В чем измеряется яркость светодиодов

Как регулировать яркость светодиодов

В чем измеряется яркость светодиодов

Насколько ярко будет отображаться освещаемый объект, зависит не только от светового потока. Яркость свечения зависит так же от плотности луча и чувствительности наблюдателя.

Сила тока

Во время работы сила тока на светодиоде зависит от напряжения. При незначительном увеличении вольтажа электроток повышается многократно, вместе с ним и яркость свечения. Но этим параметром можно управлять, если включить в схему аналоговый или широко-импульсный модулятор, обеспечивающий функцию диммирования.

Зависимость яркости свечения идеального светодиода от электротока линейная. На практике зависит от потерь на выделении тепла и дифференциального сопротивления кристалла. Существует предел, после которого повышать ток нельзя из-за перегрева p-n-перехода, способного вывести LED из строя.

Технология

Светодиод – это источник света точечного типа, направленность луча определяет конструкция. Параметры меняются в зависимости от оптических свойств и наличия в приборе люминофора, рассеивателей и линз. Независимо от устройства интенсивность свечения регулируется минимальными изменениями тока.

У светодиода при высокой плотности луча (небольшом угле излучения) яркость свеяения увеличивается независимо от объема потока.

Внимание! При покупке необходимо учитывать, что источник с тысячей милликандел и углом излучения 45 градусов будет давать такой же поток, как с углом 12 градусов, но при втором варианте луч будет ярче.

Площадь кристалла

Еще один показатель, от которого напрямую зависит объем светового потока и яркость свечения – величина кристалла. Например, площадь СМД 3528 3,5х2,8 мм, площадь СМД 5630 – 5,6х3 мм, световой поток соответственно 6-8 и 50 люмен. Самые новые кристаллы отличаются большими размерами и высокими показателями интенсивности свечения. Это объясняется тем, что излучение в любом чипе зависит от величины р-n перехода.

Важно! При покупке необходимо знать, что неизвестные китайские производители это используют. Вместо больших кристаллов на 1 Вт они ставят маленькие на 0,75 или 0,5 Вт, при подаче заявленного тока их срок службы значительно сокращается или они перегорают.

Способы регулировки яркости

Зная, что яркость свечения любого светодиода зависит от тока, можно сделать логический вывод, что характеристики луча меняются одновременно с увеличением или уменьшением подаваемых на кристалл ампер.

При аналоговом регулировании резисторами интенсивность свечения регулируется ступенчато, поэтому в схему необходимо включить стабилизатор LM317, фиксирующий ток и напряжение.

Такой способ регулирования используется в транспортных средствах и при подключении светодиодов к источнику постоянного напряжения.

Лучшим способом считается широтно-импульсной модуляции с включением в схему резистора и контроллера (если диоды цветные). На светодиод подаются импульсы определенной частоты, то есть, питание включается и выключается очень быстро, светодиод открывается каждый раз, но глаза это не улавливают.

Важно! Интенсивность свечения ламп с цоколем на основе светодиодов нельзя регулировать, если они не специальные (на упаковке возможность диммирования не указана). Для обычных ламп используется балластный блок питания на основе конденсаторов.

Яркость светодиода – параметры и способы регулировки

О регулировке силы света традиционной лампочки накаливания знают многие. Но яркостью светодиода тоже можно управлять. Для этого в схему электроприбора устанавливаются широко-импульсные модуляторы или аналоговые регуляторы. Принято говорить, что такие светильники имеют опцию диммирования.

Многим потребителям до недавнего времени не приходилось задумываться над вопросом, от чего зависит яркость свечения, так как единственным параметром обычной лампочки накаливания считалась лишь потребляемая мощность, указываемая в ваттах.

Новые технологии дали миру совершенно иные представления о светотехнике, существенно расширили характеристики ламп, прописываемые в их маркировке, на упаковке или потребительском ярлыке, размещенном непосредственно на изделии. Интенсивность освещения, в сегодняшнем представлении, зависит не только от напряжения в электросети, но и от других, не всем понятных обозначений.

К тому же, регулятор яркости светодиодов позволяет управлять опцией, выставляя уровень освещенности по своему усмотрению, что важно в вопросе экономии электроэнергии.

Параметры яркости свечения светодиодов

Потребителей нередко интересует, в чем измеряется яркость светодиодной лампы и по каким цифрам и обозначениям на ее упаковочной коробке определяется данный параметр. На ней указываются:

  • канделы (cd);
  • люмены (лм или lm);
  • две цифры потребляемой мощности (W и Watt);
  • угол освещения;
  • цветовая температура.

Именно по этим характеристикам можно узнать яркость светодиодов в лампе. В канделах обозначают силу света, или поверхностную плотность потока. За единицу здесь принято считать его интенсивность в процессе горения одной свечи.

Параметр мощности света в люменах принимает во внимание и силу, и длину воспринимаемой человеческим глазом волны, и угол освещения. От последнего, не менее важного показателя зависит площадь зоны освещения, схема расположения и количество требуемых ламп. Если сравнивать изделия с углами освещения в 60 и 30 градусов, то при одинаковых характеристиках можно наверняка сказать, что первое окажется раза в 3-4 эффективнее второго.

Яркость светодиода зависит от вида установленной в лампу линзы. Матовая даст более мягкий и рассеянный свет. При этом, угол освещения наверняка будет шире, а световые потоки слабее.

И, наконец, классификация по мощности. На самом деле, для уровня яркости светодиодных лампочек этот показатель определяющим не является. Его указывают для облегчения расчетов потребления электроэнергии и для понимания данного параметра большинством среднестатистических потребителей.

Две цифры, к примеру измерение в ваттах 5,5W и 35 Watt, означают, что потребляемая мощность лампы составляет 5,5Вт, а светит она как обычная 35Вт-ная лампочка накаливания.

Все достаточно просто, но следует понимать, что данное соотношение является довольно-таки приблизительным, и светодиоды повышенной яркости исключением не являются.

Светодиодные электроприборы относятся к энергосберегающим изделиям, а управление яркостью излучения помогает потребителю еще больше экономить на электричестве в бытовых и промышленных условиях.

