В чем измеряется яркость света

Калькулятор люмены в канделы и канделы в люмены

В чем измеряется яркость света

См. также: Оценка максимума эффективности белого света

Лю́мен (обозначение: лм, lm) — единица измерения светового потока в СИ.

Количество люмен указывает, сколько света испускает лампа во всех направлениях. Чем больше число люмен, тем больше света.

Один люмен равен световому потоку, испускаемому точечным изотропным источником, c силой света, равной одной канделе, в телесный угол величиной в один стерадиан (1 лм = 1 кд × ср). Полный световой поток, создаваемый изотропным источником, с силой света одна кандела, равен 4π люменам.

Канде́ла (обозначение: кд, cd) — единица измерения силы света в СИ (от латинского candela, свеча).

Количество кандел указывает, сколько света испускает лампа в одном направлении, в котором она светит наиболее интенсивно.

Одна кандела — сила света в данном направлении от источника монохроматического излучения с частотой 540*1012 Гц, (555 нм, зеленый цвет) имеющего интенсивность излучения в этом направлении равную 1 / 683 Вт в телесном угле равном одному стерадиану.

Калькулятор для перевода люмен в канделы

Пересчет ведется по формуле:
Fv=I*2π(1-cos(α)), где
Fv — световой поток
Iv — сила света α — угол половинной яркости

Для расчета введите угол и силу света (световой поток). Учтите, результаты расчета зависят от оптических параметров светодиода и дают ориентировочный результат!

Световой поток типовых источников света

Приведены сравнительные параметры некоторых источников света, значения приблизительные, только для сравнительной оценки.

Тип источника света Световой поток (люмен) Сила света (кандел) лм/ватт
Лампа накаливания 40 Вт 415 35 10
Лампа накаливания 100 Вт 1550 1300 15
Люминесцентная лампа 40 Вт 2500 2200 60
Газоразрядная лампа 35 Вт (ксенон с учетом оптики фары) 3000 15000 90
Светодиод Cree XLamp XP-L 6 Вт 1226 550 200

Мощность излучения, взаимосвязь энергии света (Ватты) и светового потока (люмен)

Важным параметром для оценки энергоэффективности светодиодного излучателя считается соотношение между излучаемой мощностью и мощностью, выделяемой в виде тепла.

Излучаемый светодиодом свет, как известно, обладает определенной энергией и энергия света зависит от длины волны. Однако сила света не пропорциональна энергии светового излучения, а зависит от чувствительности человеческого глаза. Иначе говоря, сила света — это мощность светового излучения, которое доступно для восприятия человеческим глазом.

Чтобы пересчитать излучаемую энергию (Ватты) в световой поток (люмены), нужно знать длину волны излучения и кривую чувствительности человеческого глаза. Нетрудно догадаться, что для монохромного излучения эта задача решается легко, а для светодиода белого цвета, необходимо еще знать спектр его излучения и выполнить довольно сложное интегрирование.

Цвет излучения Формула пересчета светового потока в энергию излучения Опт. мощность при Fv = 100 люмен, Вт Сила света при P = 1 Вт, лм
зеленый 555 нм Р = Fv/683 Вт/лм 0.15 683
красный 650 нм Р= Fv/68,3 Вт/лм 1.46 68.3
красный 625 нм Р= Fv/222 Вт/лм 0.45 222
синий 465 нм Р= Fv/68,3 Вт/лм 1.46 68.3
белый Р= Fv/243 Вт/лм 0.41 243

Можно оценить, что белый светодиод мощностью 1 Вт с эффективностью 100 лм/Вт излучает в виде света 0,4 Вт и 0,6 Вт рассеивает в виде тепла, а лампа накаливания из потребляемых 100 Вт излучает в видимой области спектра только 6 Вт (0,06 Вт на 1 Вт).

Энергия, потребляемая источником света от сети питания, не полностью преобразуется в излучение. Особенно это актуально для светодиодных ламп.

Кроме потерь энергии в самом светодиоде, мощность теряется в преобразователе питания, часть света задерживается оптикой — отражателями, рассеивателями, линзами.

При использовании светодиода с эффективностью 100 lm/Вт, эффективность лампы редко достигает 80 lm/Вт, а для наиболее распространённых изделий бывает 60-70 lm/Вт. В итоге, современные лампы массового производства примерно в 10 раз эффективнее лампы накаливания.

Источник: https://led-displays.ru/calc.html

Основы измерения оптического излучения | Система точных измерений AHLBORN ALMEMO®

В чем измеряется яркость света

 Оптическое излучение охватывает диапазон длин волн от 100 нм до 1 мм спектра электромагнитного излучения.Следует учитывать, что в отношении пределов спектрального диапазона, нет четкого разделения, которое обязательно только для определенных разделов прикладной оптики.Измерение оптического излучения, например, может производиться в радиометрии, фотометрии, фотобиологии или физиологии растений, с соответствующими данным разделам измерительными величинами.

Определения фотометрических и радиометрических измерительных величин

Фотометрия
Ограничена диапазоном оптического спектра (свет), видимого человеческим глазом. Измеряемые фотометрические величины: световой поток, яркость и сила света.

Основной функцией фотометрии является оценка восприятия яркости посредством функции спектральной световой чувствительности глаза — для фотопического (дневного) зрения или, в редких случаях, для скотопического (ночного) зрения (DIN 5031).

Детекторы излучения для измерения фотометрических величин, должны обеспечивать одну из характеристик спектральной чувствительности.

Световой поток
Мощность светового потока источника света (лампы, светодиода и т.п.).

Так как лампы обычно не испускают полностью параллельные световые лучи, измерение светового потока осуществляется с помощью измерительных геометрий (метод ≪интегрирующей сферы≫ или ≪сферы Ульбрихта≫), что позволяет точно определять световой поток, независимо от его геометрического распределения. В большинстве случаев, для измерения полного светового потока используются сферические фотометры Ульбрихта или гониометры.

Сила света
Часть светового потока, излучаемая в одном определенном направлении. Сила света является важной величиной для определения эффективности и качества светового оборудования. Измерение осуществляется детектором с ограниченной областью сектора обзора, который устанавливается на расстоянии, позволяющем рассматривать световой источник, как точечный источник света.

Яркость
Ощущение яркости, передаваемое освещенной или светящейся поверхностью глазу. Во многих случаях яркость обеспечивает значительно лучшую информацию относительно качества света, чем освещенность. Для измерения яркости используются измерительные головки (яркомеры) с определенным углом поля зрения.

Освещённость
Световой поток от одного или нескольких световых источников, падающий на определенную поверхность горизонтально или вертикально. В случае непараллельного падения светового потока к поверхности (что является типичным случаем в практической фотометрии), необходимо использование косинусного рассеивателя в качестве измерительной геометрии.

Радиометрия
Метрологическая оценка оптического излучения с использованием радиометрических величин: потока излучения, силы излучения, энергетической яркости и энергетической освещенности. Основной функцией радиометрии является исследование интенсивности облучения, независимо от длины волны. Это главное отличие между радиометрией и измерительными величинами, используемыми в фотометрии, фотобиологии, физиологии растений и т.д.

Сила излучения
Общая мощность, переносимая излучением.

Интенсивность излучения
Отношение силы излучения, испускаемая источником света в определённом направлении, внутри малого телесного угла, к этому телесному углу. Интенсивность излучения используется для измерения геометрического распределения мощности излучения.

Энергетическая яркость
Отношение силы излучения, испускаемого с бесконечно малой площадки источника и распространяющегося в бесконечно малом телесном угле, к площади проекции этой площадки на плоскость, перпендикулярную направлению распространения и величине телесного угла. Энергетическая яркость используется для анализа и оценки свойств апертурных излучателей. Стерадианные или телескопические адаптеры могут использоваться как геометрии измерения.

Интенсивность излучения
Отношение силы излучения, падающего на поверхность, к площади этого участка. Для измерения интенсивности излучения очень важно пространственное исследование падающего излучения (определение угла, который образует нормаль к поверхности с направлением на источник).

Сравнение фотометрических и радиометрических величин

Каждая фотометрическая величина соответствует радиометрической величине и содержит одни и те же взаимосвязи между ними. Величины можно разделить по их индексам: V (видимый) и E (энергетический) спектры.

