да еще и огромную тему согласился настоящий профессионал. Просим любить и жаловать – Дмитрий Таланов, Инженер с большой буквы.
Знаете, есть такая страна – Финляндия, в которой звание инженера настолько значимо, что в свое время ежегодно издавался каталог с перечнем специалистов, его имеющих.
Хотелось бы, чтобы и в России когда-нибудь появилась такая славная традиция, благо в наш электронно-интернетный век завести такой ежегодно обновляемый каталог намного проще.
Статья, которую мы предлагаем вашему вниманию по инженерному коротка, точна и емка. Конечно, обо всем, что написал Дмитрий, можно рассказать намного подробнее, и в свое время наш журнал начал цикл статей о том, как в XIX веке происходило покорение электричества.
Георг Ом, Генрих Герц, Андре-Мари Ампер, Алессандро Вольт, Джеймс Ватт, Фарадей, Якоби, Ленц, Грамм, Фонтен, Лодыгин, Доливо-Добровольский, Тесла, Яблочков, Депрё, Эдисон, Максвелл, Кирхгоф, братья Сименсы и братья Вестингаузы – в истории электричества много славных имен, достойных того, чтобы мы о них помнили. В общем, если кому-то хочется припомнить подробности того, как все начиналось, милости просим, а статья Дмитрия – начало совсем другой истории. Очень надеемся, что она вам понравится, а продолжение статей Дмитрия Таланова мы увидим в самое ближайшее время.
Уважаемого Дмитрия от себя лично – с дебютом, ко всем читателям просьба – не скупитесь на комментарии!
Для чего нам электроэнергия и насколько она помогает нам жить, может узнать каждый, обведя критическим взглядом свое жилище и место работы
Первое, что бросается в глаза, это освещение. И верно, без него даже 8-часовой рабочий день превратился бы в муку. Добираться до работы во многих мегаполисах и так небольшое счастье, а если придется это делать в темноте? А зимой так и в оба конца! Газовые фонари помогут на главных магистралях, но чуть свернул в сторону, и не видно ни зги. Можно легко провалиться в подвал или яму. А за городом на природе, освещаемой только светом звезд?
Источник: http://geoenergetics.ru/2017/10/10/elektricheskij-tok-otkuda-on-beretsya-i-kak-dobiraetsya-do-nashix-domov/
Основные характеристики сварочного инвертора
По своей сути – та же характеристика диапазона рабочего тока. Иногда по неграмотности или злонамеренно указывается диаметр электрода, которым заявленным максимальным током варить не получится. Иногда наоборот: указан максимальный диаметр электрода, явно не дотягивающий до значения заявленного сварочного тока.
Последний вариант изредка является проблеском совести поставщиков-обманщиков. В качестве максимального тока они указывают ток короткого замыкания. А максимальный рабочий диаметр электрода указывают все-таки честно.
Тип сварочного тока: постоянный (DC) или переменный (AC)
Варить постоянным (иначе прямым, по-английски – DC) током проще: легче удерживать дугу. Поэтому 99,9% современных инверторных аппаратов ММА выдают постоянный сварочный ток.
А вот среди трансформаторов раньше большинство составляли как раз аппараты переменного тока.
Переменный ток (по-английски – AC) используется для сварки цветных металлов. Но не аппаратами ММА, а аппаратами TIG. Поэтому сварочный инвертор ММА, выдающий переменный ток, — большая редкость.
Напряжение без нагрузки
После включения аппарата, до момента поджига дуги напряжение на кончике электрода существенно выше, чем во время работы. И чем оно выше, тем легче поджечь дугу. Но стандарты запрещают уровень напряжения холостого хода на аппаратах, выдающих прямой ток, свыше 100В.
Для еще большего сокращения рисков используют т.н. блоки VRD. Аппарат, снабженный VRD, имеет на кончике электрода до начала поджига дуги всего несколько вольт. И лишь при прикосновении к металлу напряжение холостого хода восстанавливается до уровня, необходимого для поджига дуги.
