Для чего нужен Стартер для ламп

Схемы подключения люминесцентных ламп без дросселя и стартера

Люминесцентные трубчатые лампы долгое время были популярны в освещении помещений любой площади. Они долго работают и не перегорают, а значит их нужно значительно реже обслуживать. Основная проблема — это не перегорание самой лампочки (выгорание спирали и люминофора), а выход из строя пускорегулирующей аппаратуры. В этой статье мы расскажем, как выполнить подключение люминесцентной лампы без дросселя и стартера, а также запитать от низковольтного источника постоянного тока.

Классическая схема включения люминесцентных ламп

Несмотря на технический прогресс и все преимущества электронных пускорегулирующих аппаратов (ЭПРА), и по сей день часто встречается схема включения с дросселем и стартером. Напомним, как она выглядит:

Люминесцентная лампа — это колба, которая конструктивно выполняется как прямая и закрученная трубка, наполненная парами ртути. На её концах расположены электроды, например, спирали или иглы (для изделий с холодным катодом, которые используются в подсветке мониторов). Спирали имеют два вывода, к которым подается питание, а стенки колбы покрыты слоями люминофора.

Принцип работы стандартной схемы подключения люминесцентной трубки с дросселем и стартером довольно прост. В первый момент времени, когда контакты стартера холодны и разомкнуты – между ними возникает тлеющий разряд, он нагревает контакты и они замыкаются, после чего ток течет по такой цепи:

Фаза-дроссель-спираль-стартер-вторая спираль-ноль.

В этот момент под воздействием протекающего тока разогреваются спирали, при этом остывают контакты стартера. В определенный момент времени контакты от нагрева изгибаются и цепь разрывается. После чего, за счет энергии, накопленной в дросселе, происходит всплеск напряжения и в лампе возникает тлеющий разряд.

Такой источник света не может работать напрямую от сети 220В, потому что для ее работы нужно создать условия с «правильным» питанием. Рассмотрим несколько вариантов.

Питание от 220В без дросселя и стартера

Дело в том, что стартеры периодически выходят из строя, а дроссели перегорают. Всё это стоит не дешево, поэтому есть несколько схем для подключения светильника без этих элементов. Одну из них вы видите на рисунке ниже.

Диоды можно выбирать любые с обратным напряжением не менее 1000В и током не меньше чем потребляет светильник (от 0,5 А). Конденсаторы выбирайте с таким же напряжением в 1000В и ёмкостью 1-2 мкФ. Обратите внимание, что в этой схеме включения выводы лампы замкнуты между собой. Это значит, что спирали в процессе зажигания не участвуют и можно использовать схему для розжига ламп, где они перегорели.

Такую схему можно использовать для освещения подсобных помещений и коридоров. В гараже можно применять, если в нём вы не работаете на станках. Светоотдача может быть ниже, чем при классическом подключении, а световой поток будет мерцать, хоть это и не всегда заметно для человеческого глаза. Но такое освещение может вызвать стробоскопический эффект — когда вращающиеся части могут казаться неподвижными. Соответственно это может привести к несчастным случаям.

Примечание: во время экспериментов учтите, что запуск люминесцентных источников света в холодное время года всегда осложнен.

Источник: https://www.entehno.ru/shemy-podkljuchenija-ljuminescentnyh-lamp-bez-drosselja-i-startera.html

Стартер для люминесцентных ламп

Мало кто задается вопросом, каково настоящее назначение стартера люминесцентной лампы. Однако этот вопрос заслуживает нашего внимания. Электронный пускатель предназначен для зажигания свечения газоразрядных световых устройств, которые подключены к сети переменного тока в 50-60 Герц. Помимо пускателя, электронный пускорегулирующий аппарат (ЭПРА) включает в себя дроссель и конденсатор. Дроссель выступает в данном случае в качестве электромагнитного балласта.

Стартеры – это миниатюрные люминесцентные световые устройства, имеющие стационарный самостоятельный электрический разряд в газах, другими словами функционируют за счет тлеющего заряда.

Устройство стартера люминесцентных ламп

Электронный стартер для люминесцентных ламп состоит из сосуда, сделанного из стекла и наполненного газом и 2-х электродов, находящихся в самом приборе.

Если его конструкция является несимметричной, один их пускателей должен находиться в неподвижном состоянии, в то время как второй – в подвижном состоянии. Первый электрод, который установлен в подвижном состоянии, сделан из биметалла.

Большим спросом пользуется симметричная система, в которой оба биметаллических электрода устанавливаются в подвижном положении.

Таким образом, возникает вопрос: для чего нужен стартер в люминесцентных лампах. Ответ прост: он используется для запуска цепи лампы. Это цепи, как одиночного типа, так и цепи последовательного включения. Также есть возможность использовать данное пусковое устройство как при 110V, так и при 220V.

Принцип работы стартера

В большинстве случаем стартер для люминесцентных ламп применяется в качестве устройства запуска освещения. Как правило, потребляемая мощность ниже номинала в сети, однако мощность на выходе (пусковая) намного выше, чем в источнике освещения.

Когда напряжение поступает на электроды пускателя люминесцентных светильников, в нем образуется так называемый тлеющий ток, он в свою очередь нагревает электрод биметаллическую пластину пускового устройства. Эта пластина изменяет свою форму (начинает выгибаться), и соединяет две разомкнутые части электрической цепи. Далее по цепи напряжение доходит до дросселя и самой лампы.

Что характерно дроссель и люминесцентная лампа соединены последовательно, а устройства запуска параллельно источника электроэнергии.

Виды стартеров для люминесцентных приборов

Виды пускателей различаются по типам и мощности люминесцентных ламп. Кроме того, вид стартера зависит от схемы подключения лампы к сети. Так, например, 127 пускатель подходит для светильников, мощность которых не превышает 13 Вт.  Стартер для люминесцентных ламп напряжением 220 В принято использовать для световых устройств, мощность которых не более 8 Вт.

Пускатель электронного типа

Происходящие в пусковых приборах процессы не поддаются управлению. На их работоспособность большое влияние оказывают температурные перепады в помещении.

Так, если температура ниже нуля градусов, то нагревание электродов будет замедленным, следовательно, устройству потребуется большее количество времени, чтобы зажечь свет.

Помимо этого, при повышенной температуре контакты при спайке друг с другом могут перегорать, что негативно отразиться на спиралях светильника. Перегрев приводит к его выходу из строя.

Однако, несмотря на, казалось бы, корректное функционирование лампы, она рано или поздно может сломаться. За счет продолжительности сохранности накала контактов в световом устройстве происходит снижение его производственного потенциала. Как раз для ликвидации такого недостатка в микросхеме зажигателя созданы достаточно сложные системы, в основе которых лежат микросхемы. Такие конструкции и схемы имитируют процесс замыкания пускателя электронного типа.

Тепловой вид пускателя

Главной отличительной особенностью теплового вида зажигателя является его продолжительный период пуска. При функционировании данного механизма происходит растрата большого количества электроэнергии.

Зажигатели такого типа в основном применяются при низких температурных показателях. Их принцип функционирования значительно отличается от алгоритма работы других типов. При выключении электроэнергии, электроды переходят в замкнутое положение, при включении – появляется импульс повышенного напряжения.

Механизм тлеющего разряда

Самыми распространенными механизмами пускового напряжения, являются зажигатели, изготовленные по принципу тлеющего разряда, работа которых основана на разгибании биметаллической пластины. Как правило, электроды таких стартеров выполнены из того же материала, и имеют различные свойства расширения при нагревании.

В момент того когда загорится лампа, зависит от того, как долго будет нагреваться биметаллическая пластина, и какой силы ток будет в момент размыкания контактов пускового устройства. В момент разрыва цепи в пускателе, лампа должна загореться, если данное действие не происходит, то пусковое устройство повторит попытку, и будет её повторять, до тех пор, пока лампа не загорится.

Вследствие чего, из-за постоянного перезапуска, пусковые устройства не рекомендовано применять в сырых помещениях, или других неблагоприятных условиях. Для быстрого старта светильника и оптимальной работы требуется оптимальный нагрев пластины в стартере, в противном случае лампа выйдет из строя.

По этой причине выпустили ГОСТ стандарт, в котором сказано, что максимальное время пуска лампы не должно быть более десяти секунд, а пусковые устройства тлеющего разряда дополнительно оборудуются, конденсатором высокого номинала.

Отдельное внимание хочется уделить вопросу, как можно запустить люминесцентную лампу без стартера и возможно ли это в принципе.  В своей работе устройство запуска довольно часто выходит из строя, нарушая тем самым работоспособность светильника. Поэтому разработана специальная микросхема, позволяющая зажигать светильник без использования пускателя. Ознакомиться с ней можно ниже.