Цветовая температура влияет на цветовой диапазон светодиода. Он может смещаться:

  • по мере возрастного старения элементов;
  • при изменении показателей подводимого тока.

Холодное сине-зеленое свечение присуще источникам света, имеющим высокую цветотемпературу. А теплый свет красно-желтых оттенков – низкую. Часто на этикетках указывают длину световой волны в доминирующих значениях. Ее смещение происходит в зависимости от цветовой температуры.

Управлять световыми потоками в светодиодных электроприборах без изменения цвета свечения позволяет присутствие в схеме:

  • широтно-импульсной модуляции – обозначение ШИМ;
  • аналогового регулирования.

Оба варианта управления яркостью светодиода поддерживают заданный уровень проходящего через элементы тока. Увеличить или снизить яркость светодиодов при наличии в схеме ШИМ диммера, можно с более высоким КПД и незаметным для глаз человека мерцанием светового потока. Дело в том, что для аналогового регулятора яркости свойственно изменение амплитуд подходящего к светодиодам тока, а для ШИМ имеется в виду плавная регулировка ширины, или длительности импульсов.

Работа вышеприведенной схемы допускается в диапазоне 4,5-18 вольт. При этом повысить яркость свечения можно с 5 до 95%. Подобный вариант применяется как для отдельных мощных светодиодов, так и для ленточных электросветовых приборов.

ШИМ регуляторы управляют процессом мгновенного включения-отключения тока. Причем делается это с высокой частотой – более 200Гц. Максимальная же цифра измеряется несколькими килогерцами. Такое мерцание человеческие глаза не воспринимают.

Аналоговое увеличение или снижение светового потока предполагает поддержание тока, подходящего к светодиоду на постоянном уровне, или изменение подаваемого на импульсный драйвер напряжения. Оба варианта приемлемы, но нередко результатом диммирования становится изменение цвета свечения диодов в лампе. Если это в определенных эксплуатационных условиях является недопустимым, то от аналогового регулирования яркости света лучше отказаться.

На рынке встречаются многорежимные диммеры, способные осуществлять регулировку яркости светодиодов в ШИМ и аналоговом варианте управления мощностью свечения.

Источник: https://kabel-house.ru/remont/kak-regulirovat-yarkost-svetodiodov/

Методы регулировки яркости для импульсных драйверов светодиодов

В чем измеряется яркость светодиодов

Экспоненциальный рост светодиодного освещения сопровождается расширением выбора микросхем для управления светодиодами. Импульсные драйверы светодиодов давно заменили линейные источники тока, которые потребляют значительно больше энергии.

Все приложения — от карманного фонаря до табло стадионов — требуют точного управления стабилизированным током. Во многих случаях необходимо обеспечить изменение выходной интенсивности свечения светодиодов в режиме реального времени. Эту функцию обычно называют регулировкой яркости светодиодов.

В данной статье представлены базовые понятия из теории светодиодов, а также некоторые методы регулировки яркости для импульсных драйверов светодиодов.

Яркость и цветовая температура светодиодов

Яркость светодиодов

Понятие яркости видимого света, излучаемого светодиодом, объясняется достаточно просто. Численное значение воспринимаемой яркости светодиода можно легко измерить в единицах плотности светового потока, которые называют канделами (кд). Суммарная выходная мощность светодиода измеряется в люменах (лм).

Важно также понять, что средний прямой ток светодиода определяет яркость светодиода. На рисунке 1 показана зависимость прямого тока светодиода от светового выхода. Из рисунка видно, что эта зависимость является линейной в широком диапазоне применяемых значений прямого тока IF. Заметим, что при увеличении IF нелинейность возрастает. Когда ток начинает выходить за линейную область, происходит уменьшение эффективности (лм/Вт).

Рис. 1. Зависимость светового выхода от тока светодиода

Работа светодиода в режиме, превышающем диапазон линейного изменения светового выхода, приводит к преобразованию выходной мощности светодиода в тепло. Оно, в свою очередь, создает нагрузку на драйвер светодиода и усложняет систему отвода тепла.

Цветовая температура светодиода

Цветовая температура является показателем, который описывает цвет свечения светодиода и указывается в технической документации на светодиод. Цветовая температура светодиода определяется в пределах диапазона значений и меняется в зависимости от прямого тока, температуры перехода и срока службы светодиода.

Более низкая цветовая температура соответствует красно-желтым цветам (которые называют теплыми), а более высокая цветовая температура — сине-зеленым цветам (холодным).

Во многие цветных светодиодах специфицируется преобладающая длина волны, а не цветовая температура, и, кроме того, допускается сдвиг длины волны.

Методы регулировки яркости светодиодов

Существуют два популярных метода регулировки яркости светодиодов в схемах импульсных драйверов: ШИМ-регулировка и аналоговая регулировка. Оба метода контролируют усредненный во времени ток через светодиод или цепочку светодиодов, но между ними есть и различия, которые становятся ясными при обсуждении преимуществ и недостатков двух типов схем регулировки.

На рисунке 2 показан импульсный драйвер светодиодов, включенный в понижающей топологии. Напряжение VIN всегда должно быть выше напряжения на светодиоде плюс напряжение на RSNS. Ток в катушке индуктивности является током светодиода.

Стабилизация тока происходит с помощью контроля напряжения на выводе CS.

Когда напряжение на выводе CS начинает падать ниже установленного напряжения, рабочий цикл импульсов тока, протекающего через катушку L1, светодиод и резистор RSNS, растет, тем самым увеличивая средний ток светодиода.

Рис. 2. Топология понижающего стабилизатора

Аналоговая регулировка яркости

Аналоговая регулировка яркости светодиодов заключается в подстройке тока светодиода. Проще говоря, это регулировка уровня постоянного тока светодиода. Аналоговая регулировка может выполняться с помощью подстройки резистора контроля тока RSNS или путем управления аналоговым напряжением на выводе DIM микросхемы. На рисунке 2 показаны эти два способа аналоговой регулировки.

