Стартер для люминесцентных ламп
Мало кто задается вопросом, каково настоящее назначение стартера люминесцентной лампы. Однако этот вопрос заслуживает нашего внимания. Электронный пускатель предназначен для зажигания свечения газоразрядных световых устройств, которые подключены к сети переменного тока в 50-60 Герц. Помимо пускателя, электронный пускорегулирующий аппарат (ЭПРА) включает в себя дроссель и конденсатор. Дроссель выступает в данном случае в качестве электромагнитного балласта.
Стартеры – это миниатюрные люминесцентные световые устройства, имеющие стационарный самостоятельный электрический разряд в газах, другими словами функционируют за счет тлеющего заряда.
Устройство стартера люминесцентных ламп
Электронный стартер для люминесцентных ламп состоит из сосуда, сделанного из стекла и наполненного газом и 2-х электродов, находящихся в самом приборе.
Если его конструкция является несимметричной, один их пускателей должен находиться в неподвижном состоянии, в то время как второй – в подвижном состоянии. Первый электрод, который установлен в подвижном состоянии, сделан из биметалла.
Большим спросом пользуется симметричная система, в которой оба биметаллических электрода устанавливаются в подвижном положении.
Таким образом, возникает вопрос: для чего нужен стартер в люминесцентных лампах. Ответ прост: он используется для запуска цепи лампы. Это цепи, как одиночного типа, так и цепи последовательного включения. Также есть возможность использовать данное пусковое устройство как при 110V, так и при 220V.
Принцип работы стартера
В большинстве случаем стартер для люминесцентных ламп применяется в качестве устройства запуска освещения. Как правило, потребляемая мощность ниже номинала в сети, однако мощность на выходе (пусковая) намного выше, чем в источнике освещения.
Когда напряжение поступает на электроды пускателя люминесцентных светильников, в нем образуется так называемый тлеющий ток, он в свою очередь нагревает электрод биметаллическую пластину пускового устройства. Эта пластина изменяет свою форму (начинает выгибаться), и соединяет две разомкнутые части электрической цепи. Далее по цепи напряжение доходит до дросселя и самой лампы.
Что характерно дроссель и люминесцентная лампа соединены последовательно, а устройства запуска параллельно источника электроэнергии.
Виды стартеров для люминесцентных приборов
Виды пускателей различаются по типам и мощности люминесцентных ламп. Кроме того, вид стартера зависит от схемы подключения лампы к сети. Так, например, 127 пускатель подходит для светильников, мощность которых не превышает 13 Вт. Стартер для люминесцентных ламп напряжением 220 В принято использовать для световых устройств, мощность которых не более 8 Вт.
Пускатель электронного типа
Происходящие в пусковых приборах процессы не поддаются управлению. На их работоспособность большое влияние оказывают температурные перепады в помещении.
Так, если температура ниже нуля градусов, то нагревание электродов будет замедленным, следовательно, устройству потребуется большее количество времени, чтобы зажечь свет.
Помимо этого, при повышенной температуре контакты при спайке друг с другом могут перегорать, что негативно отразиться на спиралях светильника. Перегрев приводит к его выходу из строя.
Однако, несмотря на, казалось бы, корректное функционирование лампы, она рано или поздно может сломаться. За счет продолжительности сохранности накала контактов в световом устройстве происходит снижение его производственного потенциала. Как раз для ликвидации такого недостатка в микросхеме зажигателя созданы достаточно сложные системы, в основе которых лежат микросхемы. Такие конструкции и схемы имитируют процесс замыкания пускателя электронного типа.
Тепловой вид пускателя
Главной отличительной особенностью теплового вида зажигателя является его продолжительный период пуска. При функционировании данного механизма происходит растрата большого количества электроэнергии.
Зажигатели такого типа в основном применяются при низких температурных показателях. Их принцип функционирования значительно отличается от алгоритма работы других типов. При выключении электроэнергии, электроды переходят в замкнутое положение, при включении – появляется импульс повышенного напряжения.
Механизм тлеющего разряда
Самыми распространенными механизмами пускового напряжения, являются зажигатели, изготовленные по принципу тлеющего разряда, работа которых основана на разгибании биметаллической пластины. Как правило, электроды таких стартеров выполнены из того же материала, и имеют различные свойства расширения при нагревании.
В момент того когда загорится лампа, зависит от того, как долго будет нагреваться биметаллическая пластина, и какой силы ток будет в момент размыкания контактов пускового устройства. В момент разрыва цепи в пускателе, лампа должна загореться, если данное действие не происходит, то пусковое устройство повторит попытку, и будет её повторять, до тех пор, пока лампа не загорится.
Вследствие чего, из-за постоянного перезапуска, пусковые устройства не рекомендовано применять в сырых помещениях, или других неблагоприятных условиях. Для быстрого старта светильника и оптимальной работы требуется оптимальный нагрев пластины в стартере, в противном случае лампа выйдет из строя.
По этой причине выпустили ГОСТ стандарт, в котором сказано, что максимальное время пуска лампы не должно быть более десяти секунд, а пусковые устройства тлеющего разряда дополнительно оборудуются, конденсатором высокого номинала.
Отдельное внимание хочется уделить вопросу, как можно запустить люминесцентную лампу без стартера и возможно ли это в принципе. В своей работе устройство запуска довольно часто выходит из строя, нарушая тем самым работоспособность светильника. Поэтому разработана специальная микросхема, позволяющая зажигать светильник без использования пускателя. Ознакомиться с ней можно ниже.
Срок службы, ремонт и замена
Срок службы стартера рассчитан примерно на 6000 включений, не редко этот показатель выше среднего. В результате продолжительной эксплуатации, происходит снижение показателей напряжения. Кроме того, контакты электродов нередко вызывают замыкание при включенном световом приборе, выбирая при этом его из строя.
Для того, чтобы зажечь светильник, необходимо разомкнуть контакты зажигателя. В последствие чего светильник начнет мигать. Необходимо вовремя заменить стартер, иначе неприятностей не избежать. Придется покупать не только отдельные детали для светового прибора, но и вполне вероятно придется произвести его полную замену.
Поэтому поменять светильник обойдётся намного дороже, нежели произвести простую замену стартера.
Как выбрать
Первое на что обычно обращают внимание при выборе зажигателя газоразрядных светильников – это марка производителя и ценовой диапазон. Несмотря на то, что это не самые важные показатели, упускать их из виду не нужно, ведь, как правило, зарекомендованные бренды выпускают достаточно качественную продукцию. На какие технические особенности можно обратить внимание при выборе пускового устройства:
- срок эксплуатации, как уже упоминалось средняя продолжительность «жизни» стартера 6000 включений;
- ток зажигания обязательно должен быть выше двух показателей (сетевого напряжения и напряжения лампы);
- насколько качественно изготовлен корпус, и стойкость корпуса к температуре возгорания;
- основное напряжение для цепи сети одной лампы это 220В, для двух 110В.
- уровень номинальной мощности и др.
Обращайте внимание на обозначения. Маркировка стартеров люминесцентных ламп располагается на их корпусе. При выборе того или иного пускателя нужно учитывать его характеристики, которые раскрывает его маркировка. Как правило, она указывает напряжение сети питания и мощность газоразрядной лампы, для которой предназначено данное пусковое устройство. И, конечно же, перед покупкой не забывайте проверить стартер на месте.