Функция спектральной чувствительности человеческого глаза

Относительная спектральная чувствительность человеческого глаза определяется общим уровнем освещенности в момент наблюдения. Человеческий глаз реагирует на лучистую энергию, длина волны которой лежит в пределах приблизительно от 380 до 760 мкм. Эта реакция не остается постоянной.

При высоких уровнях освещенности максимум чувствительности, так же как и вся кривая относительной спектральной чувствительности глаза, сдвигается в желто-зеленую область. При низких уровнях освещенности положение кривой изменяется и тогда ее максимум приходится на сине-зеленую область спектра.

Глаз, адаптированный к свету, имеет функцию дневного (фотопического) зрения, а для глаз, адаптированный к темноте — ночного (скотопического) зрения. Подробная характеристика кривой спектральной чувствительности приводится в табличном формате, в стандарте DIN 5031.

Изменения спектральной чувствительности глаза происходят благодаря наличию в ретине двух типов светочувствительных элементов: палочек и колбочек. Колбочки работают главным образом при высоких уровнях освещенности, палочки — при низких уровнях освещенности.

Относительная спектральная световая эффективность монохроматического излучения для дневного/фотопического зрения (колбочки, > 10 кд/м2) описывается с помощью функции V(λ), которая является функцией, используемой в большинстве случаев. Световая эффективность для случая ночного/скотопического зрения (палочки, < 0.001 кд/м2) описывается с помощью функции V’(λ) и редко находит практическое использование.

Определение основных фотометрических коэффициентов

Методики метрологической оценки свойств отражения, передачи и поглощения электромагнитного излучения различными материалами, равно как и свойств рассеянного светового излучения объектов, основываются на рекомендациях, принятых на международном уровне.

Эти рекомендации, в основном, включены в CIE 130-1998 «Практические методы для измерения коэффициента отражения и коэффициента пропускания», DIN 5036 Часть 3 «Радиометрические и фотометрические характеристики материалов», DIN 67507 «Методы определения общего коэффициента пропускания света при остеклении», DIN 58186 «Определение рассеянного светового излучения оптических систем формирования изображений».

Зачем измерять оптическое излучение?

Большая часть человеческого чувственного восприятия представляет собой оптическую природу. Свет является единственной видимой частью электромагнитного спектра. Человеческий глаз различает различные длины световых волн, как цвета.

Характеристика спектральной чувствительности глаза, относительно различных цветов, зависит от длины волны.

Более того, на оптическое восприятие человека также влияет ультрафиолетовое излучение в диапазоне коротких волн и инфракрасное излучение в диапазоне длинных волн электромагнитного спектра.

Освещение:
Люди привыкли к дневному освещению. В пасмурный зимний день оно составляет, приблизительно, 5000 лк, а в солнечный летний день достигает 100000 лк. При искусственном освещении мы можем достичь только 1001000 лк. Однако, достаточный свет является существенным фактором для здоровья людей. Симптомы усталости, вызываемые недостаточным светом, обычно, влияют не на глаза, а на все тело.

Стандарт DIN 5035/2 содержит нормы освещенности для защиты здоровья на рабочих местах.

Эти параметры определены в нормативе ASR 7/3 и должны строго соблюдаться:

Офисы: офисные помещения 300 Люкс
рабочие места для письменных работ и черчения 750 Люкс
Фабрики: зрительные работы в производственном процессе 1000 Люкс
Гостиницы: комнаты отдыха, рецепция, касса 200 Люкс
Магазины: передняя сторона витрин 1500 – 2500 Люкс
Больницы: палаты больных, 100 – 150 Люкс
реанимационные отделения 500 Люкс
Школы: аудитории, гимнастические залы 300 Люкс

Суммарное (полное) излучение:
Суммарное излучение является измерительной величиной, которая особенно важна в практических исследованиях. Оно характеризует полное рассеяное и направленное солнечное излучение, которое попадает на поверхность земли. Спектральный диапазон охватывает длины волн от коротковолнового диапазона 300 нм (УФ-В) до диапазона длинных волн 5000 нм (ИК).

Ультрафиолетовое излучение A спектра (УФ-А излучение):
УФ-А излучение длинных волн (более 313 нм) достигает поверхности земли, почти не задерживаясь атмосферой, покрывает загаром кожу человека и укрепляет иммунную систему.

В соляриях биологический эффект УФ-А спектра используется в сочетании с другими спектральными диапазонами, чтобы вызвать непосредственную пигментацию кожного покрова (приобретение эффекта бронзового загара).

В больших дозах вызывает повреждение соединительных тканей и преждевременное старение кожи.

Ультрафиолетовое излучение В спектра (УФ-В излучение):
УФ-В излучение коротковолнового диапазона (менее 313 нм) может нанести необратимый вред здоровью человека. Все характеристики спектрального диапазона коротковолнового УФ излучения, оказывающие неблагоприятный эффект на кожу человека, описаны в рекомендации CIE.

Эта рекомендация содержится в DIN 5050 и рассматривается как нормативный документ. Популярной характеристикой солнечной активности является индекс ультрафиолета (UVI) передаваемый в эфир Германской Метеорологической Службой, для загорающих на пляже.

Результаты измерений УФ-В обеспечивают, прямо или в сравнении с другими спектральными диапазонами, важную информацию с медицинской или биологической точки зрения.

Для измерения давления в жидких и газообразных средах, в зависимости от задачи и характеристик среды измерения (вязкость, наличие примесей, макс. рабочее давление), широко применяются следующие типы датчиков

Читать материал

Что такое измерительная система ALMEMO®?

С момента своего создания система точных измерений ALMEMO® постоянно совершенствуется и включает в себя широкий спектр датчиков для измерения практически любых физических величин, измерительных приборов всевозможных типов от одноканальных трансмиттеров до систем сбора данных от более чем 1000 точек измерения.

Перейти в раздел

  • Выбор подходящего датчика температуры зависит от Вашей измерительной задачи. На выбор представлены термопары, резистивные датчики (Pt100 и NTC) и пирометры (инфракрасные датчики).Основы измерения температуры
  • Неудовлетворительное качество воздуха в закрытых помещениях с постоянным присутствием людей (например в офисах) может легко стать причиной усталости, упадка сил, снижения концентрации и даже привести к заболеваниямОсновы измерения концентрации газов в воздухе

Источник: https://almemo.ru/articles/basics-for-measuring-optical-radiation/

Что такое свет? С чем его “едят”?

В чем измеряется яркость света

Неудовлетворительное освещение в течение длительного времени может также привести к ухудшению зрения.

Различают три разновидности производственного освещения: естественное, искусственное и совмещенное.

  • естественное — освещение помещений светом неба (прямым или рассеянным), проникающим через световые проемы в наружных конструкциях зданий;
  • искусственное — освещение электрическими источниками света;
  • совмещенное — освещение, при котором недостаточное по нормам естественное освещение дополняется искусственным.

Видимое излучение (свет) – излучение, которое попадая на сетчатую оболочку глаза, может вызвать зрительное ощущение. Свет – часть электромагнитного излучения с длиной волны от 0,38 до 0,78 мкм.

Светотехнические величины, определяющие показатели производственного освещения, основаны на оценке ощущения их глазом человека. Различают количественные и качественные показатели освещения.

1.1. Количественные показатели

К количественным показателям относятся: световой поток, сила света, освещенность, яркость, коэффициент отражения.

Световой поток (Ф) – мощность светового потока излучения, оцениваемая по зрительному ощущению человеческим глазом. Размерность светового потока – люмен (лм).

Сила света (J) – пространственная плотность светового потока в заданном направлении, т.е. световой поток, отнесенный к телесному углу ω , в котором он излучается

, кандела (кд),
где ω – телесный угол в стерадианах (ср).

Освещенность (Е) – плотность светового потока на освещаемой им поверхности – световой поток, отнесенный к площади освещаемой поверхности S, измеряемой в м2, при условии его равномерного распределения по поверхности, когда свет источника падает на нее перпендикулярно

ЭТО ИНТЕРЕСНО:  Какой цоколь у лампы дневного света

Яркость (В) является световой величиной, непосредственно воспринимаемой глазом. Она определяется отношением силы света в данном направлении к площади проекции излучающей поверхности на плоскость, перпендикулярную к направлению излучения

Значения максимальных величин яркости на рабочей поверхности приведены в [4], табл.1, стр. 14.