Аналоговая регулировка с помощью подстройки RSNS

Из рисунка 2 видно, что изменение сопротивления RSNS приводит к соответствующему изменению тока светодиода при фиксированном опорном напряжении на выводе CS. Если бы можно было найти потенциометр, способный управлять высоким током светодиода, а также работать в диапазоне до 1 Ом, то это был бы практически осуществимый метод регулировки яркости светодиодов.

Аналоговая регулировка с помощью управления постоянным напряжением на выводе CS

Источник: https://russianelectronics.ru/metody-regulirovki-yarkosti-dlya-impulsnyh-drajverov-svetodiodov-2/

Гост р 55702-2013 источники света электрические. методы измерений электрических и световых параметров, гост р от 08 ноября 2013 года №55702-2013

В чем измеряется яркость светодиодов

ГОСТ Р 55702-2013

ОКС 29.140

ОКП 34 6000

Дата введения 2014-07-01

1 РАЗРАБОТАН Государственным унитарным предприятием Республики Мордовия «Научно-исследовательский институт источников света имени А.Н.Лодыгина» (ГУП Республики Мордовия «НИИИС имени А.Н.Лодыгина»)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 332 «Светотехнические изделия»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 08 ноября 2013 г. N 1356-ст

4 ВВЕДЕН ВПЕРВЫЕ

5 ПЕРЕИЗДАНИЕ. Сентябрь 2016 г.

Правила применения настоящего стандарта установлены в статье 26 Федерального закона «О стандартизации в Российской Федерации».

Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты».

В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

1 Область применения

Настоящий стандарт распространяется на электрические источники света (далее — ИС): лампы накаливания, разрядные и светодиодные, светодиодные модули и светодиоды (далее — СД) и устанавливает методы измерений:

— электрических параметров;

— светового потока;

— силы света;

— пространственного распределения силы света;

— цветовой и коррелированной цветовой температуры;

— яркости.

Стандарт не распространяется на светоизмерительные лампы и лампы-фары.

Эксплуатационные требования установлены в стандартах на ИС конкретных типов.

Настоящий стандарт может быть применен для измерений параметров других типов ИС, предназначенных для целей освещения.

2 Нормативные ссылки

Источник: http://docs.cntd.ru/document/1200105699

Калькулятор люмены в канделы и канделы в люмены

См. также: Оценка максимума эффективности белого света

Лю́мен (обозначение: лм, lm) — единица измерения светового потока в СИ.

ЭТО ИНТЕРЕСНО:  Чем отличаются светодиоды 2835 от 3528

Количество люмен указывает, сколько света испускает лампа во всех направлениях. Чем больше число люмен, тем больше света.

Один люмен равен световому потоку, испускаемому точечным изотропным источником, c силой света, равной одной канделе, в телесный угол величиной в один стерадиан (1 лм = 1 кд × ср). Полный световой поток, создаваемый изотропным источником, с силой света одна кандела, равен 4π люменам.

Канде́ла (обозначение: кд, cd) — единица измерения силы света в СИ (от латинского candela, свеча).

Количество кандел указывает, сколько света испускает лампа в одном направлении, в котором она светит наиболее интенсивно.

Одна кандела — сила света в данном направлении от источника монохроматического излучения с частотой 540*1012 Гц, (555 нм, зеленый цвет) имеющего интенсивность излучения в этом направлении равную 1 / 683 Вт в телесном угле равном одному стерадиану.

Калькулятор для перевода люмен в канделы

Пересчет ведется по формуле:
Fv=I*2π(1-cos(α)), где
Fv — световой поток
Iv — сила света α — угол половинной яркости

Для расчета введите угол и силу света (световой поток). Учтите, результаты расчета зависят от оптических параметров светодиода и дают ориентировочный результат!

Световой поток типовых источников света

Приведены сравнительные параметры некоторых источников света, значения приблизительные, только для сравнительной оценки.

Тип источника света Световой поток (люмен) Сила света (кандел) лм/ватт
Лампа накаливания 40 Вт 415 35 10
Лампа накаливания 100 Вт 1550 1300 15
Люминесцентная лампа 40 Вт 2500 2200 60
Газоразрядная лампа 35 Вт (ксенон с учетом оптики фары) 3000 15000 90
Светодиод Cree XLamp XP-L 6 Вт 1226 550 200

Мощность излучения, взаимосвязь энергии света (Ватты) и светового потока (люмен)

Важным параметром для оценки энергоэффективности светодиодного излучателя считается соотношение между излучаемой мощностью и мощностью, выделяемой в виде тепла.

Излучаемый светодиодом свет, как известно, обладает определенной энергией и энергия света зависит от длины волны. Однако сила света не пропорциональна энергии светового излучения, а зависит от чувствительности человеческого глаза. Иначе говоря, сила света — это мощность светового излучения, которое доступно для восприятия человеческим глазом.

Чтобы пересчитать излучаемую энергию (Ватты) в световой поток (люмены), нужно знать длину волны излучения и кривую чувствительности человеческого глаза. Нетрудно догадаться, что для монохромного излучения эта задача решается легко, а для светодиода белого цвета, необходимо еще знать спектр его излучения и выполнить довольно сложное интегрирование.

Цвет излучения Формула пересчета светового потока в энергию излучения Опт. мощность при Fv = 100 люмен, Вт Сила света при P = 1 Вт, лм
зеленый 555 нм Р = Fv/683 Вт/лм 0.15 683
красный 650 нм Р= Fv/68,3 Вт/лм 1.46 68.3
красный 625 нм Р= Fv/222 Вт/лм 0.45 222
синий 465 нм Р= Fv/68,3 Вт/лм 1.46 68.3
белый Р= Fv/243 Вт/лм 0.41 243

Можно оценить, что белый светодиод мощностью 1 Вт с эффективностью 100 лм/Вт излучает в виде света 0,4 Вт и 0,6 Вт рассеивает в виде тепла, а лампа накаливания из потребляемых 100 Вт излучает в видимой области спектра только 6 Вт (0,06 Вт на 1 Вт).

Энергия, потребляемая источником света от сети питания, не полностью преобразуется в излучение. Особенно это актуально для светодиодных ламп.