Источник: https://lightgid.ru/osvetitelnye-ustanovki/starter
Схемы подключения люминесцентных ламп без дросселя и стартера
Люминесцентные трубчатые лампы долгое время были популярны в освещении помещений любой площади. Они долго работают и не перегорают, а значит их нужно значительно реже обслуживать. Основная проблема — это не перегорание самой лампочки (выгорание спирали и люминофора), а выход из строя пускорегулирующей аппаратуры. В этой статье мы расскажем, как выполнить подключение люминесцентной лампы без дросселя и стартера, а также запитать от низковольтного источника постоянного тока.
Классическая схема включения люминесцентных ламп
Несмотря на технический прогресс и все преимущества электронных пускорегулирующих аппаратов (ЭПРА), и по сей день часто встречается схема включения с дросселем и стартером. Напомним, как она выглядит:
Люминесцентная лампа — это колба, которая конструктивно выполняется как прямая и закрученная трубка, наполненная парами ртути. На её концах расположены электроды, например, спирали или иглы (для изделий с холодным катодом, которые используются в подсветке мониторов). Спирали имеют два вывода, к которым подается питание, а стенки колбы покрыты слоями люминофора.
Принцип работы стандартной схемы подключения люминесцентной трубки с дросселем и стартером довольно прост. В первый момент времени, когда контакты стартера холодны и разомкнуты – между ними возникает тлеющий разряд, он нагревает контакты и они замыкаются, после чего ток течет по такой цепи:
Фаза-дроссель-спираль-стартер-вторая спираль-ноль.
В этот момент под воздействием протекающего тока разогреваются спирали, при этом остывают контакты стартера. В определенный момент времени контакты от нагрева изгибаются и цепь разрывается. После чего, за счет энергии, накопленной в дросселе, происходит всплеск напряжения и в лампе возникает тлеющий разряд.
Такой источник света не может работать напрямую от сети 220В, потому что для ее работы нужно создать условия с «правильным» питанием. Рассмотрим несколько вариантов.
Питание от 220В без дросселя и стартера
Дело в том, что стартеры периодически выходят из строя, а дроссели перегорают. Всё это стоит не дешево, поэтому есть несколько схем для подключения светильника без этих элементов. Одну из них вы видите на рисунке ниже.
Диоды можно выбирать любые с обратным напряжением не менее 1000В и током не меньше чем потребляет светильник (от 0,5 А). Конденсаторы выбирайте с таким же напряжением в 1000В и ёмкостью 1-2 мкФ. Обратите внимание, что в этой схеме включения выводы лампы замкнуты между собой. Это значит, что спирали в процессе зажигания не участвуют и можно использовать схему для розжига ламп, где они перегорели.
Такую схему можно использовать для освещения подсобных помещений и коридоров. В гараже можно применять, если в нём вы не работаете на станках. Светоотдача может быть ниже, чем при классическом подключении, а световой поток будет мерцать, хоть это и не всегда заметно для человеческого глаза. Но такое освещение может вызвать стробоскопический эффект — когда вращающиеся части могут казаться неподвижными. Соответственно это может привести к несчастным случаям.
Примечание: во время экспериментов учтите, что запуск люминесцентных источников света в холодное время года всегда осложнен.
Источник: https://www.entehno.ru/shemy-podkljuchenija-ljuminescentnyh-lamp-bez-drosselja-i-startera.html
Как подключить люминесцентную лампу — схемы с дросселем и балластом
Люминесцентные светильники основаны на свечении газового разряда в парах ртути. Излучение находится в ультрафиолетовом диапазоне и для его преобразования в видимый свет колба лампы покрыта слоем люминофора.
Принцип работы люминесцентного светильника
Особенность работы люминесцентных светильников заключается в том, что их нельзя напрямую подключать в сеть питания. Сопротивление между электродами в холодном состоянии большое, и величина тока, протекающего между ними, недостаточна для возникновения разряда. Для зажигания требуется импульс высокого напряжения.
Лампа с зажженным разрядом характеризуется низким сопротивлением, которое имеет реактивную характеристику. Для компенсации реактивной составляющей и ограничения протекающего тока последовательно с люминесцентным источником света включается дроссель (балласт).
Многим непонятно, для чего нужен стартер в люминесцентных лампах. Дроссель, включенный в цепь питания совместно со стартером, формирует импульс высокого напряжения для запуска разряда между электродами. Так получается потому, что при размыкании контактов стартера на выводах дросселя формируется импульс ЭДС самоиндукции величиной до 1кВ.
Для чего нужен дроссель
Использование дросселя для люминесцентных ламп (балласта) в цепях питания необходимо по двум причинам:
- формирование напряжения запуска;
- ограничение тока через электроды.
Принцип работы дросселя основан на реактивном сопротивлении катушки индуктивности, которой является дроссель. Индуктивное сопротивление вносит сдвиг фаз между напряжением и током, равный 90º.
Из того, что ограничивающей ток величиной, является индуктивное сопротивление, следует, что дроссели, предназначенные для ламп одной мощности, нельзя использовать для подключения более или менее мощных устройств.
В некоторых пределах возможны допуски. Так, ранее отечественная промышленность выпускала люминесцентные светильники с мощностью 40 Вт. Дроссель 36W для люминесцентных ламп современного производства можно без опасений использовать в цепях питания устаревших светильников и наоборот.
Отличия дросселя от ЭПРА
Дроссельная схема включения люминесцентных источников освещения отличается простотой и высокой надежностью. Исключение составляет регулярная замена стартеров, поскольку в их состав входит группа размыкающих контактов для формирования импульсов запуска.
Источник: https://odinelectric.ru/osveshhenie/istochniki-sveta/kak-podklyuchit-lyuminestsentnuyu-lampu
Для чего нужен стартер в люминесцентных лампах?
Стартер для люминесцентных ламп является одним из основных элементов лампочек дневного света. Зачем он нужен? Замыкание и размыкание электрической цепи – вот основная его функция. Кроме него в состав лампы входит дроссель, являющийся одновременно трансформатором и стабилизатором. Он нужен для ограничения тока в светильнике и защищает оборудование от перегрева и скачков напряжения.
Принцип работы стартера
Стартер является малогабаритной газоразрядной лампой, работа которой основана на принципе тлеющего разряда. Устройство стартера представляет собой стеклянную колбу с двумя электродами, заполненную неоном или гелием. Для защиты колба помещена в корпус из металла или прочного пластика. Электроды изготавливаются из биметаллических пластин. У разных производителей их конструкция может отличаться.
Для сглаживания момента замыкания и размыкания контактов в цепи дополнительно устанавливают конденсатор. Одновременно он является дугогасительным устройством. Возникающая в момент включения дуга может привести к свариванию контактов. Это может стать причиной преждевременного выхода из строя и существенно снизить срок эксплуатации.
Зная, для чего нужен стартер, легко разобраться в принципе его работы.
В начальный момент электроды имеют разомкнутое состояние. При подключении к сети в устройстве возникает разряд, величина тока которого лежит в диапазоне от 20 до 50 мА. Он разогревает биметаллические электроды, вследствие нагрева происходит изгиб электродов стартера, после чего электрическая цепь замыкается. При перемещении электрического тока по замкнутой цепи происходит разогрев дросселя и катодов люминесцентной лампы.
При отсутствии тлеющего разряда электроды из биметалла остывают. Это ведет к их разгибанию, разрыву электрической цепи и возникновению импульса высокого напряжения. Под его воздействием дроссель зажигает лампу. С увеличением свечения лампы все напряжение сети приходится на нее, поскольку стартер подключен параллельно лампе, недостаток напряжения питания оставляет электроды в разомкнутом положении.
Виды стартеров:
- тепловые;
- тлеющего ряда (содержащие биметаллические электроды с упрощенной схемой) ;
- полупроводниковые.