Срок службы, ремонт и замена

Срок службы стартера рассчитан примерно на 6000 включений, не редко этот показатель выше среднего. В результате продолжительной эксплуатации, происходит снижение показателей напряжения. Кроме того, контакты электродов нередко вызывают замыкание при включенном световом приборе, выбирая при этом его из строя.

Для того, чтобы зажечь светильник, необходимо разомкнуть контакты зажигателя. В последствие чего светильник начнет мигать. Необходимо вовремя заменить стартер, иначе неприятностей не избежать. Придется покупать не только отдельные детали для светового прибора, но и вполне вероятно придется произвести его полную замену.

Поэтому поменять светильник обойдётся намного дороже, нежели произвести простую замену стартера.

Как выбрать

Первое на что обычно обращают внимание при выборе зажигателя газоразрядных светильников – это марка производителя и ценовой диапазон. Несмотря на то, что это не самые важные показатели, упускать их из виду не нужно, ведь, как правило, зарекомендованные бренды выпускают достаточно качественную продукцию. На какие технические особенности можно обратить внимание при выборе пускового устройства:

  • срок эксплуатации, как уже упоминалось средняя продолжительность «жизни» стартера 6000 включений;
  • ток зажигания обязательно должен быть выше двух показателей (сетевого напряжения и напряжения лампы);
  • насколько качественно изготовлен корпус, и стойкость корпуса к температуре возгорания;
  • основное напряжение для цепи сети одной лампы это 220В, для двух 110В.
  • уровень номинальной мощности и др.

Обращайте внимание на обозначения. Маркировка стартеров люминесцентных ламп располагается на их корпусе. При выборе того или иного пускателя нужно учитывать его характеристики, которые раскрывает его маркировка. Как правило, она указывает напряжение сети питания и мощность газоразрядной лампы, для которой предназначено данное пусковое устройство. И, конечно же, перед покупкой не забывайте проверить стартер на месте.

Источник: https://lightgid.ru/osvetitelnye-ustanovki/starter

Как выбрать стартер для люминесцентных ламп: как работает, устройство, маркировка

Стартер для люминесцентных ламп входит в комплектацию электромагнитного пускорегулятора (ЭМПРА) и предназначен для зажигания ртутной лампочки.

Каждая модель, выпущенная определенным разработчиком, обладает различными техническими характеристиками, однако используется для светотехники, питающейся исключительно от сети переменного тока, с предельной частотой, не превышающей 65 Гц.

Предлагаем разобраться, как устроен стартер для люминесцентных ламп, какова его роль в осветительном приборе. Кроме того, мы обозначим особенности разных пусковых приборов и расскажем, как выбрать нужный механизм.

Как устроено приспособление?

Опционально стартер (пускатель) достаточно прост. Элемент представлен небольшой газоразрядной лампой, способной формировать при низком давлении газа и малом токе, тлеющий разряд.

Этот стеклянный малогабаритный баллон заполнен инертным газом – смесью гелия или неоном. В него впаяны подвижные и неподвижные электроды из металла.

Все электродные спирали лампочки оснащены двумя клеммными блоками. Одна из клемм каждого контакта задействована в цепи электромагнитного балласта. Остальные — подключены к катодам пускателя.

Расстояние между электродами пускателя не существенно, поэтому посредством напряжения сети его легко можно пробить. При этом образуется ток и нагреваются элементы, входящие в электроцепь с определенной долей сопротивления. Именно стартер и входит в число этих элементов.

Конструкции стартеров для люминесцентных ламп имеют практически идентичное устройство: 1 – дроссель; 2 – стеклянная колба; 3 – пары ртути; 4 – клеммы; 5 – электроды; 6 – корпус; 7 – биметаллический контакт; 8 – инертная газовая субстанция; 9 – вольфрамовые нити накала ЛДС; 10 – капля ртути; 11 – разряд дуги в колбе (+)

Колба размещена внутри корпуса из пластмассы или металла, выполняющего роль защитного кожуха. В некоторых образцах сверху крышки дополнительно есть специальное смотровое отверстие.

Самым востребованным материалом для производства блока считается пластик. Постоянное воздействие высоких температурных режимов позволяет выдержать специальный состав пропитки — люминофор.

Приспособления выпускаются с парой ножек, выполняющих роль контактов. Они изготовлены из разных видов металла.

В зависимости от типа конструкции электроды могут быть симметричными подвижными или асимметричными с одним подвижным элементом. Их выводы проходят через патрон лампы.

Параллельно электродам колбы подключен конденсатор, емкостью 0,003-0,1 мкф. Это важный элемент, снижающий уровень радиопомех и также участвующий в процессе загорания лампы

Обязательной деталью в устройстве является конденсатор, способный сглаживать экстратоки и в тоже время размыкать электроды прибора, осуществляя гашение дуги, возникающей между токоведущими элементами.

Без этого механизма есть большая вероятность спайки контактов при возникновении дуги, что существенно снижает срок эксплуатации пускателя.

В быту наиболее популярны образцы балластов с симметричной системой контактов и электросхемой пуска. Такие образцы меньше подвергаются влиянию падения напряжения в электрической сети

Правильная работа стартера обусловлена напряжением питающей сети. При снижении номинальных величин до 70-80%, люминесцентная лампа может не зажечься, т.к. не будет производиться достаточный нагрев электродов.

В процессе подбора нужного пускателя, учитывая конкретную модель лампы дневного света (люминесцентной или ЛЛ), необходимо дополнительно проанализировать технические характеристики каждого вида, а также определиться с производителем.

Принцип работы аппарата

Подав сетевое питание на светотехнический прибор, напряжение проходит через витки дросселя ЛЛ и нить накала, выполненную из монокристаллов вольфрама.

Далее подводится к контактам стартера и образует между ними тлеющий разряд, при этом воспроизводится свечение газовой среды посредством ее нагрева.

Поскольку в устройстве есть еще один контакт – биметаллический, он также реагирует на изменения и начинает изгибаться, видоизменяя форму. Таким образом этот электрод замыкает электрическую цепь между контактами.

Величина тока, сформированного тлеющего разряда варьируется от 20 до 50 мА, чего вполне достаточно для разогрева биметаллического электрода, который отвечает за замыкание цепи (+)

Образовавшийся в электросхеме люминесцентного прибора замкнутый контур проводит через себя ток и нагревает вольфрамовые нити, которые, в свою очередь, начинают испускать электроны со своей нагретой поверхности.

Таким образом формируется термоэлектронная эмиссия. В это же время воспроизводится разогревание ртутных паров, находящихся в баллоне.

Образованный поток электронов способствует снижению напряжения, приложенного от сети к контактам пускателя, примерно вдвое. Степень тлеющего разряда начинает падать вместе с температурой накала.

Пластина из биметалла уменьшает свою степень деформации тем самым размыкая цепочку между анодом и катодом. Течение тока через этот участок прекращается.

Изменение его показателей провоцирует внутри дроссельной катушки, в проводящем контуре, возникновение электродвижущей силы индукции.

Биметаллический контакт моментально реагирует произведением краткосрочного разряда в подсоединенной к нему схеме: между вольфрамовыми нитями ЛЛ.

Его значение доходит нескольких киловольт, чего вполне достаточно для пробивания инертной среды газов с нагретыми ртутными парами. Между концами лампы образуется электродуга, продуцирующая ультрафиолетовое излучение.

Поскольку такой спектр света не видимый для человека, в конструкции лампы есть люминофор, поглощающий ультрафиолет. В итоге визуализируется стандартный световой поток.

При изменении тока в контуре или его полного прекращения пропорционально происходят изменения магнитного потока через поверхность пластины, что ограничивает этот контур и приводит к возбуждению в этой схеме ЭДС самоиндукции

ЭТО ИНТЕРЕСНО:  Кто создал светодиодные лампы

Однако напряжения на пускателе, подсоединенного параллельно лампе, недостаточно для формирования тлеющего разряда, соответственно, электроды остаются в разомкнутой позиции в период свечения лампы дневного света. Далее стартер не используется в рабочей схеме.

Поскольку после продуцирования свечения показатели тока нужно лимитировать, в схему вводится электромагнитный балласт. За счет своего индуктивного сопротивления он выполняет роль ограничивающего устройства, предотвращающего поломки лампы.