Коэффициент отражения поверхности r характеризует ее способность отражать падающий на нее световой поток. Он определяется отношением отраженного светового потока к падающему

Значения коэффициента (r ) для поверхностей различного характера приведены в табл. 12., прил. 1.

1.2. Качественные показатели

К качественным показателям освещения относятся: фон, контраст объекта различения с фоном, показатель ослепленности, коэффициент пульсации освещенности, показатель дискомфорта.

Фон – поверхность, прилегающая непосредственно к объекту различения, на которой он рассматривается. Фон считается светлым, если коэффициент отражения P больше 0,4; средним при P = 0,20,4 и темным, если P меньше 0,2.

Контраст объекта различения с фоном К– фотометрически измеряемая разность яркости двух зон. Он определяется отношением абсолютной величины разности между яркостью объекта и фона к яркости фона:

Контраст считается большим при К более 0,5 (объект и фон резко отличаются по яркости), средним при К = 0,20,5 (заметно отличаются) и малым, если К менее 0,2 (мало отличаются).

Показатель ослепленности2 (Р) – критерий оценки слепящего действия осветительной установки, определяемый выражением

Р = (S – 1) 1000,

где S – коэффициент ослепленности, равный отношению пороговых разностей яркости при наличии и отсутствии слепящих источников в поле зрения.

Нормируемые значения коэффициента Р приведены в прил. 1, табл. 1.

Коэффициент пульсации освещенности (Кп) – критерий оценки относительной глубины колебаний освещенности в результате изменения во времени светового потока газоразрядных ламп при питании их переменным током, выражающийся формулой

где Емакс, Емин, и Еср – соответственно максимальное, минимальное и среднее значения освещенности за период ее колебания, лк.

Нормируемые значения Кп приведены в прил. 1, табл.1.

Показатель дискомфорта (М) – критерий оценки дискомфортной блесткости1, вызывающей неприятные ощущения при неравномерном распределении яркостей в поле зрения. Он определяет степень дополнительной напряженности зрительной работы, вызванной наличием резкой разницы яркостей в освещенном помещении.

Этот показатель для производственных помещений не нормируется, его нормируемые величины для жилых, общественных и административно-бытовых помещений приведены в [4], табл. 2, стр. 7–8. Там же на стр. 25 имеется формула для определения показателя дискомфорта М.

Из перечисленных светотехнических показателей непосредственно измеряются следующие (в скобках указываются названия приборов):

– освещенность (люксметры);
– яркость (фотометры субъективные и объективные).

С помощью указанных приборов можно определить величины коэффициентов отражения P и пульсации Кп контраста объекта различения с фоном К и показателя ослепленности Р.

Нормы освещенности При выборе типа светильников, их количества и мощности необходимо учитывать нормы освещенности. В нормах даются три значения степени освещённости: малая, нормальная и высокая. Обычно используется нормальная степень , но в некоторых случаях целесообразен выбор малой или высокой степени освещенности. Степень защищенности электрооборудования Степень защищённости обозначается сочетанием IP ХХ. Первая цифра — степень защиты от пыли и мех. воздействий.

Вторая — степень защиты от влаги. В качестве уличных светильников на высоте до 0,5 м можно употреблять светильники класса защиты от IP 44. Для установки на высоких мачтах (выше досягаемости человека) минимальный класс защиты IP 23. Монтируемые на уровне грунта светильники должны быть водонепроницаемыми ( IP 67), а погружаемые в воду (например, для подсветки водоема) светильники должны иметь класс защиты IP 68 ( защита от попадания воды под давлением).

Класс защиты 0 класс — нет полной двойной и усиленной изоляции, отсутствует возможность заземления. I класс — имеется полная изоляция, и имеется возможность заземления. II класс — оснащен двойной и усиленной изоляцией, без возможности заземления. III класс — светильник, предназначенный для подключения только в сеть защитного напряжения. Единицы измерения Вот некоторые физические величины, характеризующие источник света. Они могут использоваться при выборе светильников, их расположения.

Сила света (I). Единица измерения — кандела (cd).

Освещенность (Е) — световой поток, приходящийся на единицу освещяемой поверхности. Единица измерения — люкс (lx). 1 lx = 1cd*sr/m2, где sr — телесный угол (в стерадианах). Яркость (L) характеризует свечение источника света в данном направлении.

Яркость элемента светящейся поверхности в каком-либо направлении определяется соотношением силы света этого элемента к площади проекции элемента на плоскость, перпендикулярную данному направлению.

Цветовая температура (Т). Измеряется в градусах Кельвина (К). Характеризует спектральный состав излучения.

Освещенность: Лунный свет 0,25 lx Солнце сквозь облака 10 000 lx Солнечный свет 100 000 lx Освещение в офисе 300-2000 lx Дорожное освещение 10-50 lx

Яркость: Люминесцентная лампа 0,8 cd/м2 Хорошо освещённая улица 2 cd/м2 Полуденное солнце 150 000 cd/м2 Cила света свечи — около 1 cd, а свет маяка может достигать силы 2 000 000 cd.

Измерение параметров освещения . Основным параметром, используемым при оценке освещения, является освещенность е, измеряемая в лк.

Для измерения освещенности используются люксметры различных типов.

Примером аналогового люксметра может служить прибор Ю – 116, принцип работы которого основан на явлении фотоэлектрического эффекта.

Под влиянием светового потока, падающего на селеновый фотоэлемент, в замкнутой цепи возникает ток, величина которого пропорциональна световому потоку. Прибор проградуирован в люксах.

Существенным преимуществом селенового фотоэлемента по сравнению с другими типами фотоэлементов является то, что его кривая спектральной чувствительности наиболее близко совпадает с кривой относительной видности человеческого глаза.

При измерении освещенности фотоэлемент устанавливается в рабочей плоскости (горизонтальной или вертикальной) на некотором расстоянии от оператора, проводящего измерения, чтобы тень не падала на фотоэлемент.

В настоящее время нашли широкое применение аналого – цифровые приборы, позволяющие измерять не только освещенность, но и другие параметры, характеризующие освещение, например, коэффициент пульсации или яркость.

Примером аналого – цифрового прибора может служить пульсметр-люксметр «Аргус-07», который применяется для измерения освещенности и коэффициента пульсации. Принцип прибора основан на преобразовании светового потока, создаваемого протяженными объектами, в непрерывный электрический сигнал, пропорциональный освещенности, который затем преобразуется аналог – цифровым преобразователем в цифровой код, индицируемый на цифровом табло индикаторного блока.

В измерительной головке установлен первичный преобразователь излучения – полупроводниковый кремниевый фотодиод с системой светофильтров, формирующих спектральную чувствительность, соответствующую кривой видности. Показания коэффициента пульсации индицируются в процентах, при этом прибор определяет максимальное, минимальное и среднее значение освещенности пульсирующего излучения и рассчитывает значение коэффициента пульсации по приведенной выше формуле.

Источник: https://www.ledsvet.ru/articles/chto-takoe-svet-s-chem-ego-edyat-/

Как измеряются световые характеристики фонарей Petzl? | Статьи

16 апреля 2019

Обращаем ваше внимание на то, что способ измерения характеристик фонарей, выпущенных в 2019 году, изменился. Читать новую статью:

Характеристики фонарей в соответствии с протоколом ANSI/PLATO FL1

Яркость

На самом деле «яркость» — это не совсем правильное название. Характеристика, которую обычно подразумевают под яркостью фонаря, называется световой поток. Именно значение светового потока указывается на упаковке всех фонарей Petzl.

Световой поток — это общее количество света, излучаемого в каждом направлении от источника света. Данный показатель выражается в люменах (лм) и измеряется в лаборатории с помощью специального сферического фотометра. При измерениях поток излучения от источника света оценивается в соответствии со спектральной чувствительностью человеческого глаза.

Яркость – это одна из производных светового потока. Но для простоты при описании фонарей показатель, измеряемый в люменах, часто называют яркостью. Это не очень научно, но более понятно для большинства пользователей.