Напряжение стартера необходимо выбирать выше, чем в лампах, и ниже напряжения сети.
Срок службы, ремонт и замена
Длительная эксплуатация стартера вызывает снижение напряжения внутри него, что приводит к износу. Это отражается на работоспособности, лампа начинает мигать, а затем и вовсе прекращает запускаться. Это связано с тем, что при долгом использовании лампы уменьшается тлеющий заряд. Если появились признаки неисправности в виде моргающей лампочки, необходимо заменить неисправный элемент с целью предотвращения выхода из строя всего оборудования.
Кроме моргания может произойти износ дросселя от перегрева контактов и поломка люминесцентной лампы. Чтобы часто не менять непригодные для работы устройства, нужно приобретать качественные стартеры, хорошо зарекомендовавшие себя на рынке светотехники. Установка стабилизаторов напряжения также дает положительный эффект для повышения срока службы ламп.
Замена стартера делается следующим образом:
- отключить лампу;
- снять плафон;
- выкрутить против часовой стрелки неисправную деталь;
- новый стартер вставить в паз и повернуть по часовой стрелке до упора.
Внешний вид стартеров и маркировки
Чтобы правильно подобрать стартер, необходимо знать:
- тип запуска лампочки;
- производителя;
- электрические характеристики.
Источник: https://lampagid.ru/vidy/lyuminestsentnye/starter
Устройство и принцип работы стартера для люминесцентных ламп
Стартер, предназначенный для люминесцентных ламп, представляет собой пусковое устройство. Без него срок службы таких источников света значительно сократится. Также этот элемент при подаче тока первым начинает работу, его задачи: замыкание/размыкание цепи, а также обеспечение нагрева катода лампы.
Устройство и область применения
Конструкция стартера (код по ОКПД 31.50.42.190) довольно проста: компактная колба (баллон), изготовленная из стекла и заполненная инертным газом (чаще это неон); металлический или пластиковый корпус; два электрода (один из которых биметаллический).
По сути, данный элемент представляет собой лампу тлеющего разряда. Для нормальной работы люминесцентных ламп необходимо выбрать еще и пускорегулирующий аппарат. Схема, по которой предусматривается электронный тип балласта (ЭПРА), обычно не включает в себя стартер.
Схема люменесцентного светильника
Соответственно, основное направление применения данного элемента по коду ОКПД 31.50.42.190 – обеспечение приемлемых условий работы газоразрядных ламп с ЭмПРА. Задействуют пусковое устройство как при одиночном, так и при последовательном подключении. При этом допускается использовать в качестве источника питания сети 220/240 В и 110/130 В.
Описание принципа работы
Стартер, используемый для зажигания люминесцентных ламп, характеризуется более низким напряжением, чем в электросети. При этом напряжение пускового устройства превышает аналогичный рабочий параметр источника света. Когда говорится, что стартер газоразрядных ламп вводится в работу первым, имеется в виду, что при подключении к сети питания все напряжение прикладывается именно к данному элементу, в частности, к его электродам.
Результатом данного процесса является тлеющий разряд, посредством его тока осуществляется прогрев электрода пускового устройства, а именно, с биметаллической пластиной. Это приводит к его изгибанию, что, в свою очередь, обеспечивает замыкание цепи. Затем ток проходит дальше: через дроссель и люминесцентную лампу. Схема предполагает последовательное соединение двух названных элементов, а стартер подключен параллельно к источнику света.
Далее, описывается принцип работы люминесцентных ламп: катод под действием проходящего по цепи тока прогревается, продолжительность этого процесса определяется тем, как долго электроды пускового устройства будут находиться в замкнутом положении; зажигание источника света выполняется под воздействием дросселя, в котором на момент размыкания контактов стартера возник высоковольтный импульс.
Классификация пускового устройства осуществляется на основании различий в уровнях мощности ламп:
- от 4 до 22 Вт; от 4 до 65 Вт; от 4 до 80 Вт;
- 18-22 Вт, 18-65 Вт;
- 30-65 Вт;
- 70-125 Вт;
- от 80 до 140 Вт.
Тип используемого стартера определяется мощностью люминесцентных ламп и особенностями схемы. Существует большое количество разнотипных пусковых устройств. Например, исполнение SТ 111 (маркировка 220V 4-80W) применяется в схеме, которая предполагает использование ламп мощностью 4-80 Вт и напряжением 220 В. А вариант ST151 применяется при подключении к сети 110/127 В (маркировка 127V 4-22W).
Зажигание пускового аппарата
Процесс испускания свечения начинается при условии, что катод источника света подогрет до нужного состояния. Кроме того, важно, чтобы уровень приложенного к катоду тока при возвратном движении биметаллической пластины стартера был высоким, так как, в противном случае, в дросселе не возникнет высоковольтный импульс достаточной интенсивности. Если эти условия не выполнены, светильник не включится.
Принцип работы газоразрядных ламп предполагает автоматическое повторение начального этапа процесса включения (момент размыкания электродов стартера). Происходит это до того момента, пока светильник не начнет работать. Конечно, многочисленные попытки зажечь лампу сказываются на продолжительности ее работы.
Это одна из причин, объясняющих, почему электронный пускорегулирующий аппарат (ЭПРА) значительно превосходит электромагнитный аналог.
Целесообразность использования конденсатора
Схема предполагает необходимость последовательного соединения дросселя и лампы, а стартер подключается к источнику света параллельно. Дополнительно к тому, пусковое устройство параллельно соединено с конденсатором.
Схема подключения газоразрядных лампочек:
Схема подключения
На рисунке стартер обозначен как Ст, рассматриваемый конденсатор – С1, лампа – Л, дроссель – Д. Данный вариант не подходит для ЭПРА (электронный пускорегулирующий аппарат). Задача конденсатора С1 заключается в снижении уровня помех в процессе замыкания/размыкания контактов пускового элемента.
Схема устройства стартера
Строение данного прибора несложное:
На рисунке показана схема работы стартеров. Основные элементы: 1 – контакты, 2 – неподвижный электрод, 3 – стеклянная колба, 4 – подвижный электрод с биметаллической пластиной, 5 – цоколь неоновой лампы.
Как долго служит стартер?
В теории считается, что продолжительность работы стартеров эквивалентна сроку функционирования лампы. Со временем интенсивность напряжения тлеющего разряда внутри неоновой колбы заметно снижается.
Нередко при этом электроды пускового устройства замыкаются, когда лампа находится во включенном состоянии. Это еще одна причина, объясняющая, почему электронный пускорегулирующий аппарат (ЭПРА) лучше, чем ЭмПРА.
Обзор производителей
Многие известные марки, под которыми выпускается разнотипная светотехническая продукция (светильник, лампа и прочее), занимаются производством и стартеров (код по ОКПД 31.50.42.190).
Импортных комплектующих — лампы, дросселя, стартера и конденсатора
Источник: http://proosveschenie.ru/proizvodstvennye-pomeshheniya/princip-raboty-startera-dlya-lyuminescentnykh-lamp.html
Как выбрать стартер для люминесцентных ламп: как работает, устройство, маркировка
Стартер для люминесцентных ламп входит в комплектацию электромагнитного пускорегулятора (ЭМПРА) и предназначен для зажигания ртутной лампочки.
Каждая модель, выпущенная определенным разработчиком, обладает различными техническими характеристиками, однако используется для светотехники, питающейся исключительно от сети переменного тока, с предельной частотой, не превышающей 65 Гц.