Кроме потерь энергии в самом светодиоде, мощность теряется в преобразователе питания, часть света задерживается оптикой — отражателями, рассеивателями, линзами.

При использовании светодиода с эффективностью 100 lm/Вт, эффективность лампы редко достигает 80 lm/Вт, а для наиболее распространённых изделий бывает 60-70 lm/Вт. В итоге, современные лампы массового производства примерно в 10 раз эффективнее лампы накаливания.

Источник: https://led-displays.ru/calc.html

Один вывод микроконтроллера измеряет уровень освещенности и управляет яркостью светодиода

Журнал РАДИОЛОЦМАН, февраль 2017

Loren Passmore

EDN

Как и в предыдущей статье [1], ниже описывается схема, в которой светодиод используется одновременно как преобразователь для измерения уровня окружающей освещенности и как источник света.

Здесь используется тот же принцип, но теперь схема состоит всего из одного светодиода, двух резисторов, одной микросхемы и одного блокировочного конденсатора емкостью 0.1 мкФ. Дополнительные компоненты для цепи обратной связи по освещенности в этой схеме не требуются.

Несмотря на небольшое количество компонентов, схема на Рисунке 1 является достаточно гибкой и универсальной, благодаря программе микропроцессора, управляющей яркостью свечения светодиода и ее зависимостью от уровней внешней освещенности.

В одном из режимов работы схемы, рассчитанном на приложения ночного освещения, светодиод включается при снижении уровня внешней освещенности. Второй режим, ориентированный на экономию энергии, расходуемой светодиодной подсветкой портативных устройств, наоборот, включает светодиод, когда уровень внешней освещенности увеличивается.

Рисунок 1. Вся схема состоит из светодиода, микроконтроллера, двух резисторов и одного конденсатора.

«Загрузки» можно скачать пример программного кода для этой схемы, с помощью которого в любом режиме реализуется 64-уровневое ШИМ управление яркостью свечения светодиода. В процессе работы один из многофункциональных выводов микропроцессора в течение нескольких сотен миллисекунд регулирует ток светодиода с помощью сигнала ШИМ.

Завершив генерацию ШИМ, программа переключает вывод микроконтроллера в режим ввода и подключает светодиод к входу внутреннего 16-битного сигма-дельта АЦП. Теперь под действием внешнего света светодиод начинает вырабатывать напряжение, величина которого измеряется АЦП и используется микропроцессором для вычисления параметров ШИМ для следующих циклов подсветки.

Высокая частота чередования циклов измерения и подсветки исключает любое видимое глазом мерцание яркости.

Как видно из листинга, когда программа, основываясь на уровне внешней освещенности, принимает решение о выключении светодиода, центральный процессор на 250 мс переходит в режим пониженного энергопотребления. Во время спящего режима и в течение нескольких сотен микросекунд, пока выполняется преобразование в АЦП, схема потребляет незначительный ток порядка 20 мкА, что позволяет использовать ее в приложениях с батарейным питанием.

При запуске микропроцессор запоминает начальное значение напряжения на светодиоде и использует его для масштабирования уровней ШИМ. При затенении светодиода или при перемещении схемы в более темную область яркость светодиода немедленно начинает увеличиваться небольшими последовательными приращениями уровней 64-разрядной ШИМ.

Входное сопротивление АЦП микроконтроллера MSP430F2013 равно примерно 200 кОм. При работе на такой импеданс напряжение, генерируемое светодиодом в небольшом корпусе SMD типоразмера 0805, составляет всего несколько десятков милливольт.

Однако разрешения, с которым 16-битный АЦП микроконтроллера MSP430F2013 измеряет напряжение светодиода, достаточно для того, чтобы при нормальном освещении комнаты обеспечить хорошие характеристики схемы.

Кроме того, для увеличения уровня очень маленького выходного напряжения светодиода можно использовать интегрированный в MSP430F2013 усилитель с программируемым коэффициентом усиления, значение которого можно установить равным 1, 2, 4, 8, 16 или 32. Схема потребляет небольшую мощность, поскольку тактируется встроенным низкочастотным генератором микропроцессора без использования внешнего кварцевого резонатора. Полная схема состоит всего из шести компонентов, включая батарею.

Примечание:

Программный код может выполняться на демонстрационной плате eZ430 компании Texas Instruments без каких-либо аппаратных доработок, поскольку на плате имеется светодиод, подключенный к порту P1.0.

Ссылки

  1. Datasheet Texas Instruments MSP430F2013
  1. Пример программного года, иллюстрирующий работу схемы

38 предложений от 25 поставщиков

Исполнение: TSSOP-14. Микроконтроллер: MSP430 16-bit, Flash: 2K, RAM: 128, UART: 1, АЦП: 5 x 16bit Тип корпуса : TSSOP-14 Архитектура :

Источник: https://www.rlocman.ru/shem/schematics.html?di=335441

Световой поток: в чем измеряется и как правильно вычислить

Постепенно уходят в прошлое времена, когда в квартирах и других помещениях все освещение состояло из ламп накаливания. На смену им пришли сначала энергосберегающие лампы, а после и более высокотехнологичные светильники на светодиодах.

И если раньше основным критерием яркости свечения лампы была ее мощность, которая измеряется в ваттах, то в чем измеряется она сейчас, если этот показатель востребован при монтаже освещения на кристаллах лишь для правильного подбора стабилизирующего напряжение оборудования – драйвера.

Световой поток светодиодных ламп, которые более высокотехнологичны, гораздо сильнее, нежели у ламп накаливания, потребляющих большую мощность, основная часть которой уходит на вырабатывание тепла. И для простого обывателя встает вопрос, так как же выбрать по яркости светодиод, на какие параметры обратить внимание? Световой поток измеряется в люменах на 1 W. Эта единица измерения полностью отражает его силу, в отличие от мощности.

Определение

У каждого источника света имеется свой показатель того, что подразумевается под понятием световой поток в люменах, и эти данные должны быть зафиксированы на коробке с осветительным прибором. При выборе лампы нужно не только обращать внимание на мощность потребителя, но и учитывать светоотдачу – эти два параметра важны в смысле энергопотребления. Преобразование электрической энергии в световую рождает потери, препятствующие более высоким показателям яркости.