Чем выше значение светового потока, тем больше света излучает источник, соответственно тем лучше видимость. Световой поток в лаборатории Petzl измеряется при использовании фонарей с новыми элементами питания.

Время работы

Время работы является ключевым фактором при выборе фонаря, поскольку оно определяет эффективную продолжительность использования. Измерение времени работы фонаря зависит от технологии освещения, которая в нем использована.

Для фонарей с технологией STANDARD LIGHTING (яркость падает постепенно):

Измерение производится от момента включения фонаря до момента, пока яркость не упадет на столько, что пользователю не комфортно будет передвигаться при таком освещении. Для этого, казалось бы, очень абстрактного показателя, фирма Petzl выбрала крайне четкое определение. Освещенность 0,25 люкс на дистанции 2 метра. Это соответствует свету от полной луны в ночное время.

Для режимов освещения CONSTANT LIGHTING (постоянный световой поток)

и REACTIVE LIGHTING («умное» освещение):

Измерение проводится от момента включения до момента перехода в резервный режим.

Дальность

Дальность освещения напрямую зависит от светового потока, но также большое значение имеет степень рассеивания.

Например, фонарь со световым потоком 100 люмен и широким рассеянным светом будет иметь дальность освещения 40 метров. Другой фонарь, яркостью 100 люмен со фокусированным светом, будет светить на 100 метров.

Измерения дальности также проводятся в сравнении со светом полной луны, то есть освещенностью в 0,25 люкс. Измерения проводятся с использованием новых батареек.

Люкс – это отношение светового потока к площади, люмен/м2

Все фонари Petzl тестируются при температуре 22° C (погрешность измерения температуры +/- 3° C).

Реальные показатели светового потока, дальности и особенно времени работы могут сильно меняться в зависимости от условий использования фонарей (температуры, качества и характеристик элементов питания и т.п.).

Источник: https://petzl.ru/article/petzl-lighting-performance

Основы оптики

Энергетические величины являются исчерпывающими с энергетической точки зрения, но они не позволяют количественно оценить визуальное восприятие излучения.

Восприятие глазом излучения видимого диапазона определяется не только мощностью воспринимаемого излучения, но также зависит от его спектрального состава (так как глаз – селективный приемник излучения).

Световые характеристики описывают, как энергию излучения воспринимает зрительная система глаза с учетом спектрального состава света.

2.2.1. Световые величины

Световые величины обозначаются аналогично энергетическим величинам, но без индекса.

– световой поток – сила света – освещенность – светимость – яркость

У световых величин нет никакой спектральной плотности, так как глаз не может провести спектральный анализ.

Сила света:

Если в энергетических величинах исходная единица – это поток, то в световых величинах исходная единица – это сила света (так сложилось исторически). Сила света определяется аналогично энергетической силе света:

,
        (2.2.1)

– сила излучения эталона (эталонный излучатель или черное тело) при температуре затвердевания платины () площадью .

Абсолютно черное тело – это тело, которое полностью поглощает падающую на него энергию. Модель абсолютно черного тела представляет собой полое тело, внутренняя поверхность которого выкрашена в черный цвет. Через небольшое отверстие поток излучения поступает внутрь тела, где в результате многократного отражения полностью поглощается (рис.2.2.1).

Рис.2.2.1. Абсолютно черное тело.

Поток излучения:

,       (2.2.2)

– это поток, который излучается источником с силой света в телесном угле :
.

Освещенность:

,       (2.2.3)

– освещенность такой поверхности, на каждый квадратный метр которой равномерно падает поток в .

Светимость:

За единицу светимости принимают светимость такой поверхности, которая излучает с световой поток, равный .

Яркость:

За единицу яркости принята яркость такой плоской поверхности, которая в перпендикулярном направлении излучает силу света с .

2.2.2. Связь световых и энергетических величин

Связь световых и энергетических величин связь устанавливается через зрительное восприятие, которое хорошо изучено экспериментально. Функция видности – это относительная спектральная кривая эффективности монохроматического излучения. Она показывает, как глаз воспринимает излучение различного спектрального состава.

– величина, обратно пропорциональная монохроматическим мощностям, дающим одинаковое зрительное ощущение, причем воздействие потока излучения с длиной волны условно принимается за единицу. Функция видности глаза максимальна в области желто-зеленого цвета (550–570 нм) и спадает до нуля для красных и фиолетовых лучей (рис.2.2.2).

2.2.2. Функция видности глаза.

Определить некую световую величину (поток, сила света, яркость, и т.д.), по спектральной плотности соответствующей ей энергетической величины можно по общей формуле:

        (2.2.4)

где – функция видности глаза, 680 – экспериментально установленный коэффициент (поток излучения мощностью с длиной волны соответствует светового потока).

Например, сила света:
      (2.2.5)
яркость:
      (2.2.6)

Другие единицы измерения световых величин:

сила света
яркость
освещенность

Сопоставление энергетических и световых единиц:

Энергетические Световые
Наименование и обозначение Единицы измерения Наименование и обозначение Единицы измерения
поток излучения световой поток
энергетическая сила света сила света
энергетическая освещенность освещенность
энергетическая светимость светимость
энергетическая яркость яркость

Световая экспозиция

Световая экспозиция – это величина энергии, приходящейся на единицу площади за некоторое время (освещенность, накопленная за время от до ):

,
        (2.2.7)

Если освещенность постоянна, то экспозиция определяется выражением:

      (2.2.8)

Блеск

Для протяженного источника характеристика, воспринимаемая глазом – яркость. Для точечного источника характеристика, воспринимаемая глазом – блеск (чем больше блеск, тем больше кажется яркость). Блеск – это величина, применяемая при визуальном наблюдении точечного источника света.

Блеск – это освещенность, создаваемая точечным источником в плоскости зрачка наблюдателя, .

Видимый блеск небесных тел оценивается в звездных величинах . Шкала звездных величин устанавливается следующим экспериментальным соотношением:

      (2.2.9)

Чем меньше звездная величина, тем больше блеск. Например:
– блеск, создаваемый звездой первой величины,
– блеск, создаваемый звездой второй величины.

Яркость некоторых источников, :
– поверхность солнца,
– поверхность луны,
– ясное небо,
– нить лампы накаливания,
– ясное безлунное ночное небо,
– наименьшая различимая глазом яркость.

Освещенность, :
– освещенность, создаваемая солнцем на поверхности Земли (летом, днем, при безоблачном небе),
– освещенность рабочего места,
– освещенность от полной луны,
– порог блеска (примерно 8-ая звездная величина).

Решение задач на определение световых величин рассматривается в практическом занятии «Энергетика световых волн», пункт «1.2. Расчет световых величин».

Источник: http://aco.ifmo.ru/el_books/basics_optics/glava-2/glava-2-2.html

Освещенность, пульсация и яркость

Пульсации освещённости и яркости

:

1. Пульсации освещенности и яркости. Формула расчета.

2. Влияние пульсаций света на здоровье человека.

3. Допустимые нормы на уровень пульсации освещенности и яркости.

4. Измерение пульсаций освещенности и яркости.

5. Пульсации ламп накаливания.

6. Пульсации люминесцентных (газоразрядных) ламп.

7. Пульсации светодиодных ламп и светильников.

8. Пульсация яркости мониторов.

9. Приборы для измерения коэффициента пульсации освещенности и яркости.

•••►   КУПИТЬ ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ ОСВЕЩЕННОСТИ — ЛЮКСМЕТРЫ   ◄•••

•••►   КУПИТЬ ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ ЯРКОСТИ — ЯРКОМЕРЫ    ◄••• 

•••►   КУПИТЬ ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ ПУЛЬСАЦИИ — ПУЛЬСМЕТРЫ   ◄•••

ЭТО ИНТЕРЕСНО:  Можно ли ездить с противотуманными фарами ночью

Что такое пульсации освещённости и яркости. Формула для расчёта пульсаций

Коэффициент пульсаций освещённости характеризует колебания во времени светового потока, падающего на единицу поверхности. Коэффициент пульсаций освещённости определяется отношением амплитуды колебаний освещённости к их среднему значению и вычисляются по формуле:

где Емакс – максимальное значение освещённости за период её колебания, Емин – минимальное значение освещённости за период её колебания, Еср – среднее значение освещённости за тот же период.