Предлагаем разобраться, как устроен стартер для люминесцентных ламп, какова его роль в осветительном приборе. Кроме того, мы обозначим особенности разных пусковых приборов и расскажем, как выбрать нужный механизм.
Как устроено приспособление?
Опционально стартер (пускатель) достаточно прост. Элемент представлен небольшой газоразрядной лампой, способной формировать при низком давлении газа и малом токе, тлеющий разряд.
Этот стеклянный малогабаритный баллон заполнен инертным газом – смесью гелия или неоном. В него впаяны подвижные и неподвижные электроды из металла.
Все электродные спирали лампочки оснащены двумя клеммными блоками. Одна из клемм каждого контакта задействована в цепи электромагнитного балласта. Остальные — подключены к катодам пускателя.
Расстояние между электродами пускателя не существенно, поэтому посредством напряжения сети его легко можно пробить. При этом образуется ток и нагреваются элементы, входящие в электроцепь с определенной долей сопротивления. Именно стартер и входит в число этих элементов.
Конструкции стартеров для люминесцентных ламп имеют практически идентичное устройство: 1 – дроссель; 2 – стеклянная колба; 3 – пары ртути; 4 – клеммы; 5 – электроды; 6 – корпус; 7 – биметаллический контакт; 8 – инертная газовая субстанция; 9 – вольфрамовые нити накала ЛДС; 10 – капля ртути; 11 – разряд дуги в колбе (+)
Колба размещена внутри корпуса из пластмассы или металла, выполняющего роль защитного кожуха. В некоторых образцах сверху крышки дополнительно есть специальное смотровое отверстие.
Самым востребованным материалом для производства блока считается пластик. Постоянное воздействие высоких температурных режимов позволяет выдержать специальный состав пропитки — люминофор.
Приспособления выпускаются с парой ножек, выполняющих роль контактов. Они изготовлены из разных видов металла.
В зависимости от типа конструкции электроды могут быть симметричными подвижными или асимметричными с одним подвижным элементом. Их выводы проходят через патрон лампы.
Параллельно электродам колбы подключен конденсатор, емкостью 0,003-0,1 мкф. Это важный элемент, снижающий уровень радиопомех и также участвующий в процессе загорания лампы
Обязательной деталью в устройстве является конденсатор, способный сглаживать экстратоки и в тоже время размыкать электроды прибора, осуществляя гашение дуги, возникающей между токоведущими элементами.
Без этого механизма есть большая вероятность спайки контактов при возникновении дуги, что существенно снижает срок эксплуатации пускателя.
В быту наиболее популярны образцы балластов с симметричной системой контактов и электросхемой пуска. Такие образцы меньше подвергаются влиянию падения напряжения в электрической сети
Правильная работа стартера обусловлена напряжением питающей сети. При снижении номинальных величин до 70-80%, люминесцентная лампа может не зажечься, т.к. не будет производиться достаточный нагрев электродов.
В процессе подбора нужного пускателя, учитывая конкретную модель лампы дневного света (люминесцентной или ЛЛ), необходимо дополнительно проанализировать технические характеристики каждого вида, а также определиться с производителем.
Принцип работы аппарата
Подав сетевое питание на светотехнический прибор, напряжение проходит через витки дросселя ЛЛ и нить накала, выполненную из монокристаллов вольфрама.
Далее подводится к контактам стартера и образует между ними тлеющий разряд, при этом воспроизводится свечение газовой среды посредством ее нагрева.
Поскольку в устройстве есть еще один контакт – биметаллический, он также реагирует на изменения и начинает изгибаться, видоизменяя форму. Таким образом этот электрод замыкает электрическую цепь между контактами.
Величина тока, сформированного тлеющего разряда варьируется от 20 до 50 мА, чего вполне достаточно для разогрева биметаллического электрода, который отвечает за замыкание цепи (+)
Образовавшийся в электросхеме люминесцентного прибора замкнутый контур проводит через себя ток и нагревает вольфрамовые нити, которые, в свою очередь, начинают испускать электроны со своей нагретой поверхности.
Таким образом формируется термоэлектронная эмиссия. В это же время воспроизводится разогревание ртутных паров, находящихся в баллоне.
Образованный поток электронов способствует снижению напряжения, приложенного от сети к контактам пускателя, примерно вдвое. Степень тлеющего разряда начинает падать вместе с температурой накала.
Пластина из биметалла уменьшает свою степень деформации тем самым размыкая цепочку между анодом и катодом. Течение тока через этот участок прекращается.
Изменение его показателей провоцирует внутри дроссельной катушки, в проводящем контуре, возникновение электродвижущей силы индукции.
Биметаллический контакт моментально реагирует произведением краткосрочного разряда в подсоединенной к нему схеме: между вольфрамовыми нитями ЛЛ.
Его значение доходит нескольких киловольт, чего вполне достаточно для пробивания инертной среды газов с нагретыми ртутными парами. Между концами лампы образуется электродуга, продуцирующая ультрафиолетовое излучение.
Поскольку такой спектр света не видимый для человека, в конструкции лампы есть люминофор, поглощающий ультрафиолет. В итоге визуализируется стандартный световой поток.
При изменении тока в контуре или его полного прекращения пропорционально происходят изменения магнитного потока через поверхность пластины, что ограничивает этот контур и приводит к возбуждению в этой схеме ЭДС самоиндукции
Однако напряжения на пускателе, подсоединенного параллельно лампе, недостаточно для формирования тлеющего разряда, соответственно, электроды остаются в разомкнутой позиции в период свечения лампы дневного света. Далее стартер не используется в рабочей схеме.
Поскольку после продуцирования свечения показатели тока нужно лимитировать, в схему вводится электромагнитный балласт. За счет своего индуктивного сопротивления он выполняет роль ограничивающего устройства, предотвращающего поломки лампы.
Виды стартеров для люминесцентных приборов
В зависимости от алгоритма работы, пусковые устройства делят на три основных вида: электронные, тепловые и с тлеющим разрядом. Несмотря на то, что механизмы имеют различия в элементах конструкции и в принципах работы, они выполняют идентичные опции.
Пускатель электронного типа
Процессы, воспроизводимые в системе контактов стартеров, не являются управляемыми. Помимо этого, значительное воздействие на их функционирование оказывает температурный режим окружения.
Например, при температуре ниже 0°C скорость нагревания электродов замедляется, соответственно, прибор будет затрачивать больше времени на зажигание света.
Также при нагреве контакты могут спаиваться друг с другом, что приводит к перегреванию и разрушению спиралей лампы, т.е. ее порче.
Большинство моделей электронных балластов для ЛДС выпущены на базе микросхемы UBA 2000T. Такой тип устройства позволяет устранить перегрев электродов, за счет чего существенно увеличивается эксплуатационный срок контактов лампы, соответственно, и период ее работы
Даже корректно функционирующие устройства с течением времени имеют свойство изнашиваться. Они дольше сохраняют накал контактов лампы, тем самым уменьшая ее производственный ресурс.
Именно для устранения такого рода недостатков в полупроводниковой микроэлектронике стартеров были задействованы сложные конструкции с микросхемами. Они дают возможность лимитировать количество циклов процесса имитации замыкания электродов пускателя.
В большинстве представленных на рынках образцах, схемотехническое устройство электронного стартера составлено из двух функциональных узлов:
- управленческой схемы;
- высоковольтного узла коммутации.
Источник: https://sovet-ingenera.com/elektrika/svetylnik/starter-dlya-lyuminescentnyx-lamp.html
Стартеры для ламп. Устройство и работа. Замена и как выбрать
Стартеры для ламп являются частью пускорегулирующей аппаратуры, которая служит для зажигания люминесцентных ламп при подключении к сети 220В с частотой 50 Гц. Помимо стартеров в состав ЭМПРА входит конденсатор и дроссель.