Виды стартеров для люминесцентных приборов

В зависимости от алгоритма работы, пусковые устройства делят на три основных вида: электронные, тепловые и с тлеющим разрядом. Несмотря на то, что механизмы имеют различия в элементах конструкции и в принципах работы, они выполняют идентичные опции.

Пускатель электронного типа

Процессы, воспроизводимые в системе контактов стартеров, не являются управляемыми. Помимо этого, значительное воздействие на их функционирование оказывает температурный режим окружения.

Например, при температуре ниже 0°C скорость нагревания электродов замедляется, соответственно, прибор будет затрачивать больше времени на зажигание света.

Также при нагреве контакты могут спаиваться друг с другом, что приводит к перегреванию и разрушению спиралей лампы, т.е. ее порче.

Большинство моделей электронных балластов для ЛДС выпущены на базе микросхемы UBA 2000T. Такой тип устройства позволяет устранить перегрев электродов, за счет чего существенно увеличивается эксплуатационный срок контактов лампы, соответственно, и период ее работы

Даже корректно функционирующие устройства с течением времени имеют свойство изнашиваться. Они дольше сохраняют накал контактов лампы, тем самым уменьшая ее производственный ресурс.

Именно для устранения такого рода недостатков в полупроводниковой микроэлектронике стартеров были задействованы сложные конструкции с микросхемами. Они дают возможность лимитировать количество циклов процесса имитации замыкания электродов пускателя.

В большинстве представленных на рынках образцах, схемотехническое устройство электронного стартера составлено из двух функциональных узлов:

  • управленческой схемы;
  • высоковольтного узла коммутации.

Источник: https://sovet-ingenera.com/elektrika/svetylnik/starter-dlya-lyuminescentnyx-lamp.html

Для чего нужен дроссель для ламп дневного света, ДРЛ, ДНаТ ?

Газоразрядные источники света уверенно завоевали свою потребительскую нишу благодаря мощному свечению, экономности, долгому сроку службы и простоте использования.

Существует много разновидностей данного типа электроосветительных приборов:

  • Люминесцентные лампы дневного и ультрафиолетового света;
  • Дуговая ртутная люминесцентная лампа (ДРЛ), и её разновидности (ДРИ, ДРИЗ, ДРШ, ДРТ);
  • Дуговая натриевая трубчатая лампа ДНаТ, и ее модификации: ДНаС, ДНаЗ, ДНаМТ.

Данные осветительные электроприборы отличаются по принципу действия, использованию материалов и химических элементов, внутреннему давлению, светимости, спектру, яркости и мощности. Общим признаком газоразрядных ламп является непостоянство сопротивления (соответственно тока) при запуске и работе.

дросселя для ламп

Поэтому, для ограничения рабочего тока данных источников света применяют балласт (пускорегулирующий аппарат, ПРА), который может быть электронным (ЭПРА), или электромагнитным (ЭмПРА), выполненным в виде дросселя (катушки индуктивности).

Изменчивое сопротивление газоразрядных ламп

Вначале нужно более подробно рассмотреть, зачем для газоразрядных ламп дневного света нужен дроссель. Независимо от типа подобных осветительных электроприборов, в момент запуска они обладают очень большим сопротивлением.

схема подключения лампы дневного света

При розжиге лампы происходит электрический пробой в атмосфере инертных газов, насыщенных парами ртути или натрия, и других добавочных элементов, после чего возникает тлеющий или дуговой разряд.

Сопротивление ионизированного вследствие разряда газа уменьшается в десятки раз, соответственно возрастает протекающий в нём ток. Если данный ток не ограничить, то чрезмерное тепловыделение в доли секунд перегреет находящиеся внутри газы, и выведет электроосветительный прибор из строя, или даже приведёт к взрыву лампу дневного света (ДРЛ, ДНаТ). Чтобы этого не случалось, последовательно в цепь подключения добавляют сопротивление.

Применение активного сопротивления крайне нецелесообразно, ввиду больших потерь электроэнергии на тепловыделение. Поэтому используют электронную схему или дроссель. В идеале, дроссель не имеет активного сопротивления, поэтому он мощности не потребляет, накапливая и отдавая энергию в цепь.

Физические характеристики катушки индуктивности

При неизменной частоте сети, питающей лампы дневного света, реактивное сопротивление подключённого последовательно дросселя зависит от его индуктивности, которое измеряется в международных физических единицах Генри (Гн). Через индуктивность 1 Гн, при напряжении в 1 В, в первую секунду протекает ток 1А.

Дроссель и ИЗУ

Индуктивность обмотки дросселя зависит от квадрата числа количества витков, конструкции и поперечного сечения сердечника магнитопровода, а также от его качества и электромагнитного насыщения.

Поскольку витки обмотки обладают также активным сопротивлением, которое зависит от поперечного сечения обмоточного провода, то при расчёте дросселей для ДРЛ, ДНаТ, или люминесцентных ламп дневного света учитывается их мощность, от которой зависит рабочий ток. Соответственно, габариты дросселя напрямую зависят от мощности подключаемой газоразрядной лампы.

Схемы подключения дросселя и газоразрядных источников света

Наиболее простой является схема подключения дросселя для ДРЛ лампы, в которой для запуска конструктивно предусмотрены дополнительные электроды, с помощью которых создается предварительная ионизация газа, необходимая для возникновения тлеющего разряда, переходящего в электрическую дугу.

В данном случае индуктивное сопротивление служит для ограничения рабочего тока ДРЛ лампы.

Дроссель для люминесцентных ламп также подключается последовательно с катодами, но в данной схеме используется также такое свойство катушек индуктивности, как самоиндукция – возникновение большого импульса напряжения при разрыве цепи на контактах стартера, который используется для нагрева нитей накала.

Лампа ДНаТ, в отличие от других источников дневного света, имеющих люминесцентное покрытие внутри колбы, благодаря парам натрия, испускает излучение в видимом спектре, из-за чего повышается КПД электроосветительного прибора.

Конструктивно светящаяся керамическая трубка данной лампы отличается от аналогичной в ДРЛ, что требует дополнительного импульса для розжига дуги.

ИЗУ

Поэтому дроссель для ДНаТ подключается вместе с импульсным зажигающим устройством (ИЗУ).

схема подключения ДНаТ

Компенсирующий конденсатор

Во всех схемах присутствует подключённый параллельно конденсатор, который служит для компенсации реактивных потерь на дросселе, уменьшая общее энергопотребление. В таблице указаны рекомендуемые номиналы компенсирующих конденсаторов относительно мощности некоторых видов ламп.

Конденсаторы не должны быть электролитическими, рассчитанными на напряжение не менее 400В. Нужно помнить, что увеличение выше емкости выше указанных параметров не приведёт к уменьшению потерь энергии, но может вызвать резонанс в образующемся автоколебательном контуре, что приведёт к импульсам напряжения и миганию лампы.

Уменьшение емкости не даст ожидаемой компенсации реактивных потерь и экономии электроэнергии.

Внешний вид ЭмПРА

Конструктивно дроссели очень похожи на трансформаторы, к тому же, они могут иметь выводов больше двух, что делает затруднительной визуальную идентификацию устройства без наличия обозначения на его корпусе.

Фактически, трансформатор, с используемой одной обмоткой является дросселем. Чтобы проверить тип устройства, нужно воспользоваться мультиметром – если выводы являются ответвлениями одной обмотки, то все они должны прозваниваться с разными показаниями сопротивления.

Часто равнозначные обмотки трансформатора включаются последовательно во входную и выходную цепь питания лампы дневного света или ДРЛ, ДНаТ, выполняя функции дросселя.

При прозвонке такого дросселя сопротивление обмоток должно быть одинаково. Проверить ЭмПРА на наличие межвиткового замыкания можно только с помощью мультиметра, имеющего возможность измерения индуктивности.

В разобранном виде ЭмПРА

Если измеренная индуктивность меньше чем паспортное значение, то внутри обмотки имеется межвитковое замыкание. Использовать такой ЭмПРА нельзя, так как уменьшенная индуктивность обладает меньшим реактивным сопротивлением, что неминуемо приведёт к выходу из строя любую из подключённых ламп дневного света, будь-то люминесцентная, ДРЛ, ДНаТ и т.д.

Источник: http://infoelectrik.ru/sistema-osveshheniya/drossel-dlya-lamp.html

Стартер для люминесцентных ламп: конструкция и принцип работы

Газоразрядные лампы давно вошли в повседневную жизнь. Они применяются для освещения жилых и производственных помещений и дают устойчивое освещение. Оно достаточно стабильно, когда нет никакой деградации элементов в схеме.