К примеру, сравнивая лампы накаливания с энергосберегающими, мы увидим, что при одинаковых уровнях мощности световой поток у обычных элементов будет равен 12 люмен/ватт, а у КЛЛ – уже 60 люмен/ватт. Ну а самый высокий показатель по этому параметру у светодиодных ламп – он равен 70–90 lm.

Сравниваем лампу накаливания и светодиод по силе светового потока

Для более точного определения того, сколько люмен содержит световой поток различных типов осветительных приборов, можно воспользоваться списком, где Н – лампа накаливания, Э – энергосберегающая и С – светодиод:

  1. Н 20Вт = Э 5–7Вт = С 2–3ВТ = 250 Лм/Вт;
  2. Н 40Вт = Э 10–13Вт = С 4–5Вт = 400 Лм/Вт;
  3. Н 60Вт = Э 15–16Вт = С 8–10Вт = 700 Лм/Вт;
  4. Н 75Вт = Э 18–20Вт = С 10–12Вт = 900 Лм/Вт;
  5. Н 100Вт = Э 25–30Вт = С 12–15Вт = 1200 Лм/Вт;
  6. Н 150Вт = Э 40–50Вт = С 18–20Вт = 1800 Лм/Вт;
  7. Н 200Вт = Э 60–80Вт = С 25–30Вт = 2500 Лм/Вт.

Но при расчетах нужно помнить о том, что при длительной работе светового прибора его показатель светопотока падает. Есть и другие причины ухудшения этого параметра. Одним из них является отражатель светильника. Потери, которые будут в результате этого фактора, могут составить 20–80% светового потока.

Световой поток диодов

Пример того, как выглядит люксметр

Световой поток у ламп накаливания слабее еще и потому, что кажущейся со стороны вроде бы яркой лампочке не хватает концентрации света в одном месте, она просто рассеивает его по сторонам.

А вот у светодиодных светильников светодиоды сами по себе светят более «кучно», к тому же диодные лампы имеют свой встроенный отражатель и не зависят от светильника, в который они установлены.

Ведь в любой комнате, независимо от ее назначения, никакого смысла в освещении потолка нет.

Основной свет должен поступать вниз от потолочных осветительных приборов. Как раз таким решением будет замена люминесцентных ламп на светодиодные трубки Т5 или Т8. При работе, к примеру, светильников типа «Армстронг» половина лампы светит вверх. Конечно, есть отражатель, но расположен он близко, и отражение затеняет сама лампа. А в результате – светопотери в 20–40%.

Если же заменить лампы на светодиодные трубки – эта проблема решается, т. к. они светят точно вниз, вверху элементы, выделяющие свет, отсутствуют. Как измерить световой поток? Сделать это можно одним из специальных измеряющих приборов – люксметром.

Вычисление светопотока

Световой поток, хотя и примерно, можно вычислить, используя среднее значение отдачи света:

  • светодиоды – необходимо умножение мощности на 80–90 люмен;
  • светодиодные филаментные – умножение на 100 люмен;
  • КЛЛ – на 60 люмен, хотя если лампы дорогие и качественные, их показатель может быть выше;
  • ДНАТ (дуговая натриевая трубчатая) – на 66 люмен при 70 Вт; на 74 люмен при 100, 150, 250 Вт; и на 88 люмен при 400 Вт;
  • ДРЛ (дуговая ртутная люминесцентная) – на 58 люмен, при сроке службы 12–18 тыс. часов.

Конечно, китайский вариант лампы, скорее всего, будет иметь меньшие показатели.

Помещение с «теплым» и «холодным» световым потоком

Цветовая температура светового потока

Многие привыкли к желтоватому, «теплому» свету, но нравится он не поэтому. Просто такой цвет более близок к солнечному по ощущениям, создается впечатление, что в помещении действительно теплее.

А вот согласно многочисленным исследованиям в этой области, при переходе на белые, «холодные» тона, человек чувствует дискомфорт только в первые пару дней, а после, привыкнув, уже не хочет переходить к теплому свету.

Все дело в том, что холодные оттенки имеют более сильный световой поток, такое освещение более яркое.

Равномерное освещение

В электротехнике существует такое понятие, как коэффициент распределения светового потока. Применяется этот параметр для расчета расположения и типа световых приборов с целью того, чтобы равномерно распределить освещение внутри комнаты. Основываются при этом на возможность светоотражения различных отделочных материалов. В основном светопоток отражается от стен, потолка и пола, но также нужно не забывать и о мебели.

Для правильного расчета этого коэффициента используют специальную таблицу с указанием в процентах возможности материалов к отражению светового потока. Необходимо помнить, что более темная поверхность имеет меньше способности к отражению, а значит и показатели данного коэффициента будут ниже.

Таблица коэффициентов отражения материалами светового потока

В любом случае, если задаться целью освещения помещений в полном соответствии с правилами такой работы и своими предпочтениями, необходимо потратить много времени и сил. Процесс этот очень трудоемок, но все же когда все необходимые расчеты будут выполнены, а работа сделана в полном с ними соответствии, можно будет увидеть, как преобразилась комната, квартира или любое другое помещение.

К тому же при правильном освещении, направленности и силе светового потока глаза не будут подвергаться разрушительному воздействию неправильно подобранных ламп. В конечном итоге здоровье важнее, чем время и усилия, которые будут потрачены.

ЭТО ИНТЕРЕСНО:  Что нужно чтобы подключить светодиодную ленту

Источник: https://lampagid.ru/elektrika/teoriya/svetovoj-potok

Как выбрать мощность светодиодных ламп для дома

(EC&M) Magazine

Светодиодные лампы, в отличие от лампочек с нитью накаливания, очень разнятся по своим характеристикам. И речь идет не о таких параметрах, как цветовая температура, коэффициент пульсаций или CRI. Яркость свечения (световой поток) лампочки накаливания заданной мощности одинакова, вне зависимости от ее формы и производителя. К примеру, «лампочка Ильича» на 100 Вт в бытовой сети всегда излучает около 1300 лм (люмен).