Как устроены и работают стартеры для ламп
Стартер представляет собой небольшую газоразрядную лампу, в которой поддерживается тлеющий разряд. Ее корпус состоит из стеклянной колбы, которая заполняется инертным газом. В качестве него может применяться неон или гелий-водород.
В колбе размещено два электрода чаще всего биметаллических. Один электрод закреплен, а второй установлен подвижно. Может применяться два подвижных электрода, что повышает надежность и быстродействие системы.
В случае снижения эффективности изгиба одного электрода, это компенсирует второй.
При подаче напряжения на стартер происходит тлеющий разряд. Он поддерживается незначительным током в пределах 20-50 мА. Тлеющий разряд поднимает температуру внутри колбы, от чего происходит разогрев подвижного биметаллического электрода, в результате чего он изгибается и прикасается ко второму.
При замыкании цепи разряд переходит на соединительный дроссель и в последующем на саму лампу, вызывая ее подогрев. В это время ток заряда в самом стартере прекращается, поэтому его электроды охлаждаются и разгибаются.
В результате в электрической цепи создается импульс высокого напряжения, который передается на дроссель и зажигает люминесцентную лампу, провоцируя ее стойкое белое свечение.
Цель стартера заключается в подогреве лампы, поскольку в противном случае она просто не зажжется при подаче напряжения. Подобный эффект можно наблюдать пытаясь включить низкокачественную люминесцентную лампочку на морозе. Если в тепле она работает безотказно, то в холоде не светит
Для обеспечения продолжительного ресурса эксплуатации пускателя требуется наличие конденсатора. Его задача заключается в сглаживании экстра токов, благодаря чему осуществляется размыкание электродов прибора. Без наличия конденсатора электроды просто спаяются между собой.
Конденсатор имеет емкость от 0,003 до 0,1 мкФ. Зачастую в конструкции люминесцентных ламп, особенно с патроном Е27, предусматривается подключение двух последовательно соединенных конденсаторов емкостью каждого по 0,01 мкФ.
Это необходимо для компенсации создания радиопомех, которые обычно наблюдаются при работе ламп дневного света.
Специфика работы стартера требует соблюдение определенного напряжения. В случае его падения до уровня 80% лампочка не загорится, поскольку пускатель не сможет правильно ее прогреть. Дело в том, что напряжение зажигания самого стартера должно быть ниже, чем напряжение в сети, к которой он подключен. При этом рабочее напряжение вызывающее свечение самой люминесцентной лампы должно быть ниже, чем у пускателя.
Срок службы стартера и признаки его скорого выхода из строя
Стартеры для ламп выходят из строя чаще, чем непосредственно сама лампочка. По мере применения пускового устройства напряжение образующее тлеющий разряд снижается.
Как следствие может наблюдаться замыкание между электродами стартера даже при работе лампы, когда она уже издает свет. Как следствие лампочка гасится и снова зажигается, что человеческим глазом воспринимается как мерцание.
Симптомом начала таких проблем является легкое мигание при длительной работе, или вначале до набора максимального свечения.
В это время внутри стартера электроды то присоединяются, то разъединяются. Как только контакт между ними прекращается лампа горит. Подобные блики не только мешают, но и опасны для других элементов лампы, в первую очередь наблюдается перегрев дросселя. Может выйти из строя и сама колба.
Люминесцентные лампочки предлагаются в различных форматах. Лампы, применяемые в обыкновенных люстрах и светильниках, сделаны под цоколь Е14 и Е27. В этом случае стартер прячется прямо в корпусе лампочки, поэтому как только он выходит из строя, то меняется весь механизм. Для вытянутых ламп, устанавливаемых в потолочные светильники, применяются отдельные пусковые устройства. Такие стартеры для ламп нужно своевременно менять, чтобы предотвратить выход из строя всей осветительной системы.
Фактический ресурс стартера позволяет осуществлять не менее 6000 включений. Это довольно много, ведь даже пользуясь светом дважды в день, ресурс израсходуется только через 8 лет. Конечно, свет может включаться и отключаться гораздо чаще, поэтому стартеры для ламп на практике служат намного меньше
Стартеры для ламп являются довольно специфической конструкцией, главный недостаток которой в низкой надежности. Зачастую устройство отказывает, в результате чего возникает фальстарт в виде несколько вспышек света при нажатии на включатель.
Как следствие после короткого мерцания полноценное свечение так и не происходит. Любые неполадки пускателя негативно сказываются на ресурсе самой лампочки.
Проблемы с запуском снижают и коэффициент полезного действия осветительного оборудования, увеличивая потребление энергии, что сопровождается малым количеством выделяемого света.
По мере эксплуатации рабочее напряжение стартера снижается, в то время как у самой лампы повышается. Такая несовместимость провоцирует возникновение тлеющего разряда даже в том случае, если лампочка уже светит, что тоже провоцирует мигание. Со временем стартер может терять в уровне эффективности разогрева лампы.
В результате нажимая на выключатель, свет просто не зажигается. Чтобы все заработало, приходится по несколько раз жать на клавишу. При каждом срабатывании лампа понемногу прогревается, пока не достигнет достаточной температуры для свечения. При этом создается впечатление, что вся проблема в самом выключателе, а точнее его контактами.
По этой причине осуществляется сильное надавливание на его клавишу.
Выбирая стартер под определенный тип ламп, требуется в первую очередь обращать внимание на следующие показатели:
- Ток зажигания.
- Напряжение.
- Уровень мощности.
- Тип применяемого конденсатора.
Что касается тока зажигания, он должен быть выше рабочего напряжение лампы, но не ниже напряжения в сети питания. Только при соблюдении таких условий освещение будет работать корректно.
Базисное напряжение может составлять 127 или 220В. При включении в одноламповую схему применяется устройство на 220В. Для двухламповых систем используются стартеры на 127В.
Одним из самых важных критериев выбора стартера является уровень его мощности. Он измеряется в ваттах (Вт) и прописывается на боковой части корпуса стартера. В отдельных случаях мощность может изображаться на торцевой части стартера выдавленной в пластике. Подавляющее большинство представленных в продаже пускателей производятся с мощностью 60, 90 и 120 Вт. Также бывают стартеры для ламп с диапазоном мощности 4-22 Вт, 4-65 Вт и так далее
В некоторых странах, в том числе и России, для обозначения параметров стартера применяется маркировка. На поверхность корпуса устройства наносится буквенно-цифровая надпись ХХ-С-ХХХ. Сначала идут две цифры, которые указывают на мощность устройства.
Потом указывается буква «С», обозначающая что применяемый прибор это стартер. Дело в том, что при незнании пускатель можно спутать с конденсатором или другими устройствами, поэтому присутствие в маркировке «С» позволяет избежать подобных ошибок.
Сразу после буквы идет трехзначное число, которое указывает на напряжение, применяемое для работы. Это может быть 127 или 220В.
Многие производители, поставляющие свою продукцию на рынки всего мира, применяют свою собственную фирменную маркировку. В этом случае для удобства потребителей помимо собственного буквенно-цифрового обозначения применяется и стандартная расшифровка с указанием параметров мощности и напряжения. Далеко не все бренды указывают на корпусе устройства для скольких лампочек оно может поменяться. При отсутствии нужной информации ее нужно искать в инструкции.