В типичную схему входят осветительный прибор, катушка индуктивности и устройство запуска. Дроссель – обычная катушка индуктивности, также участвует в запуске. Но основное назначение – защита. Катушка ограничивает напряжение при скачке. Она – самый долговечный элемент схемы.

Стартер нужен только для пуска схемы на газоразрядных лампах. Далее он не принимает участия в работе светильника.

Люминесцентная лампа (Она же газоразрядная или дневного света) является герметичной колбой. В ней расположены с разных сторон электроды. Внутренняя ее часть покрыта люминофором – веществом, которое светится при эмиссии электронов. Трубка содержит пары ртути.

Стандарт дает светильнику 10 секунд на включение с момента подачи напряжения.

Устройство стартера для лл (люминесцентной лампы)

Пусковое устройство – необходимый элемент схемы освещения на этом типе источника света. Это второй по важности элемент осветителя.

Классический стартер – вещь чувствительная к условиям эксплуатации, это самый недолговечный компонент системы. При его выходе из строя, осветительная система не может быть запущена.

Схема подключения стартера к лампам дневного света

При рассмотрении схемы становятся понятны функции, выполняемые стартером.

  • Включается в момент подачи напряжения питания,
  • В момент старта прогреваются катоды, так как без их прогрева эмиссия электронов не возможна.
  • Размыкает цепь после прогрева.

Схема биметаллического стартера всегда одна и та же. Существуют различные варианты исполнения.

Внешний вид стартера

Корпус зачастую изготавлен из пластика, контакты размещаются на пластине из текстолита (может использоваться и другой диэлектрический материал). Некоторые изготовители снабжают стартеры прозрачным смотровым окошком. Стартеры времен СССР имели корпуса из алюминия. Внутри всего два элемента: колба с биметаллическими контактами и конденсатор. Они включены параллельно.

Конденсатор стартера требуется для сглаживания высоких токов, гасит дуговой разряд между электродами, также необходим для размыкания электродов. Конденсатор снижает износ стартера. Если конденсатора нет, то электроды могут спаяться в момент дугового разряда между ними. Как долго после будет работать схема – непредсказуемо.

Дроссель (катушка индуктивности) необходим для создания импульса.

В колбе находятся два электрода, сама она заполнена инертным газом. Обычно применяют неон, реже – водородно-гелиевая смесь. Электроды биметаллические, подвижные.

Разработаны две конструкци: либо два подвижных контакта (симметричный), либо один (несимметричный). Первый более распространен. Он дешевле при производстве. Пускатели старого образца стабильно работали при разбросе питающего напряжения в пределах 20 процентов.

При большем отклонении от номинала работа не гарантировалась. Новые такой проблемы не имеют.

Принцип работы стартера

Компоненты пускового устройства рассмотрены. Как он работает?

  1. Нет напряжения – электроды внутри колбы разомкнуты.
  2. Подается напряжение питания. Между электродами стартера появляется тлеющий разряд, токи небольшие (обычно не более 50 мА).
  3. Тлеющий разряд ведет к разогреву электродов. Под действием температуры происходит обратимая деформация электродов. Разряд завершается с замыканием этих биметаллических электродов.
  4. Цепь замкнулась, начинается прогрев электродов для начала эмиссии.
  5. Электроды внутри колбы стартера начинают остывать и возвращаются в исходное положение. Цепь разрывается.
  6. Все вышеперечисленное приводило к появлению импульса высокого напряжения, проходящего через дроссель. Свет зажигается, яркость достигает нормативной.
  7. По схеме стартер подключен параллельно лампе. На его контактах напряжение ниже номинального. Уже не возникает тлеющего разряда, биметаллические контакты внутри колбы не разогреты. Сработать он не может самопроизвольно. Необходимый ток уходит на обеспечение эмиссии между катодами, это необходимо для свечения.

Схема подключения

Мощность источника света должна коррелировать с параметрами остальных компонентов. Если они не совпадают, то возможно либо, что схема вообще не запуститься, либо при запуске запуска электроды разрушатся из-за перегрева.

Для подключения двух ламп не требуется дубляж схемы. Целесообразно сократить количество элементов. В этом случае высвобождается один из дросселей.

На второй схеме дополнительный газоразрядные лампы соединены последовательно, а стартеры включены в параллель. В остальном схемы идентичны. Различие будет в номинале дросселя. Он должен быть рассчитан на суммарную мощность ламп. Стартер должен соответствовать мощности лампы.

Обычно, в схеме с двумя лампами, используют одинаковые мощности. Конденсатор желателен в параллели источнику переменного тока. Он предназначен для улучшения параметров питания. При мощностях ламп порядка 40 Ватт, обычно достаточно емкости от 2 до 10 мкФ.

Напряжение конденсатора выбирается не ниже двукратного напряжения питания.

Виды стартеров, их основные параметры и маркировки

Сейчас встречается новый вид стартера – электронный. Это уже новинка. Конструктивно они выглядят точно также и полностью совместимы с «классикой». Можно заменить даже не задумываясь. Внутри вместо конденсатора и герметичных биметаллических пластин – электронная схема. Она выполняет аналогичные действия по запуску газоразрядного лампы. Изменять схему не потребуется. Из недостатков можно назвать только цену, она будет раз в пять выше, чем на «классику».

Конструкция стартера

Его преимущества:

  • Срок службы много больше.
  • При старении компонентов стартер не сработает, балластное устройство не перегреется.
  • Более широкий температурный диапазон.
  • Встроенная защита от перегрузки по току.
  • Исключаются полностью электромагнитные помехи при старте осветителя.
  • Фиксированного время прогрева электродов люминесцентной лампы, следовательно, повышается срок службы.
  • Лампа включается сразу без мерцания.

Сейчас есть и полностью готовые инженерные решения. Это так называемые ЭПРА – электронные пускорегулирующие аппараты.

ЭПРА

Этот вид представляет собой металлический корпус, в котором размещена электронная схема, дополнительные элементы не потребуются. На вход приходит напряжение питания, выходы предназначены для подключения к электродам.

При необходимости легко выбрать устройство на требуемое количество ламп. Монтаж и схема существенно упрощаются. Применение ЭПРА существенно продлевает срок эксплуатации благодаря «теплому запуску». Отсутствие подвижных биметаллических контактов обеспечивает бесшумность старта. Свечение ламп будет ровным. ЭПРА обеспечивают стабилизацию параметров питания. Соответственно параметры электронного пускорегулирующего аппарата и ламп должны совпадать.

Такое решение сочетает достоинства электронных стартеров и простоту схемы подключения. Это полностью готовое решение. Одно устройство может применяют для нескольких ламп.

Из минусов – цена. Электронные компоненты дороже чем совокупная цена пускателя, конденсатора и дросселя. Что удобно, сама схема подключения как правило разрисована на самом устройстве, либо в инструкции. Также схемы всегда есть на сайтах заводов-изготовителей.

Маркировка однозначно идентифицирует стартер и прописана в ГОСТ Р МЭК 60155-99 «Стартеры тлеющего разряда для люминесцентных ламп».

Маркировка стартеров

Внешне стартера для ламп дневного света выглядят так:

Cтартер ST

Стартер S2

Стартер S10

Не горит светильник, проверка исправности стартера

Так как все имеет конечный срок службы, то бывает, что светильник не загорается. Тогда возникает вопрос «Кто виноват?». Точно уже не дроссель, межвитковые замыкания – это единичные случаи. Лампа или стартер?

Обычно ремонт производится на модульном уровне. Производится замена на заведомо исправный элемент. Ремонт на уровне компонентов – нецелесообразен.

При отсутствии компонентов придется выявить неисправность. Желательно просмотреть всю проводку светильника, так как если он не работает, то не обязательно виновник стартер или сам осветительный прибор. Не исключен вариант и плохого контакте, например в колодках или разъемах.

Если Вы решились на самостоятельный ремонт, то обязательно соблюдайте правила техники безопасности! Осветители используют высокое напряжение в своей работе. Имеется риск получения электротравмы! Запрещается прикасаться к токоведущим частям схемы под напряжением.

Источник: https://vamfaza.ru/starter/

Какое значение имеет дроссель в люминесцентных лампах

Дроссель для люминесцентных ламп – это обязательное устройство для нормального функционирования осветительного прибора. Разобравшись в принципе работы такого приспособления можно правильно подключить светильник к электрической цепи самостоятельно.

ЭТО ИНТЕРЕСНО:  Сколько ватт должна быть лампа

Для чего нужен?

Люминесцентная лампа не может работать по принципу простой лампы накаливания. Чтобы обеспечить ее функционирование необходимо дополнительное устройство, которое способно создать импульс для электрического пробоя наполненной газом среды. Таким элементом является дроссель. Он поддерживает требуемую мощность в процессе работы светильника.