Со светодиодами все иначе, так как КПД разных их типов широко варьируется. Световой поток может достигать от 50 до 150 и более люмен с каждого ватта. То есть LED-лампа на 10 Вт может светить и 500 лм, и 1500 лм. Поэтому перед тем как выбрать мощность светодиодных ламп для дома, нужно изучить их характеристики и провести несложные расчеты.

Следуйте нормам СНиП

С чего начать выбор LED Hut

Отталкиваться при выборе мощности светодиодных лампочек будем от норм СНиП, регламентирующих яркость освещения. Она измеряется в лк (люксах), а 1 лк, в свою очередь, равен потоку света в 1 лм, освещающему площадь 1 м2. То есть лампа на 100 лм, освещающая 1 м2 площади, даст освещенность 100 л. Она же, но при освещении 10 м2 – 10 лк.

СНиП устанавливает рекомендуемую яркость освещения для жилых помещений на уровне 150 лк. То есть на каждый квадратный метр площади помещения должно приходиться 150 лм светового потока светодиодной лампы. Это не обязательные требования, но от них стоит отталкиваться перед тем, как выбрать LED-лампы.

Рассчитываем освещаемую площадь в доме

Расчет площади для выбора LED-лампочек (EC&M) Magazine

Световой поток, указанный в лм – главная характеристика светодиодной лампы, которая имеет даже большее значение, чем ее мощность. Поэтому при выборе LED-ламп изучите их спецификации. Мощность в ваттах указывает лишь на то, сколько электричества будет потреблять освещение в процессе работы. А вот насколько светло будет в комнате, зависит от количества люмен.

Начать выбор светодиодного освещения нужно с подсчетов освещаемой площади в доме. Она не эквивалентна жилплощади, так как помимо пола в доме еще есть стены и потолок, на которые свет тоже падает. Чтобы получить общее количество квадратных метров, необходимо сложить вместе площади пола, потолка и четырех стен.

Возьмем стандартную гостиную не менее стандартной квартиры, имеющую размеры порядка 5х4 метра и высоту 2,5 метра. Жилплощадь такого помещения равна 20 м2. Столько же занимает и потолок. Две длинные стены имеют площадь по 5*2,5=12,5 м2, короткие – по 4*2,5=10 м2. Сложив все вместе, получим 20*2+12,5*2+10*2=85 м2. Именно такой будет освещаемая площадь в нашей квартире.

Зная площадь, можно приступить к расчету необходимой мощности светового потока. Ее можно получить, умножив указанную в СНиП освещенность на площадь. В обозреваемом случае это 150 (лк)*85 (м2)=12750 лм. Именно столько люмен нужно, чтобы равномерно осветить комнату в доме с достаточной яркостью.

Источник: https://hype.tech/@na100gramm/kak-vybrat-moshchnost-svetodiodnyh-lamp-dlya-doma-rq8ou717

Оптические характеристики светодиодов

В наше время трудно представить качественную осветительную систему без использования светодиодов. Эти устройства прочно закрепились среди современной техники благодаря своим высоким показателям долговечности, яркости и миниатюрности.

Они используются повсеместно: начиная с мобильных устройств и заканчивая автомобильным светом (например, мощные светодиодные лампы h4, сверхяркие светодиодные лампы h4 и многие другие) – и неспроста, ведь светодиоды крайне удобны для применения в качестве альтернативного источника света.

Если говорить об устройстве светодиода наиболее простым языком, то следует представить кристалл (тонкую пластину), которая светится и контакты, которые идут от него. Максимальная сила света диодов – 90 градусов (перпендикулярно пластине), свет от него идет по прямой – достаточно вспомнить диаграммы, которые указывают производители светодиодов на упаковке, и все станет понятно. Для наглядности – иллюстрация справа.

Конечно же, кроме оптических характеристик, то есть тех, которые связаны с освещением и производительностью, существуют другие параметры. К ним относят:

  • Фотометрические (световые) характеристики;
  • Радиометрические (энергетические) характеристики;
  • Гониометрические (угловые) характеристики;
  • Колориметрические (спектральные) характеристики;
  • Эксплуатационные характеристики (связанные со сроком службы).

Ниже приведена подробная информация по каждой из характеристик в виде таблицы.

1. Фотометрические (световые) характеристики светодиодов

Фотометрия – процесс измерения света в видимом спектре. Под видимым спектром подразумевается та часть светового спектра, которая видна невооруженным глазом среднестатистического человека, то есть длина волны лежит между 380 и 770 нм. Существует 2 основных световых стандарта – сила света и световой поток. Эти стандарты определяют главные фотометрические величины – яркость и освещенность.

Единицы измерения фотометрических параметров

Параметр В чем измеряется
Cветовой поток Люмен [Лм] – световой поток, испускаемый точечным источником с силой света 1 кд внутри телесновго угла 1 стерадиан.
Сила света Кандела [кд] – сила света восковой свечи
Яркость 1 нит = 1 кд/м2
Освещенность 1 люкс = 1 Лм/м2

Периодически возникает необходимость самостоятельно измерить излучение.

О том, как это правильно сделать, существует огромное количество статей, здесь же приведены главные моменты, на которые следует обратить внимание во время этого процесса.

Способы измерения излучения:

  • Использование калькулятора, если имеются вводные данные.
  • Использование техники при необходимости измерения по факту.

Советы и меры, которые следует учитывать во время измерения излучения:

  • Оборудование должно быть тщательно откалибровано.
  • Нужно измерять выход света с определенным временным интервалом.
  • Соблюдение постоянной температуры света в ходе тестирования.
  • Использовать исключительно стабилизированный источник света.
  • Условия тестирования должны быть легко воспроизводимы.
  • Необходимо учитывать смещение оптического центра эмиссии светодиодов относительно механического центра.