В случае, когда анализируются пульсации от источников света, питающихся от сети переменного тока, т.е. форма пульсаций близка к синусоидальной, можно использовать упрощённую формулу для расчёта пульсаций:

В формуле (2) в качестве среднего берется среднеарифметическое значение. При использовании для расчёта пульсаций формулы (2), коэффициент пульсаций, очевидно, никогда не может превысить значение 100%.

Если же при расчёте пульсаций в качестве среднего брать, например, среднеквадратичное значение, то, при наличии в измеряемом световом потоке коротких по времени, но больших по амплитуде пульсаций, рассчитанный по формуле (1) коэффициент пульсаций может значительно превысить 100%. Что, надо сказать, вполне допустимо.

В недавно принятом новом ГОСТ Р 54945-2012 «Здания и сооружения. Методы измерения коэффициента пульсации освещенности» приведена общая формула для расчета коэффициента пульсации освещенности:

Таким образом, расчёт пульсаций по формуле (2) допустим только для светового потока, колебания которого близки к гармоническим. При наличии в световом потоке значительной импульсной составляющей необходимо для расчёта коэффициента пульсаций применять формулу (3).

В общем случае, формулу (2) для расчета коэффициента пуьсации освещенности или яркости можно применять только при прямом подключении источника света к сети переменного тока или при использовании ЭМПРА.

При использовании ЭПРА, электронных драйверов, регуляторов мощности (диммеров), а также при измерении коэффициента пульсации яркости мониторов, для расчета коэффициента пульсации следует применять формулу (3).

В начало

Влияние пульсаций на здоровье человека. Частота пульсаций. Частотный спектр пульсаций

Широко распространено мнение, что человеческий глаз чувствует световые пульсации частота которых не превышает нескольких десятков Герц.

На этом допущении построено воспроизведение видеоизображений в кино и телевидении – там частота смены кадров составляет 25 Гц, 50Гц и более, что воспринимается глазом человека как целостное во времени, плавно изменяющееся изображение.

Дело в том, что мозг человека перестает успевать полноценно обрабатывать ту часть поступающей ему от органов зрения информации, которая изменяется с частотой выше нескольких десятков Герц.

Иными словами, если в воспринимаемой органами зрения человека информации присутствует пульсация освещённости или яркости, частотой ниже указанных, то она воздействует непосредственно на сетчатку глаза человека, затем поступает в зрительный тракт и уже через наружное коленчатое тело, зрительную радиацию, анализируется в первичной зрительной коре.

В результате, мы можем описать условия получения зрительной информации: яркость и контраст изображения, цвета и оттенки, есть ли пульсации яркости или освещённости.

Если же параметры изображения нас не устраивают, то мы пытаемся как-то приспособиться к их восприятию и, в конце концов, сознательно ограничиваем время визуального восприятия этой информации ввиду дискомфорта.

Однако медицинские исследования показали, что органы зрения и мозг человека продолжают воспринимать и реагировать на изменения воспринимаемой зрительной информации вплоть до частоты 300Гц. Такие изменения в воспринимаемой органами зрения информации оказывают уже невизуальное воздействие.

В этом случае, свет, попадающий в глаз, проделывает путь к супрахиазматическим клеткам и паравентрикулярным ядрам гипоталамуса, а также к шишковидной железе. И тогда свет управляет уже нашим гормональным фоном, который влияет на циркадные (суточные) ритмы, эмоциональную сферу, работоспособность и многие другие аспекты жизнедеятельности.

Многие, наверное, уже сталкивались с таким невизуальным воздействием пульсаций искусственного освещения в виде ощущения необъяснимого чувства дискомфорта, усталости или недомогания во, вроде бы, хорошо и ярко освещённых помещениях или при работе с компьютером.

Самое опасное в невизуальном воздействии света – это то, что мы не чувствуем напрямую его влияния на наш организм и не можем принять меры для уменьшения опасных последствий такого воздействия на наше здоровье.

Невизуальное воздействие света может приводить к расстройству биологических ритмов человека и к «циркадным стрессам», которые, в свою очередь, могут приводить к развитию таких заболеваний, как депрессии, бессонница, паталогии сердечно-сосудистой системы и рак.

По-видимому, невизуальное воздействие света на организм человека, заметно более глубокое, чем визуальное, хотя, , оно ещё очень мало изучено.

Для светового потока, пульсация которого превышает частоту 300Гц, какого-либо заметного воздействия на организм человека выявлено не было, ввиду того, что на такие быстрые изменения интенсивности светового потока перестает уже реагировать сетчатка глаза человека.

В начало

Нормативные акты, устанавливающие требования к уровню пульсаций искусственного освещения

В СНиП 23-05-95 «Естественное и искусственное освещение» указывается, что коэффициент пульсаций освещённости рабочей поверхности рабочего места не должны превышать 10% — 20% (в зависимости от степени напряжённости работы), при этом нормируются только те пульсации, частота которых ниже 300Гц.

В ГОСТ 17677-82 «Светильники. Общие технические условия» приведены требования к рабочей частоте пускорегулирующей аппаратуры (ПРА) светильников с люминесцентными лампами. Она должна быть не ниже 400Гц.

В СанПиН 2.2.2/2.4.1340-03 «Гигиенические требования к персональным электронно-вычислительным машинам и организации работы» указывается, что коэффициент пульсаций освещения при работе на ПЭВМ не должен превышать 5%.

Внимание!!!

Источник: https://ekosf.ru/stati/525-pulsacii

Гост 25024.4-85 индикаторы знакосинтезирующие. методы измерения яркости, силы света, неравномерности яркости и неравномерности силы света

пен oi *H»tl

ГОСУДАРСТВЕННЫЙ СТАНДАРТ

СОЮЗА ССР

ЗНАКОСИНТЕЗИРУЮЩИЕ

МЕТОДЫ ИЗМЕРЕНИЯ ЯРКОСТИ, СИЛЫ СВЕТА, НЕРАВНОМЕРНОСТИ ЯРКОСТИ И НЕРАВНОМЕРНОСТИ

СИЛЫ СВЕТА

ГОСТ 25024.4-85 (СТ СЭВ 3788-82)

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ

Москва

УДК 621.38.085.304:006.384 Группа Э29

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ИНДИКАТОРЫ ЗНАКОСИНТЕЗИРУЮЩИЕ Методы измерения яркости, силы света, неравномерности яркости и неравномерности силы света

ГОСТ

25024.4-85

(СТ СЭВ 3788—82)

Character displays. Methods measuring brightness, luminous intensity, irregularity of brightness and irregularity of luminous intensity

ОКП 636800

Взамен

ГОСТ 23596.1—79, ГОСТ 23596.2—79, ГОСТ 19834.1—74

Постановлением Государственного комитета СССР по стандартам от 24 мая 1985 г. № 1461 срок действия установлен

с 01.07.86

для газоразрядных индикаторов

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на активные знакосинтезирующие индикаторы (далее — индикаторы) и устанавливает следующие методы измерения яркости и силы света: метод, основанный на измерении освещенности, создаваемой излучением индикатора (элемента отображения); метод, основанный на измерении освещенности, создаваемой оптическим изображением индикатора (элемента отображения); метод, основанный на замещении индикатора (элемента отображения) образцовым, а также метод измерения неравномерности яркости и неравномерности силы света,

Метод измерения по освещенности от индикаторов и метод измерения по освещенности от оптического изображения индикатора применяют при проведении измерений повышенной точности.

Метод замещения — при проведении измерений с высокой производительностью.

Стандарт соответствует требованиям СТ СЭВ 3788—82 в части измерения яркости и силы света полупроводниковых ЗСИ (см. справочное приложение 1).

Издание официальное ★

Перепечатка воспрещена Издательство стандартов, 1985

Общие требования при измерении и требования безопасности— по ГОСТ 25024.0—83.

Термины и определения — по ГОСТ 25066—81.

1. ПРИНЦИП ИЗМЕРЕНИЯ И ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Принцип измерения параметров индикаторов основан на измерении светового потока, излучаемого индикатором в направлении его геометрической оси, фотоприемным устройством, скор-ригированным под кривую относительной спектральной световой эффективности монохроматического излучения для дневного зрения по ГОСТ 8.332—78.