Чтобы задействовать люминесцентную лампочку необходимо не только обеспечение доступа тока, а и подача напряжения к ней. Для этого подключают дроссель, который ограничивает нарастание движения электрического заряда при подключении к электросети.

Основными функциями ограничивающего ток устройства являются:

  • обеспечение беспрерывной работы лампы независимо от возникающих в электрической сети отклонений напряжения;
  • организация подачи оптимального и безопасного для конкретного светильника тока, способствующего быстрому разогреву при зажигании электродов;
  • стабилизация разрядов тока при номинальных показателях.

С помощью дросселя в люминесцентной колбе происходит формирование разряда за счет образования в обмотке импульса повышенного напряжения.

Принцип работы

Дроссель функционирует в лампе вместе со стартером. Принцип их действия имеет такую последовательность:

  • при возникновении напряжения в лампе электрические заряды поступают в стартер, который состоит из заполненного инертным газом баллона с контактами и конденсатора;
  • за счет напряжения газ ионизируется и по цепи дросселя проходит ток;
  • происходит возрастание силы тока до 0,5 Ампер за счет разогрева контактов из биметалла и газа;
  • далее происходит нагревание катодов, и освобождаются электроды, подогревая в трубке светильника ртутные пары;
  • ионизация завершается при мгновенном замыкании контактов завершение ионизации происходит при мгновенном замыкании контактов;
  • при понижении температуры стартера осуществляется их быстрое размыкание и прекращение подачи тока к катоду и стартеру.

Заряд, сформировавшийся в ртутных парах, обеспечивает ультрафиолетовое излучение, под воздействием которого возникает освещение видимое человеком.

Технические характеристики

Приобретая дроссель нужно внимательно изучать технические характеристики устройства. Он должен соответствовать параметрам газоразрядного осветительного прибора. Существенную роль играет индуктивность дросселя. Такая величина обозначает индуктивное сопротивление устройства, способствующее регулировке поступающего к светильнику электричества.

Немаловажной величиной является коэффициент потери мощности при поддержке необходимых параметров эклектического питания лампы. Также имеет значение качество изделия.

В основном технические данные отличаются в зависимости от мощности дросселя. Согласно такому значению приспособление делят на три группы – «B», «D» и «C». Некоторые электронные модели имеют показатели климатических условий использования.

Электромагнитный дроссель для люминесцентных ламп

Виды

Дроссели бывают двух видов:

  1. Электронный. Такое приспособление работает без подключения стартера. Основными его достоинствами считаются – высокая скорость включения, небольшие габариты и вес изделия, а также способность обеспечить равномерное свечение лампы без мерцаний. Работает электронный дроссель совершенно бесшумно.
  2. Электромагнитный. Такое устройство для люминесцентных светильников подсоединяется параллельно со стартером. Дроссель электромагнитный имеет несложную конструкцию и надежен в использовании. Такие изделия отличаются невысокой стоимостью. К недостаткам данного приспособления причисляют – длительное включение, наличие характерного шума во время работы, возможность мерцаний при запуске, необходимость установки конденсатора.

Согласно типу сетей, в которые подключаются светильники, дроссели различают:

  • бытовые однофазные устройства – 220 Вольт;
  • трехфазные приспособления для люминесцентных ламп промышленного применения – 380 Вольт.

В некоторых моделях дроссель располагается в специальном кожухе, что позволяет размещать его в светильниках наружного расположения. Многие устройства для обеспечения свечения размещены внутри лампу. Такой вариант позволяет надежно защитить дроссель от влияния различных внешних факторов.

Электронный дроссель для люминесцентных ламп

Устройство и схема

Конструкция дросселя вмещает в себя такие компоненты:

  • сердечник, на который намотана проволока из изолирующего материала;
  • специальная смесь для дополнительной защиты обмоточного провода, изготовлена из устойчивых к возгоранию веществ;
  • термоустойчивый корпус для размещения намотки.

Стандартная схема подключения со стартером – это наиболее простой и распространенный вариант подключения люминесцентных ламп. Несмотря на некоторые недостатки, такое подсоединения имеет хорошие показатели.

Стандартная схема подключения люминесцентных ламп

Подключение

Чтобы подключить дроссель по схеме со стартером следует выполнить несколько простых действий:

  • подсоединить стартер к контактам, которые находятся по бокам на выходе осветительного прибора;
  • на свободные выводы подключить дроссель;
  • конденсатор соединить с питающими контактами.

Подключение всех элементов проводится параллельно. За счет конденсатора можно значительно уменьшить сетевые помехи.

Подключение электромагнитного дросселя к люминесцентной лампе

Как проверить исправность?

Дроссель является достаточно прочным и надежным составным элементом люминесцентной лампы. Поэтому выходит из строя устройство очень редко.

Но все же иногда может возникать обрыв его обмотки или перегорание. Также при нарушении изоляционного слоя между витками дроссель перестает функционировать. Как определить исправность дросселя?

Проверка проводится мультиметром. Прибор, настроенный на величину сопротивления подключают к выводам дросселя. При нарушениях в обмотке на измерительном приборе высвечивается бесконечное сопротивление. Минимальные показатели этого значения свидетельствуют о непригодности изоляции или замыкании между витками.

При перегорании обмотки в катушке ощущается характерный паленый запах, который изначально исходит от детали в процессе ее работы. Все описанные характеристики неисправности дросселя в основном относятся к устройствам электромагнитного типа.

Как заменить?

Иногда при выходе дросселя из строя его начинают ремонтировать. Для этого требуются особые знания и навыки. Чаще всего деталь заменяется. Установку нового дросселя может сделать каждый:

  • полностью отключить подачу электроэнергии в доме;
  • снять дроссель;
  • разъединить крепежи и провода, проводящие к светильнику ток;
  • подключить к ним новый дроссель, вставляя на место старого.

Выполнять замену нельзя при простом отключении лампы, так как напряжение от этого не исчезнет.

Дроссель в люминесцентной лампе – это простой, но необходимый для создания свечения элемент. Имея представление о работе такого устройства можно подключать светильник и заменять в нем нерабочие детали без помощи специалиста.

Источник: https://master-houses.ru/drossel-v-lyuminestsentnyh-lampah-05/

Стартер для люминесцентных ламп: применение

> Лампы электрические > Стартер для люминесцентных ламп: применение

Стартер – основной элемент люминесцентных ламп, является частью электромагнитной пускорегулирующей аппаратуры. Его назначение – пуск механизма, т.е. зажигание газа в газоразрядной колбе. Устройство замыкает и размыкает электрическую цепь.

Внешний вид стартера для люминесцентных ламп

Дроссель выполняет функцию трансформатора и стабилизатора – ограничивает ток нитей лампы до требуемого значения, защищает оборудование от перепада температур, скачков напряжения и перегрузки.

Дроссель служит для защиты оборудования от скачков напряжения и перегрузки

Устройство и принцип работы

Деталь представляет собой небольшую стеклянную колбу тлеющего разряда, помещенную в металлическую или пластиковую емкость. Колба заполнена благородным газом, как правило, неоном или гелием, и включает в себя два электрода.

Стеклянная колба, заполненная гелием или неоном, с двумя электродами

Изготовляют конструкции двух видов: симметричные и несимметричные. В симметричных – оба электрода подвижны, в несимметричных – только один. Первый тип применяется чаще из-за большей практичности.

В колбе происходит предварительный прогрев ртути и перевод ее в газообразное состояние. Затухающий заряд, вследствие подачи напряжения на разомкнутые электроды, приводит к зажиганию устройства. Т.е. создается мощный импульс. Электроды после замыкания гасят тлеющий заряд. Цепь, которая возникает впоследствии, увеличивает температуру катодов и дросселя. После падения напряжения электроды не могут замыкать цепь, тем самым поддерживая лампочку в зажженном состоянии.

Напряжение стартера выбирается выше рабочего люминесцентной лампы и ниже напряжения сети. Т.к. газоразрядные лампочки имеют отрицательное сопротивление, ток после пуска становится намного выше нормы. Для чего и необходимо устройство, которое может ограничить и стабилизировать этот ток до требуемого рабочего значения.

Дроссель – катушка в металлической оплетке. Задача детали заключается в поддержке лампы в рабочем состоянии. Элемент накапливает и преобразовывает электрическую энергию.