Процесс замены пускателя
Рекомендуется менять стартеры для ламп вместе с самими лампами. В этом случае новые устройства не выйдут из строя в неподходящий момент, из-за износа старых элементов в схеме подключения.
Замену нужно осуществлять не только при полном перегорании лампы, но и в случае:
- Мерцания.
- Длительной задержки при включении.
- Сильного шума при работе.
- Существенного падения яркости.
- Самовольного отключения на продолжительный срок с последующим включением.
В случае с люминесцентными лампами в формате цоколя Е14 и Е27 прибор просто выкручивается, а на его место ставится новая лампочка. Длинные лампы потолочного типа меняются по другой схеме.
Колба лампочки поворачивается по своей осина на 45 градусов в направлении часовой стрелки. В результате ее электроды сдвигаются до выходного шлица. После этого лампа вытягивается. Стартер скрыт за отражающей крышкой светильника, поэтому ее нужно также демонтировать. Она может крепиться защелками или винтами. После извлечения крышки можно увидеть закрепленный в посадочном гнезде стартер.
Он просто поворачивается против часовой стрелки до характерного щелчка и вытягивается как вилка из розетки. На его место ставится новый стартер.
Похожие темы:
Источник: https://electrosam.ru/glavnaja/jelektroobustrojstvo/osveshhenie/startery-dlia-lamp/
Стартер для люминесцентных ламп: конструкция и принцип работы
Газоразрядные лампы давно вошли в повседневную жизнь. Они применяются для освещения жилых и производственных помещений и дают устойчивое освещение. Оно достаточно стабильно, когда нет никакой деградации элементов в схеме.
https://www.youtube.com/watch?v=P_mG0Ur2Rcc\u0026list=PLpNo7TB6r8A2it_Zpsq84s1DkXW1buhEW
В типичную схему входят осветительный прибор, катушка индуктивности и устройство запуска. Дроссель – обычная катушка индуктивности, также участвует в запуске. Но основное назначение – защита. Катушка ограничивает напряжение при скачке. Она – самый долговечный элемент схемы.
Стартер нужен только для пуска схемы на газоразрядных лампах. Далее он не принимает участия в работе светильника.
Люминесцентная лампа (Она же газоразрядная или дневного света) является герметичной колбой. В ней расположены с разных сторон электроды. Внутренняя ее часть покрыта люминофором – веществом, которое светится при эмиссии электронов. Трубка содержит пары ртути.
Стандарт дает светильнику 10 секунд на включение с момента подачи напряжения.
Устройство стартера для лл (люминесцентной лампы)
Пусковое устройство – необходимый элемент схемы освещения на этом типе источника света. Это второй по важности элемент осветителя.
Классический стартер – вещь чувствительная к условиям эксплуатации, это самый недолговечный компонент системы. При его выходе из строя, осветительная система не может быть запущена.
Схема подключения стартера к лампам дневного света
При рассмотрении схемы становятся понятны функции, выполняемые стартером.
- Включается в момент подачи напряжения питания,
- В момент старта прогреваются катоды, так как без их прогрева эмиссия электронов не возможна.
- Размыкает цепь после прогрева.
Схема биметаллического стартера всегда одна и та же. Существуют различные варианты исполнения.
Внешний вид стартера
Корпус зачастую изготавлен из пластика, контакты размещаются на пластине из текстолита (может использоваться и другой диэлектрический материал). Некоторые изготовители снабжают стартеры прозрачным смотровым окошком. Стартеры времен СССР имели корпуса из алюминия. Внутри всего два элемента: колба с биметаллическими контактами и конденсатор. Они включены параллельно.
Конденсатор стартера требуется для сглаживания высоких токов, гасит дуговой разряд между электродами, также необходим для размыкания электродов. Конденсатор снижает износ стартера. Если конденсатора нет, то электроды могут спаяться в момент дугового разряда между ними. Как долго после будет работать схема – непредсказуемо.
Дроссель (катушка индуктивности) необходим для создания импульса.
В колбе находятся два электрода, сама она заполнена инертным газом. Обычно применяют неон, реже – водородно-гелиевая смесь. Электроды биметаллические, подвижные.
Разработаны две конструкци: либо два подвижных контакта (симметричный), либо один (несимметричный). Первый более распространен. Он дешевле при производстве. Пускатели старого образца стабильно работали при разбросе питающего напряжения в пределах 20 процентов.
При большем отклонении от номинала работа не гарантировалась. Новые такой проблемы не имеют.
Схема подключения
Мощность источника света должна коррелировать с параметрами остальных компонентов. Если они не совпадают, то возможно либо, что схема вообще не запуститься, либо при запуске запуска электроды разрушатся из-за перегрева.
Для подключения двух ламп не требуется дубляж схемы. Целесообразно сократить количество элементов. В этом случае высвобождается один из дросселей.
На второй схеме дополнительный газоразрядные лампы соединены последовательно, а стартеры включены в параллель. В остальном схемы идентичны. Различие будет в номинале дросселя. Он должен быть рассчитан на суммарную мощность ламп. Стартер должен соответствовать мощности лампы.
Обычно, в схеме с двумя лампами, используют одинаковые мощности. Конденсатор желателен в параллели источнику переменного тока. Он предназначен для улучшения параметров питания. При мощностях ламп порядка 40 Ватт, обычно достаточно емкости от 2 до 10 мкФ.
Напряжение конденсатора выбирается не ниже двукратного напряжения питания.
Виды стартеров, их основные параметры и маркировки
Сейчас встречается новый вид стартера – электронный. Это уже новинка. Конструктивно они выглядят точно также и полностью совместимы с «классикой». Можно заменить даже не задумываясь. Внутри вместо конденсатора и герметичных биметаллических пластин – электронная схема. Она выполняет аналогичные действия по запуску газоразрядного лампы. Изменять схему не потребуется. Из недостатков можно назвать только цену, она будет раз в пять выше, чем на «классику».
Конструкция стартера
Его преимущества:
- Срок службы много больше.
- При старении компонентов стартер не сработает, балластное устройство не перегреется.
- Более широкий температурный диапазон.
- Встроенная защита от перегрузки по току.
- Исключаются полностью электромагнитные помехи при старте осветителя.
- Фиксированного время прогрева электродов люминесцентной лампы, следовательно, повышается срок службы.
- Лампа включается сразу без мерцания.
Сейчас есть и полностью готовые инженерные решения. Это так называемые ЭПРА – электронные пускорегулирующие аппараты.
ЭПРА
Этот вид представляет собой металлический корпус, в котором размещена электронная схема, дополнительные элементы не потребуются. На вход приходит напряжение питания, выходы предназначены для подключения к электродам.
https://www.youtube.com/watch?v=PtqdTQRKmYs\u0026list=PLpNo7TB6r8A2it_Zpsq84s1DkXW1buhEW
При необходимости легко выбрать устройство на требуемое количество ламп. Монтаж и схема существенно упрощаются. Применение ЭПРА существенно продлевает срок эксплуатации благодаря «теплому запуску». Отсутствие подвижных биметаллических контактов обеспечивает бесшумность старта. Свечение ламп будет ровным. ЭПРА обеспечивают стабилизацию параметров питания. Соответственно параметры электронного пускорегулирующего аппарата и ламп должны совпадать.
Такое решение сочетает достоинства электронных стартеров и простоту схемы подключения. Это полностью готовое решение. Одно устройство может применяют для нескольких ламп.
Из минусов – цена. Электронные компоненты дороже чем совокупная цена пускателя, конденсатора и дросселя. Что удобно, сама схема подключения как правило разрисована на самом устройстве, либо в инструкции. Также схемы всегда есть на сайтах заводов-изготовителей.