2. Радиометрические (энергетические) характеристики светодиодов

Радиометрия – измерение полного светового излучения во всех оптических диапазонах. Оптические диапазоны бывают:

  • видимый;
  • инфракрасный;
  • ультрафиолетовый.
Величина Характеристика Единицы измерения
Единица радиометрической оптической мощности Абсолютная величина, не зависит от длины волны. Один ватт инфракрасного света по мощности равен ватту видимого света. Ватт [Вт]
Энергетическая сила излучения Измеряемая величина [Вт/ср]
Энергетическая освещенность Измеряемая величина [Вт/м2]
Энергетическая яркость Измеряемая величина [Вт/cpxм2]

В процессе радиометрических измерений светодиодов необходимо придерживаться тех же рекомендаций, что и при фотометрии.

3. Колориметрические (спектральные) характеристики светодиодов

Колориметрия – измерение и определение цветовых характеристик. Обычно эти параметры выражаются в координатах цветности (когда мы видим параметр 4000К) или в длинах волн.

На кривой (Рис 4) указаны точки с цветовой температурой, которой они соответствуют в видимом спектре излучения. Так, мы видим что 6500К – это белый холодный цвет. Наиболее точный способ измерения цвета – использование спректрорадиометра.

Важным фактором является температура: с повышением температуры окружающей среды увеличивается температура активной части светодиода, а значит что увеличивается и длина волны излучения. Значение зависит от типа используемого кристалла.

4. Гониометрические (угловые) характеристики светодиодов

Гониометрия – непосредственное измерение угловых характеристик устройства. Измерение возможно лишь с использованием гониометра – прибора, который фиксирует пространственное распределение силы светодиода. На рис. 2 мы видим диаграмму пространственного распределения силы света. Из нее видно, каким образом распределяется свет, исходящий от кристалла.

Одним из главных вопросов, который интересует человека – срок службы светодиодов.

Типы сроков службы

Полный До тех пор, пока прибор не перегорит
Полезный До тех пор, пока световой поток не упадет ниже определенного предела. Иными словами, пока устройство не начнет затухать.

Тест на деградацию светодиодов проводят для того, чтобы определить полный и полезный срок службы. На практике тестом на деградацию светодиода является его непосредственная эксплуатация.

Что делать для того, чтобы устройство прослужило дольше?

  • Стабилизация тока питания. Стараться сделать его значение постоянным на протяжении всего срока эксплуатации, избегать перепадов.
  • Поддержание постоянного температурного режима в месте установки светодиода. Также она не должна превышать максимальную температуру эксплуатации, заявленную производителем.
  • Соблюдение всех инструкций и мер предосторожности, строго придерживаться норм эксплуатации.

В заключение следует сказать, что заявленные производителем параметры излучения света могут не соответствовать практическим показателям – не в силу того, что мы оказываемся обманутыми, а в силу различия условий эксперимента.

Необходимо всегда понимать, что лабораторные условия всегда отличаются от естественных, и понятие погрешности вполне допустимо, особенно при измерении такой чувствительной характеристики, как свет.

Источник: https://xenon-lampa.ru/cat-dopolnitelnoe-osveschenie/a-opticheskie-harakteristiki-svetodiodov

Световой поток: в чем измеряются светодиодные лампы, таблица, что такое люмены, интенсивность, яркость, светоотдача светильника

Все большую популярность среди осветительных приборов приобретают светодиодные источники света. Несмотря на довольно высокую стоимость изготовления, переход на такой тип освещения всего лишь вопрос времени.

LED (международное обозначение) лампы обладают преимуществами перед лампами накаливания и люминесцентными светильниками. Их параметры, такие, как спектр цвета, цветовая температура, яркость, поддаются регулировке.

Потенциал светодиодных светильников позволяет использовать их во всех сферах освещения: от дома применения в осветительных системах авто. Рассмотрим же какой световой поток у светодиодных ламп.

Принцип работы и основные характеристики

Производство LED светильников можно разделить на три этапа:

  • выращивание кристалла при помощи метода металлоорганической эпитаксии;
  • создание чипа методом планарной обработки пленок;
  • сортировка чипов с помощью бинирования;
  • сборка всех частей светодиода.

Принцип функционирования LED лампы

Принцип работы светодиода можно описать как взаимодействие двух противоположно заряженных полупроводников, создающих p-n-переход (контакт электронов). В процессе взаимообмена электронами на его границе создается световое излучение.

Основные характеристики, позволяющие оценить качество светодиодного светильника:

  • мощность (количественное измерение потребляемой электроэнергии);
  • цветовая температура (цвет света, испускаемого элементом);
  • световой поток (количество производимого света).

Поток света в светодиодном светильнике узконаправленный.

Мощность светового потока

Световой поток характеризуется большой колючестью видимого света, который образуется при работе LED источника света. Складывается он из следующих показателей:

  • светоотдача;
  • мощность;
  • используемые химические составы;
  • качество линзы.

Основные формулы для вычисления светового потока

Яркость лампы диодного типа уменьшается в течение срока эксплуатации. Также он может теряться по мере прохождения через линзу или накладку, защищающую источник света. При этом потери остаются в пределах 5%.

Световой поток светодиодной лампы тем выше, чем больше мощность светодиода и выше напряжение в электрической сети питания.

Как определить порядок измерения

Световой поток представляет собой световое излучение, распространяющееся во всех направлениях, длину волн которого может воспринимать человеческий глаз. Единица измерения потока света лампы накаливания – люмен (Лм).

Светодиодный источник света излучает электромагнитные волны разной длины. Световой поток измеряется суммарным значением видимых глазом световых волн, а также волн инфракрасного и ультрафиолетового излучения, с учетом усредненной кривой чувствительности человеческого глаза к восприятию световых волн. По его значению определяется поток света светодиодных светильников.

более подробно про ультрафиолетовые лампы.

Источник: https://finelighting.ru/svetilniki/lampy/svetodiodnye/svetovoj-potok-kratkaya-xarakteristika-osobennosti.html

От чего зависит яркость свечения светодиода и как ее регулировать

Рядового потребителя при покупке осветительного прибора интересует не напряжение или ток, а яркость светодиода, так как она отличается от показателя других ламп. Внедрение новых технологий требует иного подхода к характеристикам светотехники.

  Основные параметры, в том числе яркость свечения, хорошие производители обозначают в маркировке, на упаковке, в технической документации.

Для правильного выбора необходимо знать значение букв и цифр, уметь определить, какой прибор допускает регулировку яркости, какой – нет.