После успешного запуска прибора в цепи течет ток, соответствующий номинальному току лампочки. Это условие гарантирует правильное горение лампы. Зажигание зависит от качества прогрева катодов и силы тока. При недостаточных значениях этих параметров, когда цепь размыкается при низкой величине тока, лампочка не включится. Процесс в этом случае становится неисправным циклическим.

Сборка люминесцентной лампы

Виды стартеров и дросселей

Схема включения люминесцентных ламп

Различают стартеры нескольких видов:

  • Тепловые. Для них характерно увеличенное время пуска, что повышает стабильность работы газоразрядных лампочек. Достаточно сложное устройство, потребление дополнительной энергии на собственные нужды усложняет применение этого вида для эксплуатации в частных домах.
  • Тлеющего ряда. Содержит биметаллические электроды. Имеют упрощенную схему и малое время зажигания.
  • Полупроводниковые. Возникновение импульса в колбе происходит по принципу ключа – нагрева и размыкания цепи.

Разновидности дросселей:

  • Электронные. Используют простую схему подключения. При этом отсутствует мерцание и пульсирование при включении. Характеризуются низким шумом при работе. Достаточно дорогостоящая продукция. Целесообразно применять лишь в комнатах с частым включением приборов.
  • Электромагнитные. Для работы таких дросселей используют последовательное подключение с лампочкой, т.к. невозможно произвести холодный запуск. Главным недостатком является длительное мерцание во время включения.

Конденсатор в работе устройства

Конденсатор обеспечивает стабильность работы устройства. Главное назначение – борьба с радиопомехами, возникающими при замыкании цепи (контакте электродов). Также необходим он для стабилизации импульсов тлеющих зарядов.

Для стандартных лампочек применяются установки емкостью до 0,1 микрофарад. При отсутствии в схеме подключения этого элемента, напряжение в цепи будет непрерывно возрастать до критических значений. Конденсатор, включенный параллельно в цепь с электродами, исключает залипание электродов, которое может возникнуть во время образования электронной дуги, т.е. гасит ее.

Конденсатор люминесцентной лампочки

Срок службы, ремонт и замена

При каждом последующем запуске напряжение внутри снижается, что при продолжительном сроке эксплуатации вызывает мигание лампочки и износ стартера. При длительном использовании лампы тлеющий заряд уменьшается, и со временем на нем полностью пропадает напряжение. При этом наблюдается самовольное замыкание и размыкание электродов.

Стартер для ламп дневного света

Моргание в лампах происходит из-за низкого напряжения в сети. Стартер совершает бесконечный ряд попыток произвести запуск механизма: до успешного включения или до выхода из строя оборудования. Стандартное время зажигания составляет 10 секунд. В противном случае в работе системы сбои или неисправности.

После появления первых признаков неисправностей, необходимо выполнить замену элемента. Несвоевременный ремонт грозит не только раздражающими вспышками при пуске, но и поломкой дросселя (за счет постоянного перегрева контактов), а также полным выходом из строя люминесцентной лампы.

При недостаточном напряжении в питающей сети зажигание происходит не с первой попытки, постоянное моргание значительно снижает срок эксплуатации. Во избежание частого выхода из строя необходимо использовать качественную светотехническую продукцию, а также следить за исправностью цоколя и внутридомовой электросети.

Для продления срока службы люминесцентных ламп рекомендуется на вводе в жилые дома (квартиры) устанавливать стабилизаторы напряжения.

Замена стартера состоит из несколько этапов:

  • Выключение лампы.
  • Снятие плафона.
  • Извлечение неисправного элемента (выкручивается против часовой стрелки).
  • Подключение нового. Необходимо вставить в паз и повернуть до упора по часовой стрелке.

Замена дросселя требует определенных навыков и опыта. Сначала необходимо отключить автоматы на щитке квартиры (дома) для полного ее обесточивания. После того как напряжение не будет подаваться на лампу, следует снять с нее крепежные детали и соединительные провода. Теперь дроссель легко демонтировать и установить на его месте новый. Затем необходимо произвести все действия в обратном порядке.

Соединительные провода элемента

Выбор и производители

Утилизация люминесцентных ламп

При выборе необходимо руководствоваться следующими факторами:

  • тип запуска лампочки;
  • производитель;
  • номинальные характеристики.

Существует большое количество производителей, выпускающих качественное оборудование. Среди них:

Источник: https://elquanta.ru/lampa/starter-lyuminescentnykh-lamp.html

Как подключить люминесцентную лампу — схемы с дросселем и балластом

Люминесцентные светильники основаны на свечении газового разряда в парах ртути. Излучение находится в ультрафиолетовом диапазоне и для его преобразования в видимый свет колба лампы покрыта слоем люминофора.

Принцип работы люминесцентного светильника

Особенность работы люминесцентных светильников заключается в том, что их нельзя напрямую подключать в сеть питания. Сопротивление между электродами в холодном состоянии большое, и величина тока, протекающего между ними, недостаточна для возникновения разряда. Для зажигания требуется импульс высокого напряжения.

Лампа с зажженным разрядом характеризуется низким сопротивлением, которое имеет реактивную характеристику. Для компенсации реактивной составляющей и ограничения протекающего тока последовательно с люминесцентным источником света включается дроссель (балласт).

Многим непонятно, для чего нужен стартер в люминесцентных лампах. Дроссель, включенный в цепь питания совместно со стартером, формирует импульс высокого напряжения для запуска разряда между электродами. Так получается потому, что при размыкании контактов стартера на выводах дросселя формируется импульс ЭДС самоиндукции величиной до 1кВ.

Для чего нужен дроссель

Использование дросселя для люминесцентных ламп (балласта) в цепях питания необходимо по двум причинам:

  • формирование напряжения запуска;
  • ограничение тока через электроды.

Принцип работы дросселя основан на реактивном сопротивлении катушки индуктивности, которой является дроссель. Индуктивное сопротивление вносит сдвиг фаз между напряжением и током, равный 90º.

Из того, что ограничивающей ток величиной, является индуктивное сопротивление, следует, что дроссели, предназначенные для ламп одной мощности, нельзя использовать для подключения более или менее мощных устройств.

В некоторых пределах возможны допуски. Так, ранее отечественная промышленность выпускала люминесцентные светильники с мощностью 40 Вт. Дроссель 36W для люминесцентных ламп современного производства можно без опасений использовать в цепях питания устаревших светильников и наоборот.

Отличия дросселя от ЭПРА

Дроссельная схема включения люминесцентных источников освещения отличается простотой и высокой надежностью. Исключение составляет регулярная замена стартеров, поскольку в их состав входит группа размыкающих контактов для формирования импульсов запуска.

Источник: https://odinelectric.ru/osveshhenie/istochniki-sveta/kak-podklyuchit-lyuminestsentnuyu-lampu

Дроссель для люминесцентных ламп: для чего нужен, виды, схема индукционного, как подключить, принцип работы электромагнитного

Люминесцентная лампа относится к газоразрядным устройствам. Следовательно, в ее конструкции должен присутствовать элемент, ограничивающий ток. В противном случае сила тока будет нарастать лавинообразно, что несомненно приведет к поломке лампы, а, возможно, и к ее взрыву. Такой ограничитель разработчиками люминесцентных ламп предусмотрен. Его роль играет электронное или электромагнитное устройство – дроссель (или балласт).

Как выбрать нужный вид

Выбрать дроссель к люминесцентной лампе, в первую очередь обращайте внимание на его мощность: она должна совпадать с мощностью светильника.

Немаловажную роль при выборе играет и производитель: лучше, если это будет известная компания, продукция которой широко применяется. Покупая дешевые изделия неизвестных изготовителей, вы рискуете напрасно выбросить деньги.

Еще один вопрос, требующий решения: какой дроссель вы хотите купить – электронный или электромагнитный. Цены на них заметно отличаются.

Cтоимость электромагнитного дросселя в зависимости от мощности начинается примерно со 150 рублей (импортный вариант), а
минимальная цена на электронный дроссель составляет около 500 рублей.

Рекомендуем Вам также более подробно ознакомиться с мощностью люминесцентных ламп.

Электронный дроссель не требует установки стартера в лампу.

Классификация приборов

В люминесцентных лампах могут использоваться электромагнитные или электронные дроссели. Каждому из видов присущи определенные достоинства и недостатки.

Электромагнитные

Электромагнитный дроссель представляет собой катушку с металлическим сердечником. Для обмотки используются медный и алюминиевый провода. От их диаметра зависит нормальная работа светильника. Потери мощности устройства составляют от 10 до 50%.

Чем мощнее люминесцентная лампа, тем меньше процент потерь мощности.