1.2. Измерения проводят в условиях, соответствующих требованиям ГОСТ 20.57.406—81, при температуре окружающей среды (25±5)°С и других внешних воздействиях, указанных в стандартах или технических условиях (далее — ТУ) на индикаторы конкретных типов.

G—блок установления электрического режима; /7 У—подключающее устройство; Я—индикатор; ФПУ—фотоприемное устройство; Р—при

бор для измерения фототока; ОС—оптическая схема измерений, XI и Х2—контакты для подключения индикатора; ОО—оптическая

ось ФПУ и геометрическая ось индикатора (нормаль к информационному полю индикатора)

Черт. 1

1.3. Электрический режим индикатора должен соответствовать установленному в стандартах или ТУ на индикаторы конкретных типов.

1.4. Измерения параметров проводят на установке, электрическая структурная схема которой приведена на черт. 1.

1.4.1. Блок установления электрического режима G должен обеспечивать установление и поддержание электрических режимов индикатора с точностью, при которой погрешность не должна выходить за пределы, установленные ГОСТ 25024.0—83.

Нестабильность источника постоянного тока, питающего индикатор, не должна выходить за пределы ±1 %. Коэффициент пульсаций должен быть в пределах ±1 %.

1.4.2. Измерения при переменном и импульсном токах следует проводить с учетом быстродействия фотоприемного устройства ФПУ и инерционности индикатора. Погрешность измерения за счет влияния быстродействия ФПУ и инерционности не должна выходить за пределы ±1 %.

1.4.3. Подключающее устройство ПУ должно обеспечивать надежный электрический контакт индикатора с блоком установления электрического режима, а также однозначную фиксацию индикатора в пространстве относительно ФПУ.

Фиксацию индикатора в пространстве считают удовлетворительной, если при повторной установке индикатора в ПУ изменение результата измерения одного и того же элемента отображения (элементов отображения) индикатора не выходит за пределы ±2 %.

1.4.4. ФПУ должно удовлетворять следующим требованиям.

1.4.4Л. Относительная спектральная чувствительность ФПУ—

по ГОСТ 25024.0—83.

Погрешность корригирования не должна выходить за пределы:

±5 % —диапазон длин волн 440—680 нм;

±10% — диапазон длин волн 390—440 нм и 680—760 нм.

Методика проверки относи гельной спектральной чувствительности приемников излучения ФПУ на соответствие требованиям ГОСТ 25024.0—83 приведена в обязательном приложении 2.

Перечень рекомендуемых приемников излучения для ФПУ приведен в справочном приложении 3.

Если в ФПУ используют твердотельные фотоэлементы, то проверку их утомляемости проводят в соответствии со справочным приложением 4.

1.4.4.2. Допускается в ФПУ использовать приемники излучения, скорригированные только в диапазоне длин волн, соответствующем спектральному составу излучения индикатора с учетом разброса в ширине спектра излучения индикаторов, устанавливаемого ТУ на индикаторы конкретных типов. При этом погрешность корригирования не должна выходить за пределы, установленные п. 1.4.4.1.

1.4.4.3. Абсолютная интегральная чувствительность ФПУ в диапазоне измеряемых значений параметров индикаторов должна быть известна с точностью, при которой погрешность не должна выходить за пределы ±5%. Проверку абсолютной интегральной чувствительности ФПУ проводят по методике, изложенной в обязательном приложении 5.

1.4.4.4. Нелинейность интегральной чувствительности ФПУ в диапазоне измеряемых значений параметров индикатора с учетом засветки от внешних источников света не должна выходить за пределы ±2%. Методика проверки линейности интегральной чувствительности ФПУ приведена в обязательном приложении 6.

1.4.4.5. В измерительных установках на основе фотоумножителей, вакуумных или твердотельных фотоэлементов для устранения влияния пространственной неоднородности и угловой неравномерности фоточувствительности ФПУ на результаты измерения следует использовать светофильтры с диффузным пропусканием* При этом коэффициент пропускания в диапазоне длин волн излучения индикатора должен быть постоянен или его изменение не выходит за пределы ±3 %.

1.4.4.6. Светофильтры с диффузным пропусканием устанавливают непосредственно перед фоточувствительной поверхностью ФПУ и проверку абсолютной интегральной чувствительности ФПУ в соответствии с требованиями п. 1.4.4.3 проводят вместе ей светофильтром.

Рекомендуемый перечень светофильтров приведен в справочном приложении 7.

1.4.4.7. Для расширения динамического диапазона измерительных установок следует использовать оптические светофильтры, коэффициент пропускания которых в диапазоне длин волн излучения индикаторов постоянен или его изменение не выходит за пределы ±3%. Проверку неселекгивности коэффициентов пропускания используемых светофильтров (пп. 1.4.4.5 и 1.4.4.6) проводят по методике, изложенной в обязательном приложении 8.

1.4.5. Измерение параметров индикаторов проводят в отсутствии засветки ФПУ от внешних и внутренних источников света. Допускается проводить измерения при любых условиях внешней засветки, если будут приняты меры (инструментальные или другие) исключающие влияние внешней засветки ФПУ на результаты измерения таким образом, чтобы изменение результатов измерений не выходило за пределы ±2 %.

1.4.6. Прибор для измерения фототока Р должен обеспечивать регистрацию электрического сигнала в цепи ФПУ с точностью, при которой погрешность не выходит за пределы ±3%.

При этом прибор Р может быть выполнен по любой схеме, включая схему с компенсацией фототока в цепи ФПУ, которая приведена в обязательном приложении 9.

Рекомендуется использовать автоматизированные средства измерения и обработки электрического сигнала ФПУ и ЭВМ.

1.4.7. При использовании того или иного метода измерения параметров индикатора допускаются иные значения составляющих погрешностей, при этом значение суммарной погрешности не должно выходить за пределы установленные настоящим стандартом для конкретного метода.

1.4.8. Оптическая схема измерения параметров индикаторов приведена для каждого конкретного метода измерения в соответствующем разделе настоящего стандарта.

2. МЕТОД ИЗМЕРЕНИЯ СИЛЫ СВЕТА И ЯРКОСТИ, ОСНОВАННЫЙ НА ИЗМЕРЕНИИ ОСВЕЩЕННОСТИ, СОЗДАВАЕМОЙ ИЗЛУЧЕНИЕМ ИНДИКАТОРА (ЭЛЕМЕНТА ОТОБРАЖЕНИЯ)

2.1. Метод основан на измерении освещенности, создаваемой излучением индикатора в плоскости апертурной диафрагмы или фоточувствительной поверхности приемника излучения.

2.2. Аппаратура

2.2.1. Измерения проводят на установке, электрическая структурная схема которой приведена на черт. 1.

2.2.2. Оптическая схема измерений должна соответствовать представленной на черт. 2.

Н—индикатор (элемент отображения, информационное поле)

t,D

Источник: https://allgosts.ru/31/120/gost_25024.4-85

Световой поток: в чем измеряются светодиодные лампы, таблица, что такое люмены, интенсивность, яркость, светоотдача светильника

Все большую популярность среди осветительных приборов приобретают светодиодные источники света. Несмотря на довольно высокую стоимость изготовления, переход на такой тип освещения всего лишь вопрос времени.

LED (международное обозначение) лампы обладают преимуществами перед лампами накаливания и люминесцентными светильниками. Их параметры, такие, как спектр цвета, цветовая температура, яркость, поддаются регулировке.

Потенциал светодиодных светильников позволяет использовать их во всех сферах освещения: от дома применения в осветительных системах авто. Рассмотрим же какой световой поток у светодиодных ламп.

Принцип работы и основные характеристики

Производство LED светильников можно разделить на три этапа:

  • выращивание кристалла при помощи метода металлоорганической эпитаксии;
  • создание чипа методом планарной обработки пленок;
  • сортировка чипов с помощью бинирования;
  • сборка всех частей светодиода.

Принцип функционирования LED лампы

Принцип работы светодиода можно описать как взаимодействие двух противоположно заряженных полупроводников, создающих p-n-переход (контакт электронов). В процессе взаимообмена электронами на его границе создается световое излучение.