Маркировка однозначно идентифицирует стартер и прописана в ГОСТ Р МЭК 60155-99 «Стартеры тлеющего разряда для люминесцентных ламп».
Маркировка стартеров
Внешне стартера для ламп дневного света выглядят так:
Cтартер ST
Стартер S2
Стартер S10
Не горит светильник, проверка исправности стартера
Так как все имеет конечный срок службы, то бывает, что светильник не загорается. Тогда возникает вопрос «Кто виноват?». Точно уже не дроссель, межвитковые замыкания – это единичные случаи. Лампа или стартер?
Обычно ремонт производится на модульном уровне. Производится замена на заведомо исправный элемент. Ремонт на уровне компонентов – нецелесообразен.
При отсутствии компонентов придется выявить неисправность. Желательно просмотреть всю проводку светильника, так как если он не работает, то не обязательно виновник стартер или сам осветительный прибор. Не исключен вариант и плохого контакте, например в колодках или разъемах.
Если Вы решились на самостоятельный ремонт, то обязательно соблюдайте правила техники безопасности! Осветители используют высокое напряжение в своей работе. Имеется риск получения электротравмы! Запрещается прикасаться к токоведущим частям схемы под напряжением.
Источник: https://vamfaza.ru/starter/
Стартер для люминесцентных ламп: применение
> Лампы электрические > Стартер для люминесцентных ламп: применение
Стартер – основной элемент люминесцентных ламп, является частью электромагнитной пускорегулирующей аппаратуры. Его назначение – пуск механизма, т.е. зажигание газа в газоразрядной колбе. Устройство замыкает и размыкает электрическую цепь.
Внешний вид стартера для люминесцентных ламп
Дроссель выполняет функцию трансформатора и стабилизатора – ограничивает ток нитей лампы до требуемого значения, защищает оборудование от перепада температур, скачков напряжения и перегрузки.
Дроссель служит для защиты оборудования от скачков напряжения и перегрузки
Устройство и принцип работы
Деталь представляет собой небольшую стеклянную колбу тлеющего разряда, помещенную в металлическую или пластиковую емкость. Колба заполнена благородным газом, как правило, неоном или гелием, и включает в себя два электрода.
Стеклянная колба, заполненная гелием или неоном, с двумя электродами
Изготовляют конструкции двух видов: симметричные и несимметричные. В симметричных – оба электрода подвижны, в несимметричных – только один. Первый тип применяется чаще из-за большей практичности.
В колбе происходит предварительный прогрев ртути и перевод ее в газообразное состояние. Затухающий заряд, вследствие подачи напряжения на разомкнутые электроды, приводит к зажиганию устройства. Т.е. создается мощный импульс. Электроды после замыкания гасят тлеющий заряд. Цепь, которая возникает впоследствии, увеличивает температуру катодов и дросселя. После падения напряжения электроды не могут замыкать цепь, тем самым поддерживая лампочку в зажженном состоянии.
Напряжение стартера выбирается выше рабочего люминесцентной лампы и ниже напряжения сети. Т.к. газоразрядные лампочки имеют отрицательное сопротивление, ток после пуска становится намного выше нормы. Для чего и необходимо устройство, которое может ограничить и стабилизировать этот ток до требуемого рабочего значения.
Дроссель – катушка в металлической оплетке. Задача детали заключается в поддержке лампы в рабочем состоянии. Элемент накапливает и преобразовывает электрическую энергию.
После успешного запуска прибора в цепи течет ток, соответствующий номинальному току лампочки. Это условие гарантирует правильное горение лампы. Зажигание зависит от качества прогрева катодов и силы тока. При недостаточных значениях этих параметров, когда цепь размыкается при низкой величине тока, лампочка не включится. Процесс в этом случае становится неисправным циклическим.
Сборка люминесцентной лампы
Виды стартеров и дросселей
Схема включения люминесцентных ламп
Различают стартеры нескольких видов:
- Тепловые. Для них характерно увеличенное время пуска, что повышает стабильность работы газоразрядных лампочек. Достаточно сложное устройство, потребление дополнительной энергии на собственные нужды усложняет применение этого вида для эксплуатации в частных домах.
- Тлеющего ряда. Содержит биметаллические электроды. Имеют упрощенную схему и малое время зажигания.
- Полупроводниковые. Возникновение импульса в колбе происходит по принципу ключа – нагрева и размыкания цепи.
Разновидности дросселей:
- Электронные. Используют простую схему подключения. При этом отсутствует мерцание и пульсирование при включении. Характеризуются низким шумом при работе. Достаточно дорогостоящая продукция. Целесообразно применять лишь в комнатах с частым включением приборов.
- Электромагнитные. Для работы таких дросселей используют последовательное подключение с лампочкой, т.к. невозможно произвести холодный запуск. Главным недостатком является длительное мерцание во время включения.
Конденсатор в работе устройства
Конденсатор обеспечивает стабильность работы устройства. Главное назначение – борьба с радиопомехами, возникающими при замыкании цепи (контакте электродов). Также необходим он для стабилизации импульсов тлеющих зарядов.
Для стандартных лампочек применяются установки емкостью до 0,1 микрофарад. При отсутствии в схеме подключения этого элемента, напряжение в цепи будет непрерывно возрастать до критических значений. Конденсатор, включенный параллельно в цепь с электродами, исключает залипание электродов, которое может возникнуть во время образования электронной дуги, т.е. гасит ее.
Конденсатор люминесцентной лампочки
Выбор и производители
Утилизация люминесцентных ламп
При выборе необходимо руководствоваться следующими факторами:
- тип запуска лампочки;
- производитель;
- номинальные характеристики.
Существует большое количество производителей, выпускающих качественное оборудование. Среди них:
Источник: https://elquanta.ru/lampa/starter-lyuminescentnykh-lamp.html
Как подобрать стартер для лампы дневного света – Как подобрать стартер для люминесцентных ламп
- Как выбрать стартер для люминесцентных ламп: как работает, устройство, маркировка
- Стартеры для ламп. Устройство и работа. Замена и как выбрать
-
-
- Как устроены и работают стартеры для ламп
- Цель стартера заключается в подогреве лампы, поскольку в противном случае она просто не зажжется при подаче напряжения. Подобный эффект можно наблюдать пытаясь включить низкокачественную люминесцентную лампочку на морозе.
Если в тепле она работает безотказно, то в холоде не светит.
-
- Срок службы стартера и признаки его скорого выхода из строя
-
- Фактический ресурс стартера позволяет осуществлять не менее 6000 включений. Это довольно много, ведь даже пользуясь светом дважды в день, ресурс израсходуется только через 8 лет. Конечно, свет может включаться и отключаться гораздо чаще, поэтому стартеры для ламп на практике служат намного меньше.
- Одним из самых важных критериев выбора стартера является уровень его мощности. Он измеряется в ваттах (Вт) и прописывается на боковой части корпуса стартера. В отдельных случаях мощность может изображаться на торцевой части стартера выдавленной в пластике. Подавляющее большинство представленных в продаже пускателей производятся с мощностью 60, 90 и 120 Вт. Также бывают стартеры для ламп с диапазоном мощности 4-22 Вт, 4-65 Вт и так далее.
-
-
- Стартеры для ламп дневного света
- Стартер для люминесцентных ламп.
Как проверить стартер люминесцентной лампы
- Лампы дневного света: устройство, принцип работы, стартеры
- Как выбрать стартер для люминесцентных ламп: как работает, устройство, маркировка
- устройство, принцип работы и схемы подключения ламп дневного света
Стартер для люминесцентных ламп входит в комплектацию электромагнитного пускорегулятора (ЭМПРА) и предназначен для зажигания ртутной лампочки.