На всех электродах всегда указывается полярность подключения, тип сварочного тока (постоянный или переменный) и минимально требуемый для поджига уровень напряжения холостого хода. Для абсолютного большинства широко распространенных электродов он не превышает 60В.
Напряжение холостого хода, также как и сварочный ток, зависит от уровня входного напряжения. Чем ниже напряжение в источнике питания, тем ниже напряжение холостого хода. Поэтому по мере снижения напряжения питания поджиг электрода становится все сложнее.
Рабочий цикл, он же ПВ (период включения), он же ПН (полезная нагрузка)
ПВ указывается двумя цифрами. Первая – сила тока. Вторая – процент времени. Например, «130А-50%» означает, что данный аппарат током 130А может варить половину времени. А столько же будет простаивать в ожидании охлаждения до рабочей температуры.
Если измерения проводятся на максимальном токе аппарата, первую цифру опускают, оставляя только показатель в процентах.
Например, если аппарат с номиналом 160А имеет напротив «ПВ» запись «30%», это означает, что током 160 ампер он может работать 30% времени, а 70% будет остывать.
Все верно. Остается только добавить, что отечественный ГОСТ Р МЭК 60974-1-2004 не устанавливает единой обязательной методики измерения показателя ПН для аппаратов ММА. «Стандарт не распространяется на источники питания для ручной дуговой сварки с ограниченным режимом эксплуатации, которые проектируются преимущественно для эксплуатации непрофессионалами».
Европейская методика, изложенная в стандарте EN60974-1, предлагает измерение на нагрузочном стенде при температуре окружающей среды 40С только до первого отключения ввиду перегрева. Полученный результат относят к 10-минутному промежутку. Получается, сработала термозащита через 3 минуты, цикл аппарата на данном токе – 30%.
Методика концерна TELWIN. К настоящему времени ее используют большинство китайских производителей (тех, которые вообще проводят такие испытания своих машин). Сам итальянский концерн при замерах ПВ своих аппаратов по собственной методике после показателя скромно указывает «TELWIN». Абсолютное большинство китайских производителей этого не делает.
Наконец, существует российская, она же советская, методика. По своей сути она ближе к методике TELWIN: суммируются все промежутки за контрольный период, когда аппарат работал. Но отрезок берется не 10, а 5 минут. И – самое главное – аппарат сначала вводится в режим срабатывания защиты от перегрева, после чего начинаются измерения.
В итоге один и тот же аппарат по всем 3 методикам выдает совершенно различный процент! Естественно, самые скромные «циферки» получаются по европейской методике, а самые впечатляющие – до 2 раз и более – по методике Telwin.
Исполнение: класс защиты IP
Класс защиты IP указывает на исполнение электротехнических приборов в отношении твердых объектов (первая цифра) и жидкостей (вторая цифра).
Определить степень защиты аппарата можно визуально. Если у аппарата с IP21 все вентиляционные щели полностью открыты, то у IP22 они уже прикрыты сверху выступающими козырьками. А у аппарата с IP23 эти козырьки почти полностью закрывают щели.
Степень защиты IP24 и выше технически затруднена и не имеет смысла.
Исполнение: класс изоляции (по нагревостойкости)
Многие материалы при нагреве выше определенной температуры утрачивают свои рабочие свойства. Для стандартизации материалов по данному признаку введена классификация изоляции по нагревостойкости. Почти все сварочные инверторы на транзисторах IGBT имеют класс изоляции H, что соответствует предельной температуре нагрева 180С. Предыдущая «ступенька» — класс F – означает предел нагрева 155С. Выше класса F – только класс С, указывающий на возможную температуру нагрева свыше 180С.
Температура эксплуатации
Как и внутренний нагрев, внешний нагрев и особенно охлаждение накладывают на эксплуатацию определенные ограничения. Большинство инверторных сварочных аппаратов пригодны для работы в диапазоне от 0С до +40С. Если аппарат пригоден для эксплуатации на морозе, обязательно указывается его предельное значение: минус 20С или минус 40С.