Основные характеристики, позволяющие оценить качество светодиодного светильника:

  • мощность (количественное измерение потребляемой электроэнергии);
  • цветовая температура (цвет света, испускаемого элементом);
  • световой поток (количество производимого света).

Поток света в светодиодном светильнике узконаправленный.

Мощность светового потока

Световой поток характеризуется большой колючестью видимого света, который образуется при работе LED источника света. Складывается он из следующих показателей:

  • светоотдача;
  • мощность;
  • используемые химические составы;
  • качество линзы.
ЭТО ИНТЕРЕСНО:  Как рассчитать лед освещение

Основные формулы для вычисления светового потока

Яркость лампы диодного типа уменьшается в течение срока эксплуатации. Также он может теряться по мере прохождения через линзу или накладку, защищающую источник света. При этом потери остаются в пределах 5%.

Световой поток светодиодной лампы тем выше, чем больше мощность светодиода и выше напряжение в электрической сети питания.

Как определить порядок измерения

Световой поток представляет собой световое излучение, распространяющееся во всех направлениях, длину волн которого может воспринимать человеческий глаз. Единица измерения потока света лампы накаливания – люмен (Лм).

Светодиодный источник света излучает электромагнитные волны разной длины. Световой поток измеряется суммарным значением видимых глазом световых волн, а также волн инфракрасного и ультрафиолетового излучения, с учетом усредненной кривой чувствительности человеческого глаза к восприятию световых волн. По его значению определяется поток света светодиодных светильников.

более подробно про ультрафиолетовые лампы.

Источник: https://finelighting.ru/svetilniki/lampy/svetodiodnye/svetovoj-potok-kratkaya-xarakteristika-osobennosti.html

Интенсивность освещения. В чем она измеряется и какой должна быть?

Свет играет огромную роль не только в интерьере, но и в нашей жизни в целом. Ведь от правильной освещенности помещения зависит эффективность работы, а так же наше психологическое состояние. Свет дает человеку возможность не только видеть, но и оценивать цвета и формы окружающих предметов.

Конечно, для человеческих глаз наиболее комфортен естественный свет. При таком освещении все видно очень хорошо и без искажений цветов. Но не всегда естественное освещение присутствует, в темное время суток, например, приходиться обходиться искусственными источниками света.

Чтобы глаза не напрягались, и не портилось зрение, необходимо создать оптимальные условия света и тени, создавая максимально комфортное освещение.

Для глаз самое приятное освещение — естесcтвенное

Освещение, так же как и многие другие факторы, оценивается по количественным и качественным параметрам. Количественные характеристики определяются интенсивностью света, а качественные – его спектральным составом и распределением в пространстве.

Как и в чем измеряется интенсивность света?

У света есть множество характеристик и на каждую существует своя единица измерения:

  • Сила света характеризует величину световой энергии, которая переносится за определенное время в какое-либо направление. Она измеряется в канделах (кд), 1 кд приблизительно равна силе света, который излучает одна горящая свеча;
  • Яркость так же измеряется в канделах, помимо этого существуют такие единицы измерения, как стильб, апостильб и ламберт;
  • Освещенность – это отношение светового потока, который падает на определенный участок, к его поверхности. Измеряется она в люксах.

Именно освещенность является важным показателем для правильной работы зрения. Для того, чтобы определить эту величину используется специальный прибор для измерения. Называется он люксометр.

Люксометр – это прибор для измерения освещенности.

Состоит данный прибор из приемника света и измерительной части, она бывает стрелочного типа или электронного. Приемник света – это фотоэлемент, который преобразует световую волну в электрический сигнал и направляет в измерительную часть. Это устройство является фотометром и обладает заданной спектральной чувствительностью. С его помощью можно измерить не только видимый свет, но и инфракрасное излучение и т. д.

Данный прибор используется как в производственных помещениях, так и в учебных заведениях, а так же дома. Для каждого вида деятельности и занятий существуют свои нормы того, какой должна быть интенсивность света.

Комфортная интенсивность освещения

Зрительный комфорт зависит от многих факторов. Безусловно, самым приятным для человеческого глаза является солнечный свет. Но современный ритм жизни диктует свои правила, и очень часто приходится работать или просто находиться при искусственном освещении.

Производители осветительных приборов и ламп стараются создавать такие источники света, которые отвечали бы особенностям зрительного восприятия людей и создавали бы максимально комфортный по интенсивности свет.

Свет от лампы накаливания наиболее точно передает естественные оттенки

В обычных лампах накаливания в качестве источника освещения используется раскаленная пружина, а потому, этот свет наиболее похож на естественный.

Лампы разделяют на следующие категории по типу света, который они дают:

  • теплый свет, имеющий красноватые оттенки, он хорошо подходит для домашней обстановки;
  • нейтральный свет, белый, используется для освещения рабочих мест;
  • холодный свет, голубоватый, предназначен для мест, где выполняются работы высокой точности или для мест с жарким климатом.

Важно не только то, к какому типу относятся лампы, но и конструкция самого светильника или люстры: сколько лампочек вкручивается туда, куда направлен свет, закрыты или открыты плафоны – все эти особенности нужно учитывать при выборе осветительного прибора.

Нормы освещенности зафиксированы в нескольких документах, самые главные это: СНиП (строительные нормы и правила) и СанПиН (санитарные правила и нормы). Существуют также МГСН (Московские городские строительные нормы), а так же свой свод правил для каждого региона.

Именно на основе всех этих документов и принимается решение о том, какой должна быть интенсивность освещения.

Безусловно, задумываясь о том, какую люстру повесить в гостиную, спальню или кухню, никто не замеряет интенсивность освещения с помощью люксометра. Однако, знать в общих чертах какой свет будет комфортней для глаз, очень полезно.

В Таблице 1 приведены нормы освещенности для жилых помещений:

Таблица 1

Вид помещения Норма освещенности в люксах
Ванные комнаты, санузлы, душевые 50
Кухни 150
Жилые комнаты 150
Детская комната 200
Квартирные коридоры 50

В Таблице 2 привдены нормы освещенности для офисов

Вид помещения Норма освещенности в люксах
Офис, где используются компьютеры 200-300
Большой офис со свободной планировкой 400
Офис для чертежных работ 500
Конференц-зал 200
Архив 75
Холл 50-75

В домашних условиях, без специального оборудования трудно измерить освещение в помещениях, а потому для того чтобы понять, какую лампу выбрать, стоит обратить внимание на цвет (холодный, нейтральный или теплый) и количество Ватт. В помещениях для отдыха лучше использовать не слишком яркие, а в рабочих кабинетах – с более интенсивным светом.

Поскольку для глаз наиболее приятно естественное освещение, то предпочтение в домашней обстановке стоит отдавать лампам, дающим теплый свет. Когда мы приходим домой, глазам обязательно нужен отдых после напряженного рабочего дня. Правильно подобранные по яркости лампы для люстр и светильников помогут создать подходящее по интенсивности освещение.

Источник: http://elissvet.ru/blog/35-intensivnost-osveshcheniya-v-chem-ona-izmeryaetsya-i-kakoj-dolzhna-byt/

Единица измерения света. Как измерить. Подробно

Единицей измерения света является — Люмен. Это единица измерения потока света в системе единиц физических величин — СИ. 1 люмен = световой поток, который испускается от точечного изотропного источника. Сила света при этом должна равняться 1 Кандела. Полное свечение, исходящее от изотропного светильника, с силой света 1 Кандела равно 4 люменам.

Люмен является полным потоком света от светильника. Несмотря на это, такая единица измерения не сильно распространена, потому что она не учитывает сосредотачивающую эффективность отражательного предмета или линзы.

Люмен — не прямой параметр оценивания яркости или производительности фонарного свечения. Широкий световой луч может принимать те же значения, что и узконаправленный.

Люмены не в состоянии определить интенсивность освещения, так как оценка в люменах предполагает учет всего рассеянного свечения, бесполезного в этом случае.

Единица измерения силы света — Кандела

Единица измерения силы света — Кандела. Обозначается как Кд или cd. Кандела равняется силе свечения, которое испускается в определенном векторе, заданном источником монохроматического излучателя частотой 540х10 в 12 степени Герц.