Каждая модель, выпущенная определенным разработчиком, обладает различными техническими характеристиками, однако используется для светотехники, питающейся исключительно от сети переменного тока, с предельной частотой, не превышающей 65 Гц.
Предлагаем разобраться, как устроен стартер для люминесцентных ламп, какова его роль в осветительном приборе. Кроме того, мы обозначим особенности разных пусковых приборов и расскажем, как выбрать нужный механизм.
статьи:
Электронный балласт для люминесцентных ламп
Источники освещения, называемые люминесцентными, в отличие от снабженных нитью накала аналогов, для работы нуждаются в пусковых устройствах, называемых балластом.
Что представляет собой балласт
Балласт для ЛДС (ламп дневного света) относится к категории пускорегулирующих устройств, которые используются в качестве ограничителя тока. Необходимость в них возникает, если электрической нагрузки недостаточно для эффективного ограничения потребляемого тока.
В качестве примера можно привести обычный источник света, относящийся к категории газоразрядных. Он представляет собой устройство, у которого отрицательное сопротивление.
В зависимости от реализации, балласт может представлять собой:
- обычное сопротивление ;
- емкость (обладающую реактивным сопротивлением), а также дроссель;
- аналоговые и цифровые схемы.
Рассмотрим варианты реализации, получившие наибольшее распространение.
Виды балласта
Наибольшее распространение получили электромагнитная и электронная реализация балласта. Расскажем подробно о каждой из них.
Электромагнитная реализация
В этом варианте работа основывается на индуктивном сопротивлении дросселя (он подключается последовательно лампе). Вторым необходимым элементом является стартер, регулирующий процесс, необходимый для «зажигания».
Этот элемент представляет собой компактных размеров лампу, относящуюся к категории газоразрядных. Внутри ее колбы имеются электроды, изготовленные из биметалла (допускается один из них делать биметаллическим). Подключают стартер в параллель к лампе.
Ниже показаны два варианта ПРА.
Индуктивно-емкостная (1) и индуктивная реализация (2)
Работа осуществляется по следующему принципу:
- при поступлении напряжения внутри лампы стартера производится разряд, что приводит к разогреву биметаллических электродов, в следствие чего они замыкаются;
- замыкание электродов стартера приводит к возрастанию рабочего тока в несколько раз, поскольку его ограничивает лишь внутренне сопротивление катушки дросселя;
- в следствие повышения уровня рабочего тока лампы, разогреваются ее электроды;
- стартер остывает, и его электроды из биметалла размыкаются;
- размыкание цепи стартером приводит к возникновению в катушке индуктивности импульса высокого напряжения, благодаря которому происходит разряд внутри колбы источника, что приводит к его «зажиганию».
После перехода осветительного прибора в штатный режим работы, напряжение на нем и стартере будет меньше сетевого примерно в половину, что недостаточно для срабатывания последнего. То есть он будет находиться в разомкнутом состоянии и не оказывать влияние на дальнейшую работу осветительного устройства.
Такой тип балласта отличается простотой реализацией и низкой стоимостью. Но не следует забывать о том, что данный вариант пускорегулирующих устройств обладает рядом недостатков, таких как:
- на «зажигание» уходит от одной до трех секунд, причем, в ходе эксплуатации это время будет неуклонно расти;
- источники с электромагнитным балластом мерцают в процессе работы, что вызывает усталость глаз и может стать причиной головной боли;
- расход электроэнергии у электромагнитных устройств значительно выше, чем у электронных аналогов;
- в процессе работы дросселем издается характерный шум.
Эти и другие недостатки электромагнитных пусковых устройств для ЛДС привели к тому, что в настоящее время такие ПРА практически не применяются. Им на смену пришли «цифровые» и аналоговые ЭПРА.
Электронная реализация
Балласт электронного типа, по своей сути, является преобразователем напряжения, при помощи которого осуществляется питание ЛДС. Изображение такого устройства показано на картинке.
Фото электронного устройства для подключения двух ЛДС
Существует множество вариантов реализации электронных балластов. Можно представить характерную для многих устройств этого типа общую блок- схему, которая за небольшими исключениями, используется во всех ЭПРА. Ее изображение представлено на рисунке.
Блок-схема типичной реализации ЭПРА
Многие производители добавляют в устройство блок коррекции коэффициента мощности, а также схему управления яркостью.
Существует два наиболее распространенных способа запуска источников, представляющих собой ЛДС, при помощи электронной реализации балласта:
- перед подачей на катоды ЛДС зажигающего потенциала их предварительно подвергают разогреванию. Благодаря высокой частоте поступающего напряжения, достигается две задачи: существенное увеличение КПД и устраняется мерцание. Заметим, что в зависимости от конструкции балласта, зажигание может быть моментальным или постепенным (то есть яркость источника будет постепенно нарастать);
- комбинированный метод, он характерен тем, что в процессе «зажигания» принимает участие колебательный контур, который должен войти в резонанс до того, как в колбе ЛДС произойдет разряд. Во время резонанса происходит повышение напряжения, поступающего на катоды, а рост тока обеспечивает их подогрев.
В большинстве случаев при комбинированном методе запуска схема реализована таким образом, что нить накала катода ЛДС (после последовательного подключения через емкость) представляет собой часть контура.
Когда происходит разряд в газовой среде люминесцентного источника, это приводит к изменению параметров колебательного контура. В результате он выходит из состояния резонанса. Соответственно, происходит падение напряжения до штатного режима.
Пример схемы такого устройства показан на рисунке.
Схема простой электронной реализации баланса для ЛДС мощностью 18Вт
В данной схеме автогенератор построен на двух транзисторах. На ЛДС поступает питание с обмотки 1-1 (которая является повышающей у трансформатора Тр). При этом такие элементы как емкость С4 и дроссель L1 являются последовательным колебательным контуром, с резонансной частотой, отличной от генерируемой автогенератором. Подобные схемы электронного балласта широко распространены во многих бюджетных настольных светильниках.
как сделать балласт для ламп
Говоря об электронном балласте, нельзя не упомянуть про компактные ЛДС, которые рассчитаны под стандартные патроны Е27 и Е14. В таких устройствах балласт встроен в общую конструкцию.
Установленный внутри источника электронный балласт
В качестве примера реализации ниже показана схема балласта энергосберегающей ЛДС Osram мощностью 21Вт.
Схема балласта для компактной ЛДС Osram
Необходимо заметить, что в связи с особенностями конструкции, к электронным элементам таких устройств предъявляются серьезные требования. В продукции неизвестных изготовителей, может использоваться более простая элементная база, что становится частой причиной выхода компактных ЛДС из строя.
Преимущества
Электронные устройства имеют много преимуществ перед электромагнитными ПРА, перечислим основные из них:
- электронные пускорегулирующие устройства не вызывают мерцание ЛДС при ее работе и не создают постороннего шума;
- схема на электронных элементах потребляет меньше энергии, легче весит и более компактна;
- возможность реализации схемы, производящей «горячий старт», в этом случае происходит предварительный нагрев катодов ЛДС. Благодаря такому режиму включения срок службы источника значительно продлевается;
- электронное пускорегулирующее устройство не нуждается в стартере, поскольку оно само отвечает за формирование необходимого для старта и работы уровней напряжения.
Источник: https://www.asutpp.ru/elektronnyj-ballast-dlya-lyuminescentnyx-lamp.html