Автор текста: Ю.Шкляревский.
Источник: https://www.kuvalda.ru/blog/articles/raznoe/osnovnye-harakteristiki-svarochnogo-apparata-mma_2.html
Что такое электричество: что такое переменный ток, как используется в природе, откуда берется — Третьекурсник
Дороги и тропинки эти отнюдь не просты, порой извилисты и многократно меняют направление, но знать, как они выглядят – обязанность каждого культурного человека XXI века.
Века, облик которого во многом определяет покорившаяся нам электроэнергия, которую мы научились преобразовывать так, чтобы были удовлетворены все наши потребности – как в промышленности, так и в частном пользовании. Ток в проводах линий электропередач и ток в батарейках наших гаджетов – очень разные токи, но они остаются все тем же электричеством.
Какие усилия приходится прилагать электроэнергетикам, инженерам, чтобы обеспечить мощнейшие токи сталеплавильных заводов и маленькие, крошечные токи, допустим, наручных часов? Сколько работы приходится проделывать всем тем, кто поддерживает систему преобразований, передачи и распределения электроэнергии, какими такими методами обеспечена стабильность этой системы? Чем «Системный Оператор» отличается от «Федеральной Сетевой Компании», почему обе этих компании были, есть и будут в России не частными а государственными?
Вопросов очень много, ответы на них надо знать, чтобы более менее представлять, зачем нам так много энергетиков и чем же они, грубо говоря, занимаются? Мы ведь настолько привыкли, что с электричеством в домах и в городах все в полном порядке, что про электроинженеров вспоминаем только тогда, когда что-то вдруг перестает работать, когда мы выпадаем из зоны привычного уровня комфорта. Темно и холодно – вот только тогда мы с вами и говорим об энергетиках, причем говорим такие слова, которые мы печатать точно не будем.
Мы уверены, что нам откровенно повезло – взяться за эту не простую, нужную, да еще и огромную тему согласился настоящий профессионал. Просим любить и жаловать – Дмитрий Таланов, Инженер с большой буквы.
Знаете, есть такая страна – Финляндия, в которой звание инженера настолько значимо, что в свое время ежегодно издавался каталог с перечнем специалистов, его имеющих.
Хотелось бы, чтобы и в России когда-нибудь появилась такая славная традиция, благо в наш электронно-интернетный век завести такой ежегодно обновляемый каталог намного проще.
Статья, которую мы предлагаем вашему вниманию по инженерному коротка, точна и емка. Конечно, обо всем, что написал Дмитрий, можно рассказать намного подробнее, и в свое время наш журнал начал цикл статей о том, как в XIX веке происходило покорение электричества.
Георг Ом, Генрих Герц, Андре-Мари Ампер, Алессандро Вольт, Джеймс Ватт, Фарадей, Якоби, Ленц, Грамм, Фонтен, Лодыгин, Доливо-Добровольский, Тесла, Яблочков, Депрё, Эдисон, Максвелл, Кирхгоф, братья Сименсы и братья Вестингаузы – в истории электричества много славных имен, достойных того, чтобы мы о них помнили. В общем, если кому-то хочется припомнить подробности того, как все начиналось, милости просим, а статья Дмитрия – начало совсем другой истории. Очень надеемся, что она вам понравится, а продолжение статей Дмитрия Таланова мы увидим в самое ближайшее время.
Уважаемого Дмитрия от себя лично – с дебютом, ко всем читателям просьба – не скупитесь на комментарии!
Чем отличается постоянный ток от переменного
Несмотря на то, что электричество прочно вошло в нашу жизнь, подавляющее большинство пользователей этого блага цивилизации не имеют даже поверхностного понимания, что такое ток, не говоря о том, чем отличается постоянный ток от переменного, какая между ними разница, и что такое ток вообще. Первым, кого ударило током, стал Алессандро Вольта, после чего он посвятил этой теме всю жизнь. Давайте и мы уделим внимание этой теме, чтобы иметь общее представление о природе электричества.