Люминесцентные лампы с электромагнитными дросселями стоят недорого, не требуют дополнительной настройки. Однако электромагнитный дроссель весьма чувствителен к нестабильности электрической сети. Малейшее колебание приводит к мерцанию лампы и повышению уровня шума: светильник начинает гудеть.

ЭТО ИНТЕРЕСНО:  Можно ли устанавливать лед лампы в противотуманки

Перед зажиганием лампы из-за несинхронности работы дросселя с частотой сети происходят вспышки. Они приводят к ускоренному износу ПРА.

На разогревание электромагнитного дросселя тратится четверть мощности светильника.

Два класса электромагнитных дросселей – D и С – запрещены Европейской комиссией. На данный момент на рынке можно найти люминесцентные лампы с электромагнитными дросселями только классов В1 и В2. Они характеризуются пониженными потерями электроэнергии.

Электромагнитные дроссели имеют право на жизнь, они обеспечивают достаточную надежность светильников. Но сейчас их активно вытесняют электронные балласты.

Рекомендуем Вам также ознакомиться как сделать своими руками блок питания из энергосберегающей лампы.

Электронные ПРА

Электронный дроссель имеет более сложную конструкцию. В его состав входят:

  1. Фильтр электромагнитных помех. Гасит электромагнитные импульсы самого светильника и устраняет внешние помехи – от сети.
    выпрямитель: служит для преобразования тока.
  2. Схема коррекции коэффициента мощности. Отвечает за контроль сдвига по фазе переменного тока, который проходит через нагрузку.
  3. Фильтр сглаживающий. Снижает уровень пульсации переменного тока.
  4. Инвертор. Отвечает за преобразование постоянного тока в переменный.
  5. Балласт. Индукционная катушка, участвующая в накоплении энергии, подавлении помех и плавной регулировке яркости свечения.

Некоторые модели ЭПРА оснащаются защитой от перепадов напряжения (колебаний напряжения в электрической сети или ошибочного пуска устройства без лампы).

При включении лампы ток из выпрямителя поступает на буфер конденсатора. Там происходит сглаживание частоты пульсации. Высокое напряжение попадает на инвертор и заряжает микросхемы и конденсаторы.

При достижении напряжения 5,5 В микросхема сбрасывается. Зарядка конденсатора обратной связи (компенсационной) регулируется транзисторами. Как только напряжение достигнет 12 В, система входит в следующую фазу – предварительного нагрева.

Поджиг происходит при минимальном значении напряжения 600 В. Этот процесс происходит всего за 1,7 сек.

В отличие от электромагнитного, электронный дроссель не допускает чрезмерного нагревания осветительного прибора, поэтому возникновения пожара можно не бояться.

Схема подключения с люминесцентными лампами 2х18

Схема подключения ПРА с двумя люминесцентными лампами, мощностью 18В

Для подключения двух ламп мощностью 18W требуется индукционный тип устройства мощностью не менее 36 Вт (подойдет ПРА на 40 Вт) и два стартера S2 на 4-22 Вт.

более подробно про люминесцентный светильник 2х36.

Стартеры подключаются параллельно каждой лампе. В результате будут задействованы по одному контакту-штырю с каждой стороны лампы. Остальные контакты подключаются через индукционный дроссель к питающей электрической сети.

Снизить помехи и компенсировать реактивную мощность можно при помощи конденсатора, подключенного параллельно к питающим контактам осветительного прибора.

Присутствие конденсатора не требуется, если в люминесцентной лампе предусмотрена встроенная защита.

Вариантов, подключения ПРА и ЭПРА множество, поэтому далее приведет несколько понятных рисунков-схем с самыми распространенными видами соединений.

Схема последовательного подключения ламп через дроссельПодключение с использованием дополнительной лампы накаливания (без дросселя)Схема подключения с двумя дросселями

Подключить своими руками

Электромагнитный дроссель можно изготовить и своими руками. Но делается это редко. Гораздо чаще умельцы самостоятельно восстанавливают ПРА, так как приобрести нужную модель не всегда удается (особенно трудно найти ее в «глубинке»).

С устройства снимается защитный чехол и две половинки сердечника (они имеют Г-образную форму). Затем снимается обмотка. Если по каким-то причинам снятие витков провода затруднено, их можно срезать, используя ножовку по металлу.

Для новой обмотки можно использовать медный провод диаметром 0,64-0,8 мм. Тысячу витков наматывают без межслойной изоляции внавал.

Чем больше мощность дросселя, тем проще его восстановить. Маломощные (следовательно, и малогабаритные) дроссели заливаются компаундом, что делает процесс их восстановления весьма проблематичным.

На перемотку дросселя уходит не более двух часов.

Сравнение двух видов дросселей позволяет сделать вывод, что несомненное преимущество имеют ЭПРА. Они легче и меньше по габаритам. Такие характеристики облегчают создание миниатюрных осветительных приборов, потребность в которых неуклонно возрастает.

Данное видео более подробно расскажет Вам про дроссель для люминесцентных ламп.

Источник: https://finelighting.ru/texnologii-i-normy/sistemy/drosseli/vybiraem-podklyuchaem-lyuminescentnyx-lamp-pravilno.html

Дроссели и стартеры для ламп. Зачем нужны и какие выбрать

13.07.2016

Люминесцентные лампы в общественных местах на сегодняшний день практически полностью вытеснили лампы накаливания. В этом нет ничего удивительного, ведь они обладают рядом неоспоримых преимуществ:

— потребляют до 50% меньше энергии

— служат до 15 раз дольше

— окупают свою цену сроком службы

— не взрываются

Для увеличения срока использования и обеспечения бесперебойной работы лампы используются дроссель и стартер.

Зачем нужен стартер и дроссель?

Стартер, как и в машине, — это пусковое устройство, необходимое, чтобы зажечь лампу.

Дроссель стабилизирует работу лампы. Он берет на себя все перепады напряжения.

Как они работают?

Стартер – это колбочка из стекла, наполненная газом и оснащенная двумя электродами. Обычно ее заключают в пластиковый корпус.

Дроссель – это катушка в металлической оболочке. Мощность дросселя должна быть равна мощности лампы.

Вся цепочка работает следующим образом: после начала подачи тока стартер прогревает электроды и увеличивает подачу тока. Затем он размыкает контакт, передавая электричество на дроссель. Дроссель накапливает электричество, которое, при достижении определенного значения, пробивает колбу лампы, обеспечивая свечение газа внутри, лампа загорается. В дальнейшем он поддерживает работу лампы.

Стартер участвует только при включении лампы, пока лампа горит, он не требуется. Некоторые светильники можно включить даже без стартера (это называется холодным стартом), но такой метод включения сильно снижает срок службы лампы. Без дросселя светильник работать не может.

Какие существуют стартеры?

Существует всего три вида стартеров:

Самые популярные и простые – стартеры тлеющего разряда. Представляют собой лампу с биметаллическими электродами. Обеспечивают сравнительно быстрое зажигание лампы.

Более сложные – тепловые стартеры. Они зажигают лампу дольше, что продлевает ее долговечность. Более сложны в подключении.

Полупроводниковые стартеры после прогрева контактов размыкают цепь, создавая импульс в дросселе и лампе.

Каким может быть дроссель?

Дросселей всего два вида – электромагнитные и электронные.

Первые работают при последовательном подключении и требуют обязательно наличия стартера. Имеют серьезный недостаток – лампа с таким дросселем мерцает, создавая повышенную нагрузку на глаза.

Дроссели второго вида более современны и обладают большим количеством плюсов: не требуют обязательной установки стартера (холодный старт), уменьшают мерцание во время включения и работы лампы, а также снижают шум.

Какого производителя выбрать?

Источник: https://stv39.ru/articles/?ELEMENT_ID=71951

Для чего нужен стартер в люминесцентных лампах?

Стартер для люминесцентных ламп является одним из основных элементов лампочек дневного света. Зачем он нужен? Замыкание и размыкание электрической цепи – вот основная его функция. Кроме него в состав лампы входит дроссель, являющийся одновременно трансформатором и стабилизатором. Он нужен для ограничения тока в светильнике и защищает оборудование от перегрева и скачков напряжения.

Стартеры для ламп. Устройство и работа. Замена и как выбрать

Стартеры для ламп являются частью пускорегулирующей аппаратуры, которая служит для зажигания люминесцентных ламп при подключении к сети 220В с частотой 50 Гц. Помимо стартеров в состав ЭМПРА входит конденсатор и дроссель.

Как устроены и работают стартеры для ламп

Стартер представляет собой небольшую газоразрядную лампу, в которой поддерживается тлеющий разряд. Ее корпус состоит из стеклянной колбы, которая заполняется инертным газом. В качестве него может применяться неон или гелий-водород.