В системе СИ есть 7 главных единиц измерения, одной из которых является кандела. Кандела равняется силе свечения, которое испускается в определенном векторе, заданном источником монохроматического излучателя частотой 540х10 в 12 степени Герц. Его энергетическая сила света составляет 1/683 (Вт/ср). Ср — стерадиан, этим показателем измеряют телесные углы. В славянских странах его обозначают как Ср, однако международное обозначение sr.

Упомянутая частота соответствует зеленому спектру. Глаз человека более чувствителен к зеленому, чем к другим цветам. Для достижения того же значения силы света при излучении с другой частотой необходимы большие показатели энергетической интенсивности.

Ученые прошлых веков определяли Кандела как силу света, которая излучается черным предметом перпендикулярно плоскости площадью 1/60 квадратных сантиметров при температуре 2042.5К. При такой температуре расплавляется платина. Современная наука определила значение 1/683 так, чтобы нынешнее обозначение соответствовало предыдущему.

Пламя свечи излучает примерно одну канделу силы света. Из-за того, что в латинском языке свеча называется candela, а в английском — candle, раньше эту единицу измерения так и называли: свеча. Сейчас такое название не используется и считается архаизмом.

Единица измерения освещенности

Единица измерения освещенности — отношение свечения к поверхности, которое оно освещает, принято называть освещенностью. Учитывается именно перпендикулярное падение света на определенную плоскость.

Единица измерения освещенности — Люкс (lux.)

1 люкс = отношение 1 люмена к 1 метру поверхности в квадрате.

Световой поток измеряется в люменах. Оба показателя занесены в международную систему единиц. В Великобритании и Соединенных Штатах уровень освещенности узнают в люменах на квадратный фут, также называемые футом-кандела. Яркость свечения — освещенность от источника силой в 1 канделу на расстоянии одного фута от освещаемой плоскости.

В европейских странах есть стандарт качества освещения в рабочих помещениях. Ниже представлены некоторые рекомендации из этого документа.

  • 300 люкс; Офис или другие помещения, где не нужно пристально рассматривать мелкие детали.
  • 500 люкс; Такой уровень свечения должен быть в комнатах, где люди длительное время работают за компьютером или читают. Это применимо и к учебным заведениям, и к переговорным пунктам, и к другим учреждениям.
  • 750 люкс. Если люди занимаются технической работой: изготавливают продукцию, создают точные чертежи и так далее, должен быть такой уровень освещенности.

Нужно ли, на самом деле, измерять степень освещенности и что такое единица измерения света?

Ученые доказали, что тусклый или, наоборот, слишком яркий свет разрушают сетчатку человеческого глаза, из-за чего ухудшается острота зрения. Из-за разрушения сетчатки скорость и качество функционирования мозга снижаются.

Недостаточное количество яркости увеличивает в людях сонливость, понижает работоспособность и ухудшает настроение. Следует учесть, что мы не берем во внимание ситуации, в которых тусклое свечение украшает обстановку: романтическое свидание, просмотр фильма и так далее.

Насыщенный световой поток прибавляет сил, энергии, желания работать, тем самым быстрее утомляя человека.

https://www.youtube.com/watch?v=Y9csyEzqG1o\u0026list=PLmiWq_MU3bRoOj-0VPBEFyKjUZ0EnvV4s

Единица измерения света установлена СанПиНом называют санитарные правила и нормы — данные, на которые нужно равняться при измерении освещенности. Замеры делаются для определения не только степени освещенности, но и уровня шума, пыли, загрязненности, вибрации.

По мнению докторов, постоянный недостаток света на рабочем месте приводит к переутомлению сотрудников, ухудшению зрения и концентрации внимания. Рабочие становятся менее трудоспособными, что может вылиться в несчастный случай по невнимательности или другим причинам.

Помимо людей, от недостаточной освещенности страдают и другие живые организмы: растения, животные. Для быстрого развития и плодородного цветения растениям обязательно нужен мощный поток света. У животных из-за некачественного освещения могут появиться нарушения в росте и развитии, репродуктивной функции, наборе массы тела и может снизиться активность существа.

Каким бывает освещение

Освещение, как правило, бывает естественным и искусственным.

Естественные источники свечения:

  • солнце;
  • луна; На самом деле, луна не излучает свет, она просто отражает солнечные лучи.
  • рассеянный свет небосвода; Несмотря на такое красивое название, этот термин можно увидеть в официальных документах.
  • кометы;
  • полярные сияния;
  • электрические разряды в атмосфере;
  • звезды и другие небесные объекты.

Искусственные источники:

  • разные осветительные формы и конструкции;
  • лампы;
  • светильники;
  • фонарики;
  • мониторы;
  • телевизоры;
  • мобильные телефоны и другие.

Интенсивность света

Единица измерения света  интенсивность измеряется при обустройстве освещения в комнате либо при подготовке фотоаппарата к съемке. Опытные фотографы и светотехники-профессионалы, пользуются цифровыми экспонометрами, однако можно изготовить и простой прибор с похожим принципом работы своими руками.

Многие аппараты предназначены для отдельного типа освещения. Например, измеряя свечение натриевых ламп, вы добьетесь более точного результата, чем проводя расчеты над лампой накаливания.

Можете установить приложение на смартфон, которое определит интенсивность света. Какими бы хорошими ни были ваш телефон и выбранное приложение, результаты будут искаженными и неточными, поэтому лучше воспользоваться специализированным прибором.

Большинство устройств измеряют показатели освещенности в люксах, так как это общепринятая единица, однако некоторые настроены на отображение фут-кандел.

Если вам неудобен один из этих способов измерения, можете перевести люксы в канделы и наоборот на этом ресурсе:

Источник: https://lightru.pro/edinitsa-izmereniya-sveta/

Можно ли измерить освещенность с помощью телефона?

Работая со светом невозможно развиваться без ежедневного изучения тенденций и новинок рынка. Одним из последних наших открытий стало приложение, благодаря которому с помощь обычного смартфона можно замерять количество света в помещении.

Безусловно, с профессиональной точки зрения мы не могли остаться равнодушными к такому вызову.

Немецкий Институт Прикладной Светотехники (DIAL GmbH) опубликовали статью, в которой рассматривался именно интересовавший нас вопрос: может ли смартфон стать достойной заменой люксметру?

Люксметр против смартфона: может ли специальное приложение стать альтернативой измерительному прибору?

Если такая замена действительно себя оправдывает, то это стало бы не то чтоб революцией, но, как минимум, очень выгодным предложением. Посудите сами, люксметр — удовольствие недешевое. А вот смартфон есть практически у каждого. И специальные приложения либо бесплатные, или стоят дешево.

Поскольку наша компания профессионально работает со светом, идея замера фотометрических параметров с помощью телефона нас умиляет. Но, справедливости и любопытства ради, мы решили провести эксперимент.

 Цель исследования: сравнение результатов работы соответствующих приложений с показателями нашего штатного люксметра.

Тестируемое оборудование

В нашем эксперименте принимали участие iphone разных серий, а также телефоны Sony, Samsung и Nokiа:

Производитель Операционная система
iPhone5 iOS
iPhone 5S iOS
iPhone 6 iOS
Sony Xperia Z1 Android
Sony Xperia Z2 Android
Samsung Galaxy S5 Android
Nokia Lumia 925 Windows Phone

Программное обеспечение

Мы выбрали следующие приложения (большинство из них бесплатны), и установили их на каждой из систем:

Название Производитель Операционная система Возможность калибровки Цена
Galactica Luxmeter Flint Soft Ltd. iOS нет
LightMeter by whitegoods Whitegoods iOS есть
LuxMeterPro Advanced AM PowerSoftware iOS есть 7,99€
Luxmeter KHTSXR Android есть
Light Meter Pro Mannoun.Net Android есть
Lux Light Meter

Источник: https://www.prof-led.ru/news/mozhno_li_izmerit_osveshchennost_s_pomoshchyu_telefona/

Понравилась статья? Поделиться с друзьями:
Электро Дело
Для чего применяется автотрансформатор

Закрыть
Для любых предложений по сайту: [email protected]