Мы попробуем избежать сложной физики, и будем использовать для рассмотрения этого вопроса метод аналогий и упрощений. Но перед этим напомним старый анекдот про экзамен, когда честный студент вытащил билет «Что такое электрический ток».
— Извините профессор, я готовился, но забыл – ответил честный студент. — Как Вы могли! Упрекнул его профессор, Вы же единственный человек на Земле, который это знал! (с)
Это конечно шутка, но в ней огромное количество правды. Поэтому не станем искать Нобелевских лавров, а просто разберёмся, переменный ток и постоянный, в чём разница, и что принято считать источниками тока.
За основу мы примем допущение, что ток – это не движение частиц (хотя движение заряженных частиц тоже переносит заряд, а значит, создаёт токи), а движение (передача) избыточного заряда в проводнике от точки большого заряда (потенциала) к точке меньшего заряда. Аналогия – водохранилище, вода всегда стремится занять один уровень (уравнять потенциалы).
Если открыть в плотине отверстие, вода начнёт течь под уклон, возникнет постоянный ток. Чем больше отверстие – тем больше воды будет протекать, сила тока вырастет, как и мощность, и количество работы, которую способен выполнить этот ток. Если не управлять процессом, вода разрушит плотину и немедленно создаст зону затопления с поверхностью одного уровня.
Это короткое замыкание с выравниваем потенциалов, сопровождающееся большими разрушениями.
Таким образом, постоянный ток появляется в источнике(как правило, за счёт химических реакций), в котором возникает разница потенциалов в двух точках. Движение заряда от более высокого значения «+» к низкому «-» выравнивает потенциал, пока длится химическая реакция. Итог полного выравнивая потенциала, мы знаем – «батарейка села».
Отсюда следует понимание, почемупостоянное и переменное напряжение значительно отличаются по стабильности характеристик. Батарейка (аккумулятор) расходуют заряд, поэтому напряжение постоянного тока снижается со временем. Для поддержания его на одном уровне используют дополнительные преобразователи.
Изначально человечество долго решало, чем отличается постоянный ток от переменного для повсеместного использования, т.н. «Война токов». Она закончилась победой переменного тока не только потому, что меньше потери при передаче на расстояние, но и генерация постоянного тока из тока переменного оказалась проще.
Очевидно, что постоянный ток, получаемый таким образом (без расходуемого источника) имеет куда более стабильные характеристики. Фактически в этом случае переменное и постоянное напряжение жёстко связаны, и по времени зависят только от генерации энергии и количества расхода.
Таким образом, постоянный ток по своей природе – это возникновение неравномерного заряда в объёме (химическая реакция), который можно перераспределить при помощи проводов, соединив точку высокого и низкого заряда (потенциала).
Остановимся на таком определении как общепринятом. Все остальные постоянные токи (не батарейки и аккумуляторы) являются производными от источника переменного тока. Например, на этой картинке синяя волнистая линия наш постоянный ток, как итог преобразования переменного.
Обратите внимание на комментарии к картинке, «большое количество контуров и коллекторных пластин». Если преобразователь будет другим, картинка будет другой.Та же синяя линия ток почти постоянный, но пульсирующий, запомним это слово. Здесь, кстати, чистый постоянный ток – красная линия.
Взаимосвязь магнетизма и электричества
Теперь посмотрим, чем отличается переменный ток от постоянного тока, который зависит от материала. Самое главное –возникновение переменного тока не зависит от реакций в материале. Работая с гальваническим (постоянным током), быстро было установлено, что проводники притягиваются друг к другу как магниты.
Следствием стало открытие, что магнитное поле при определённых условиях генерирует электрический ток. То есть, магнетизм и электричество оказались взаимосвязанным явлением с обратным преобразованием. Магнит мог дать ток в проводник, а проводник с током мог быть магнитом.