В колбе размещено два электрода чаще всего биметаллических. Один электрод закреплен, а второй установлен подвижно. Может применяться два подвижных электрода, что повышает надежность и быстродействие системы.

В случае снижения эффективности изгиба одного электрода, это компенсирует второй.

https://www.youtube.com/watch?v=k9Jo5f3tnAA

При подаче напряжения на стартер происходит тлеющий разряд. Он поддерживается незначительным током в пределах 20-50 мА. Тлеющий разряд поднимает температуру внутри колбы, от чего происходит разогрев подвижного биметаллического электрода, в результате чего он изгибается и прикасается ко второму.

При замыкании цепи разряд переходит на соединительный дроссель и в последующем на саму лампу, вызывая ее подогрев. В это время ток заряда в самом стартере прекращается, поэтому его электроды охлаждаются и разгибаются.

В результате в электрической цепи создается импульс высокого напряжения, который передается на дроссель и зажигает люминесцентную лампу, провоцируя ее стойкое белое свечение.

Цель стартера заключается в подогреве лампы, поскольку в противном случае она просто не зажжется при подаче напряжения. Подобный эффект можно наблюдать пытаясь включить низкокачественную люминесцентную лампочку на морозе. Если в тепле она работает безотказно, то в холоде не светит

Для обеспечения продолжительного ресурса эксплуатации пускателя требуется наличие конденсатора. Его задача заключается в сглаживании экстра токов, благодаря чему осуществляется размыкание электродов прибора. Без наличия конденсатора электроды просто спаяются между собой.

Конденсатор имеет емкость от 0,003 до 0,1 мкФ. Зачастую в конструкции люминесцентных ламп, особенно с патроном Е27, предусматривается подключение двух последовательно соединенных конденсаторов емкостью каждого по 0,01 мкФ.

Это необходимо для компенсации создания радиопомех, которые обычно наблюдаются при работе ламп дневного света.

Специфика работы стартера требует соблюдение определенного напряжения. В случае его падения до уровня 80% лампочка не загорится, поскольку пускатель не сможет правильно ее прогреть. Дело в том, что напряжение зажигания самого стартера должно быть ниже, чем напряжение в сети, к которой он подключен. При этом рабочее напряжение вызывающее свечение самой люминесцентной лампы должно быть ниже, чем у пускателя.

Срок службы стартера и признаки его скорого выхода из строя

Стартеры для ламп выходят из строя чаще, чем непосредственно сама лампочка. По мере применения пускового устройства напряжение образующее тлеющий разряд снижается.

Как следствие может наблюдаться замыкание между электродами стартера даже при работе лампы, когда она уже издает свет. Как следствие лампочка гасится и снова зажигается, что человеческим глазом воспринимается как мерцание.

Симптомом начала таких проблем является легкое мигание при длительной работе, или вначале до набора максимального свечения.

В это время внутри стартера электроды то присоединяются, то разъединяются. Как только контакт между ними прекращается лампа горит. Подобные блики не только мешают, но и опасны для других элементов лампы, в первую очередь наблюдается перегрев дросселя. Может выйти из строя и сама колба.

Люминесцентные лампочки предлагаются в различных форматах. Лампы, применяемые в обыкновенных люстрах и светильниках, сделаны под цоколь Е14 и Е27. В этом случае стартер прячется прямо в корпусе лампочки, поэтому как только он выходит из строя, то меняется весь механизм. Для вытянутых ламп, устанавливаемых в потолочные светильники, применяются отдельные пусковые устройства. Такие стартеры для ламп нужно своевременно менять, чтобы предотвратить выход из строя всей осветительной системы.

Фактический ресурс стартера позволяет осуществлять не менее 6000 включений. Это довольно много, ведь даже пользуясь светом дважды в день, ресурс израсходуется только через 8 лет. Конечно, свет может включаться и отключаться гораздо чаще, поэтому стартеры для ламп на практике служат намного меньше

Стартеры для ламп являются довольно специфической конструкцией, главный недостаток которой в низкой надежности. Зачастую устройство отказывает, в результате чего возникает фальстарт в виде несколько вспышек света при нажатии на включатель.

Как следствие после короткого мерцания полноценное свечение так и не происходит. Любые неполадки пускателя негативно сказываются на ресурсе самой лампочки.

Проблемы с запуском снижают и коэффициент полезного действия осветительного оборудования, увеличивая потребление энергии, что сопровождается малым количеством выделяемого света.

По мере эксплуатации рабочее напряжение стартера снижается, в то время как у самой лампы повышается. Такая несовместимость провоцирует возникновение тлеющего разряда даже в том случае, если лампочка уже светит, что тоже провоцирует мигание. Со временем стартер может терять в уровне эффективности разогрева лампы.

В результате нажимая на выключатель, свет просто не зажигается. Чтобы все заработало, приходится по несколько раз жать на клавишу. При каждом срабатывании лампа понемногу прогревается, пока не достигнет достаточной температуры для свечения.  При этом создается впечатление, что вся проблема в самом выключателе, а точнее его контактами.

По этой причине осуществляется сильное надавливание на его клавишу.

Выбирая стартер под определенный тип ламп, требуется в первую очередь обращать внимание на следующие показатели:

  • Ток зажигания.
  • Напряжение.
  • Уровень мощности.
  • Тип применяемого конденсатора.

Что касается тока зажигания, он должен быть выше рабочего напряжение лампы, но не ниже напряжения в сети питания. Только при соблюдении таких условий освещение будет работать корректно.

Базисное напряжение может составлять 127 или 220В. При включении в одноламповую схему применяется устройство на 220В. Для двухламповых систем используются стартеры на 127В.

Одним из самых важных критериев выбора стартера является уровень его мощности. Он измеряется в ваттах (Вт) и прописывается на боковой части корпуса стартера. В отдельных случаях мощность может изображаться на торцевой части стартера выдавленной в пластике. Подавляющее большинство представленных в продаже пускателей производятся с мощностью 60, 90 и 120 Вт. Также бывают стартеры для ламп с диапазоном мощности 4-22 Вт, 4-65 Вт и так далее

В некоторых странах, в том числе и России, для обозначения параметров стартера применяется маркировка. На поверхность корпуса устройства наносится буквенно-цифровая надпись ХХ-С-ХХХ. Сначала идут две цифры, которые указывают на мощность устройства.

Потом указывается буква «С», обозначающая что применяемый прибор это стартер. Дело в том, что при незнании пускатель можно спутать с конденсатором или другими устройствами, поэтому присутствие в маркировке «С» позволяет избежать подобных ошибок.

Сразу после буквы идет трехзначное число, которое указывает на напряжение, применяемое для работы. Это может быть 127 или 220В.

Многие производители, поставляющие свою продукцию на рынки всего мира, применяют свою собственную фирменную маркировку. В этом случае для удобства потребителей помимо собственного буквенно-цифрового обозначения применяется и стандартная расшифровка с указанием параметров мощности и напряжения. Далеко не все бренды указывают на корпусе устройства для скольких лампочек оно может поменяться. При отсутствии нужной информации ее нужно искать в инструкции.

Процесс замены пускателя

Рекомендуется менять стартеры для ламп вместе с самими лампами.  В этом случае новые устройства не выйдут из строя в неподходящий момент, из-за износа старых элементов в схеме подключения.

Замену нужно осуществлять не только при полном перегорании лампы, но и в случае:

  • Мерцания.
  • Длительной задержки при включении.
  • Сильного шума при работе.
  • Существенного падения яркости.
  • Самовольного отключения на продолжительный срок с последующим включением.

В случае с люминесцентными лампами в формате цоколя Е14 и Е27 прибор просто выкручивается, а на его место ставится новая лампочка. Длинные лампы потолочного типа меняются по другой схеме.

Колба лампочки поворачивается по своей осина на 45 градусов в направлении часовой стрелки. В результате ее электроды сдвигаются до выходного шлица. После этого лампа вытягивается. Стартер скрыт за отражающей крышкой светильника, поэтому ее нужно также демонтировать. Она может крепиться защелками или винтами. После извлечения крышки можно увидеть закрепленный в посадочном гнезде стартер.

Он просто поворачивается против часовой стрелки до характерного щелчка и вытягивается как вилка из розетки. На его место ставится новый стартер.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektroobustrojstvo/osveshhenie/startery-dlia-lamp/

Понравилась статья? Поделиться с друзьями:
Электро Дело
Для любых предложений по сайту: [email protected]