На этой картинке моделирование опытов Фарадея, который, собственно говоря, и обнаружил это явление.
Теперь аналогия для переменного тока. Магнитом у нас будет сила притяжения, а генератором тока – песочные часы с водой. На одной половине часов напишем «верх», на другой «низ».
Переворачиваем наши часы и видим, как вода течёт «вниз», когда вся вода перетекла, переворачиваем ещё раз и вода у нас течёт «вверх». Притом, что ток у нас имеется в наличии, он меняет направление два раза за полный цикл.
По науке это будет выглядеть так: частота тока зависит от частоты вращения генератора в магнитном поле. При определённых условиях мы получим чистую синусоиду, или просто переменный ток с разными амплитудами.
Ещё раз! Это очень важно для понимания, чем отличается постоянный ток от переменного тока. В обеих аналогиях вода течёт «под уклон». Но в случае постоянного тока водохранилище опустеет рано, или поздно, а для тока переменного часы будут переливать воду очень долго, она в замкнутом объёме. Но при этом в обоих случаях вода течёт под уклон.
Правда в случае переменного тока, она половину времени течёт под уклон, но вверх. Иначе говоря, направление движения переменного тока величина алгебраическая, то есть «+» и «-» непрерывно меняются местами, при неизменности направления движения тока. Постарайтесь обдумать и понять это отличие.
Как модно говорить в сети: «Ты понял это, теперь ты знаешь всё».
Чем обусловлено большое разнообразие токов
Если понимать в чем разница постоянного и переменного токов, возникает естественный вопрос – а зачем их так много, токов? Выбрали бы один ток как стандарт, и всё было бы одинаково.
Но, как говорится, «не все токи одинаково полезны», кстати, давайте подумаем, какой ток опаснее: постоянный или переменный, если мы примерно представили себе не природу тока, а скорее его особенности. Человек – это хорошо проводящий электричество коллодиум. Набор разных элементов в воде (мы на 70% из воды, если кто не в курсе).
Если на такой коллодиум подать напряжение – ударить током, то частицы внутри нас начнут передавать заряд. Как и положено от точки высокого потенциала к точке с низким потенциалом. Опаснее всего стоять на земле, которая вообще является точкой с бесконечно нулевым потенциалом. Иначе говоря, мы передадим в землю весь ток, то есть разницу зарядов.
Так вот при постоянном направлении движения заряда, процесс выравнивания потенциала в нашем организме происходит плавно. Мы словно песок пропускаем через себя воду. И можем безопасно «поглотить» много воды. При переменном токе картина немного другая – все наши частицы будет «дёргать» то туда то сюда. Песок не сможет спокойно пропускать воду, и весь будет взбаламучен.
Поэтому ответ на вопрос, какой ток опаснее постоянный или переменный ответ однозначен – переменный. Для справки, опасная для жизни пороговая сила постоянного тока 300мА. Для переменного тока эти значения зависят от частоты и начинаются со значения 35мА. При токе в 50 герц 100мА.
Согласитесь, разница в 3-10 раз сама по себе отвечает на вопрос: что опаснее? Но это не главный аргумент в выборе стандарта тока. Давайте упорядочим всё, что принимается во внимание при выборе вида тока:
- Доставка тока на большие расстояния. Постоянный ток будет потерян почти весь;
- Преобразование в разнородных электрических цепях с неопределённым уровнем потребления. Для постоянного тока практически не решаемая задача;
- Поддерживать постоянное напряжение для переменного тока на два порядка дешевле, чем для тока постоянного;
- Преобразование электрической энергии в механическую силу гораздо дешевле в двигателях и механизмах переменного тока. Такие двигатели имеют свои недостатки и в ряде областей не могут заменить двигатели постоянного тока;
- Для массового использования, таким образом, постоянный ток имеет одно преимущество – он безопаснее для человека.
Отсюда и разумный компромисс, который выбрало человечество. Не один какой-то ток, а вся совокупность доступных преобразований от генерации, доставки потребителю, распределения и использования. Перечислять все мы не будем, но считаем главным ответом на вопрос статьи, «чем отличается постоянный ток от переменного» одно слово – характеристиками. Наверное, это самый правильный ответ для любых бытовых целей. А для понимания стандартов, предлагаем рассмотреть основные характеристики этих токов.
Основные характеристики применяемых сегодня токов
Если для постоянного тока с момента открытия характеристики остались в целом без изменений, то с переменными токами всё обстоит куда сложнее. Посмотрите на эту картинку – модель движения тока в трёхфазной системе от генерации до потребления
С нашей точки зрения очень наглядная модель, на которой понятно как снять одну фазу, две или три. Заодно видно как тот попадает к потребителю.
В итоге мы имеем цепочку генерации, переменное и постоянное напряжение (токи) на этапе потребителя. Соответственно чем дальше от потребителя, тем выше токи и напряжение. Фактически в нашей розетке самый простой и слабый – переменный однофазный ток, 220В с фиксированной частотой в 50 Гц.
Только повышение частоты способно при этом напряжении сделать ток высокочастотным. Простейший пример стоит у Вас на кухне. СВЧ печать преобразует простой ток в высокочастотный, который собственно и помогает готовить.
Кстати ответим на вопрос о мощности СВЧ – это как раз сколько «обычного» тока она преобразует в токи высокой частоты.
Стоит помнить о том, что любое преобразование токов не обходится «даром». Чтобы получить переменный ток, надо чем-то вращать вал. Чтобы получить из него ток постоянный, придётся часть энергии рассеять как тепло.
Даже токи передачи энергии придётся рассеять в виде тепла при доставке в квартиру при помощи трансформатора. То есть любое изменение параметров тока сопровождается потерями. И конечно потерями сопровождается доставка тока потребителю.
Это, казалось бы, теоретическое знание, позволяет понять, откуда возникают наши переплаты за энергию, снимая половину вопросов, почему на счетчике 100 рублей, а в квитанции 115.
Вернёмся к токам. Мы упомянули вроде бы все, и даже знаем, чем отличается постоянный ток от переменного, поэтому давайте, напомним какие токи, вообще есть.
- Постоянный ток, источником является физика химических реакций с изменением заряда, может быть получен преобразованием тока переменного. Разновидность – импульсный ток, который меняет свои параметры, в широком диапазоне, но не меняет направления движения.
- Переменный ток. Может быть однофазным, двухфазным или трёхфазным. Стандартным или высокочастотным. Такая простая классификация вполне достаточна.
Заключение или каждому току свой прибор
На фото генератор тока на Саяно-Шушенской ГЭС. А на этом фото место его установки.
А это обычная лампочка.
Не правда ли разница масштабов поражает, хотя первое создано, в том числе и для работы второго? Если обдумать эту статью, то становится понятно, что чем ближе прибор к человеку, тем чаще в нём применяется постоянный ток.
За исключением двигателей постоянного тока и промышленного применения это действительно стандарт, основанный именно на том, что какой ток опаснее постоянный или переменный мы выяснили. На этом же принципе основаны характеристики бытовых токов, так как переменный ток 220В 50Гц является компромиссом между опасностью и потерями. Цена компромисса – защитная автоматика: от предохранителя до УЗО.
Отойдя от человека, мы попадаем в зону переходных характеристик, где и токи и напряжения выше, и где опасность для человека не принимается во внимание, а уделяется внимание технике безопасности – зона промышленного использования тока. Дальше всего от человека, даже в промышленности находится передача энергии и генерация.
Простому смертному тут делать нечего – это зона профессионалов и специалистов, которые умеют управлять этой мощью. Но даже при бытовом использовании электричества, и конечно при работах с электрикой, понимание основ природы токов никогда не будет лишним.
Источник: http://www.ap7.ru/elektrichestvo/chem-otlichaetsya-postoyannyiy-tok-ot-peremennogo.html
Теория реактивной мощности
Теория реактивной мощности
Появление термина «реактивная» мощность связано с необходимостью выделения мощности, потребляемой нагрузкой, составляющей, которая формирует электромагнитные поля и обеспечивает вращающий момент двигателя. Эта составляющая имеет место при индуктивном характере нагрузки. Например, при подключении электродвигателей. Практически вся бытовая нагрузка, не говоря о промышленном производстве, в той или иной степени имеет индуктивный характер.
В электрических цепях, когда нагрузка имеет активный (резистивный) характер, протекающий ток синфазен (не опережает и не запаздывает) от напряжения. Если нагрузка имеет индуктивный характер (двигатели, трансформаторы на холостом ходу), ток отстает от напряжения. Когда нагрузка имеет емкостной характер (конденсаторы), ток опережает напряжение.
Суммарный ток, потребляемый двигателем, определяется векторной суммой:
- Iа — активный ток
- Iри — реактивный ток индуктивного характера
К этим токам привязаны мощности потребляемые двигателем.
- Р – активная мощность привязана к Iа (по всем гармоникам суммарно)
- Q – реактивная мощность привязана к Iри (по всем гармоникам суммарно)
- A – полная мощность потребляемая двигателем. (по всем гармоникам суммарно)
Реактивная мощность не производит механической работы, хотя она и необходима для работы двигателя, поэтому ее необходимо получать на месте, чтобы не потреблять ее от энергоснабжающей организации. Тем самым мы снижаем нагрузку на провода и кабели, повышаем напряжение на клеммах двигателя, снижаем платежи за реактивную мощность, имеем возможность подключить дополнительные станки за счет снижения тока потребляемого с силового трансформатора.
Параметр определяющий потребление реактивной мощности называется Cos (φ)
Cos (φ) = P1гарм / A1гарм
где:
- P1гарм — активная мощность первой гармоники 50 Гц
- A1гарм — полная мощность первой гармоники 50 Гц
где:
A = √P² + Q²
Таким образом, сos (φ) уменьшается, когда потребление реактивной мощности нагрузкой увеличивается. Необходимо стремиться к повышению сos (φ), т.к. низкий сos (φ) несет следующие проблемы:
- Высокие потери мощности в электрических линиях (протекание тока реактивной мощности);
- Высокие перепады напряжения в электрических линиях (например 330370 В, вместо 380 В);
- Необходимость увеличения габаритной мощности генераторов, сечения кабелей, мощности силовых трансформаторов.
Из всего вышеприведенного, понятно, что компенсация реактивной мощности необходима. Чего легко можно достичь применением активных компенсирующих установок. Конденсаторы в которых будут компенсировать реактивную мощность двигателей.
Потребители реактивной мощности
Потребителями реактивной мощности, необходимой для создания магнитных полей, являются как отдельные звенья электропередачи (трансформаторы, линии, реакторы), так и такие электроприёмники, преобразующие электроэнергию в другой вид энергии которые по принципу своего действия используют магнитное поле (асинхронные двигатели, индукционные печи и т.п.). До 80-85% всей реактивной мощности, связанной с образованием магнитных полей, потребляют асинхронные двигатели и трансформаторы. Относительно небольшая часть в общем балансе реактивной мощности приходится на долю прочих её потребителей, например на индукционные печи, сварочные трансформаторы, преобразовательные установки, люминисцентное освещение и т.п.
Трансформатор как потребитель реактивной мощности. Трансформатор является одним из основных звеньев в передаче электроэнергии от электростанции до потребителя. В зависимости от расстояния между электростанцией и потребителем и от схемы передачи электроэнергии число ступеней трансформации лежит в пределах от двух до шести.
Поэтому установленная трансформаторная мощность обычно в несколько раз превышает суммарную мощность генераторов энергосистемы. Каждый трансформатор сам является потребителем реактивной мощности.
Реактивная мощность необходима для создания переменного магнитного потока, при помощи которого энергия из одной обмотки трансформатора передаётся в другую.
Асинхронный двигатель как потребитель реактивной мощности. Асинхронные двигатели наряду с активной мощностью потребляют до 60-65% всей реактивной мощности нагрузок энергосистемы. По принципу действия асинхронный двигатель подобен трансформатору. Как и в трансформаторе, энергия первичной обмотки двигателя – статора передаётся во вторичную – ротор посредствам магнитного поля.
Индукционные печи как потребители реактивной мощности. К крупным электроприемникам, требующим для своего действия большой реактивной мощности, прежде всего, относятся индукционные печи промышленной частоты для плавки металлов. По существу эти печи представляют собой мощные, но не совершенные с точки зрения трансформаторостроения трансформаторы, вторичной обмоткой которых является металл (садка), расплавляемый индуктированными в нём токами.
Преобразовательные установки, преобразующие переменный ток в постоянный при помощи выпрямителей, также относятся к крупным потребителям реактивной мощности. Выпрямительные установки нашли широкое применение в промышленности и на транспорте.
Так, установки большей мощности с ртутными преобразователями используются для питания электроизоляционных ванн, например при производстве алюминия, каустической соды и др.
Железнодорожный транспорт в нашей стране почти полностью электрифицирован, причём значительная часть железных дорог использует постоянный ток преобразовательных установок.
Компенсация реактивной мощности в электрических сетях
С другой стороны, элементы распределительной сети (линии электропередачи, повышающие и понижающие трансформаторы) в силу особенностей конструктивного исполнения имеют продольное индуктивное сопротивление.
Поэтому, даже для нагрузки потребляющей только активную мощность, в начале распределительной сети будет иметь место индуктивная составляющая – реактивная мощность.
Величина этой реактивной мощности зависит от индуктивного сопротивления распределительной сети и полностью расходуется на потери в элементах этой распределительной сети.
Действительно, для простейшей схемы:
- Р – активная мощность в центре питания,
- Рн – активная мощность на шинах потребителя,
- R – активное сопротивление распределительной сети,
- Q – реактивная мощность в центре питания,
- Qн – реактивная мощность на шинах потребителя.
- U – напряжение в центре питания,
- Uн – напряжение на шинах потребителя,
- Х – индуктивное сопротивление распределительной сети.
В результате, независимо от характера нагрузки, по распределительной сети от источника питания будет передаваться реактивная мощность Q. При двигательном характере нагрузки ситуация ухудшается – значения мощности в центре питания увеличивается и становится равными:
Р = Рн + ( Рн² + Qн² ) * R / Uн²;
Q = Qн + ( Рн² + Qн² ) * X / Uн².
Передаваемая от источника питания к потребителю реактивная мощность имеет следующие недостатки:
- В распределительной сети возникают дополнительные потери активной мощности – потери при транспорте электрической энергии:
δР = ( Рн² + Qн² ) * R ,
часть которых (а иногда и значительную) составляют потери от транспорта реактивной мощности.
- Величина напряжения у потребителя, а, следовательно, и качество электрической энергии, снижается:
Uн = U – ( P * R + Q * X ) / U.
- Увеличивается распределительной сети током, что лишает потребителя возможности перспективного развития.
Таким образом, транспортировка реактивной мощности по распределительным сетям от центров питания к потребителям превращается в сложную технико-экономическую проблему, затрагивающую как вопросы экономичности так и вопросы надежности систем электроснабжения.
Классическим решением данной проблемы в распределительных сетях является компенсация реактивной мощности у потребителя путём установки у него дополнительных источников реактивной мощности – потребительских статических конденсаторов.
Компенсация реактивной мощности применяется:
- по условию баланса реактивной мощности;
- как важное мероприятие для снижения потерь электрической энергии в сетях;
- для регулирования напряжения.
Источник: https://www.nucon.ru/reactive-power/theory-of-reactive-power.php