Что такое яркость светодиода и в чем она измеряется

Яркостью свечения называют показатель света, равный соотношению силы светового потока к косинусу угла, под которым он излучается, и освещаемой площади.

Другое определение – освещенность в точке, перпендикулярной к источнику, к углу, в который заключен луч. Яркость свечения обозначается буквой «L», измеряется в милликанделах на метр в минус второй степени (кд*м-2).

У обычных светодиодов яркость 20-50 мкд, у сверхярких – до 20 000 мкд. От этого показателя зависит восприятие предметов глазами человека.

Если говорить о светодиодах, то у нихяркость свечения – это мощность (сила) света, измеряемая в ваттах и зависящаяот угла конуса, основание которого расположено на освещаемой площади, вершина –в источнике света. При равном излучении во всех направлениях яркость свечения будетсоотношением потока к пространственному углу (в градусах). Чаще всего градусыпереводятся в стерадианы: sr = 2 π (1 – cos θ/2), где θ – угол луча.

Параметры, влияющие на яркость

Насколько ярко будет отображаться освещаемый объект, зависит не только от светового потока. Яркость свечения зависит так же от плотности луча и чувствительности наблюдателя.

Что можно узнать из маркировки

У именитых производителей маркировка достаточно длинная, поэтому размещается на упаковке или в технической документации. Ленты поставляются с маркировкой на катушке. Данные можно спросить у продавца, если их нельзя найти.

Для обычных светодиодов не существует стандартных обозначений, каждый производитель использует свои. Яркость свечения всегда указывается в маркировке мощных ламп.

Источник: https://svetilnik.info/svetodiody/ot-chego-zavisit-yarkost-svecheniya-svetodioda.html

Что такое люмены, люксы, кельвины, ватты в применении к освещению

Характеристика основных показателей в применении к освещению: люксы, люмены, кельвины, ватты. Читайте!

Учитывая сложившуюся в нашей стране экономическую ситуацию, сейчас самое время перейти на светодиодное освещение. Почему? Светодиодные лампы потребляют намного меньше электроэнергии по сравнению с другими источниками света, а по своим техническим характеристикам значительно превосходят, к примеру, те же лампы накаливания.

Однако прежде чем отправиться в магазин светодиодного оборудования, необходимо знать некоторые характеристики таких устройств, учитывая которые вы сможете выбрать именно тот осветительный прибор, чьи характеристики будут полностью соответствовать условиям эксплуатации. В данной статье мы расскажем о том, что означают ватты, люмены, люксы и кельвины на маркировке светодиодов, а также поговорим о преимуществах светодиодных устройств перед другими источниками света.

Ватты, люксы, люмены, кельвины, как основные характеристики светодиодов

При покупке ламп накаливания потребитель ориентируется на количество ватт, указанных на маркировке, определяя тем самым, насколько ярко будет светить изделие. В светодиодах, данный показатель имеет совсем другое значение.

ЭТО ИНТЕРЕСНО:  Что такое светодиодные фары

Количество ватт, которое указывает производитель на упаковке, характеризуют не яркость устройства, а количество потребляемой электроэнергии за один час работы.

Естественно, можно провести параллель между лампами накаливания и светодиодами, ориентируясь только на мощность. Для этого даже существуют специальные таблицы.

Так, к примеру, светодиодное устройство мощностью 8-12 ватт будет светить так же ярко, как и лампа накаливания с характеристикой 60 ватт. Однако основной единицей, определяющей яркость светодиодных ламп, является люмен.

Что такое люмены в светодиодных лампах

Под люменом подразумевают величину светового потока, которая излучается источником освещения с силой, равной одной канделе в угол величиной в один стерадиан.

Для примера! Лампа накаливания, имеющая мощность 100 Вт, в состоянии создать световой поток, равный 1300 люменам, тогда как светодиод гораздо меньшей мощности способен выдать аналогичный показатель

Однако помимо люменов, светодиодное оборудование характеризуется ещё и по величине освещённости, которая измеряется в люксах.

Что такое люкс в освещении

Люкс – это единица измерения освещённости, которая равняется освещённости поверхности площадью один квадратный метр при световом потоке, равном одному люмену. Так, к примеру, если спроецировать 100 люменов на площадь в 1 квадратный метр, то показатель освещённости составит 100 люкс. А если аналогичный световой поток направить на десять метров квадратных, то освещённость составит всего 10 люкс.

Теперь, когда вас спросят: «люксы и люмены, в чём разница?», вы сможете блеснуть своими познаниями и дать собеседнику исчерпывающий ответ на его вопрос.

Что такое Кельвин в освещении

Как вы наверняка замечали, свет от ламп накаливания имеет тёплый желтоватый оттенок, в то время как светодиоды обладают широкой цветовой гаммой. Так, светодиодное оборудование способно отображать цвета от фиолетового до красного (в спектре белых и жёлтых цветов).

Однако наиболее распространёнными, всё же, являются ярко-белые, мягко- или тёпло-белые цвета. Зачем мы вам это рассказываем? Всё дело в том, что определить цвет света можно по маркировке изделия. Для этого необходимо посмотреть такую техническую характеристику, как цветовая температура, которая измеряется в Кельвинах.

Чем меньше число, тем желтее (теплее) будет излучаемый свет.

К примеру, обычная лампа накаливания имеет цветовую температуру, которая находится в диапазоне между 2700 – 3500 Кельвинов. Таким образом, если вы захотите приобрести светодиодный осветительный прибор, который бы имел такой же цвет, как и лампа накаливания, выбирайте светодиодное устройство с аналогичным показателем цветовой температуры.

Различные типы промышленных ламп, их достоинства и недостатки

Ниже, приведена сравнительная таблица различных видов промышленных ламп.

Тип лампы Достоинства Недостатки
Лампы накаливания Простота изготовленияНебольшой период разгоранияВеличина светового потока к концу срока службы снижается незначительно Низкий КПДНизкий показатель светоотдачиОднородный спектральный состав цветаНебольшой срок службы
Ртутная газоразрядная лампа Низки показатель потребления электроэнергииСредняя эффективность Интенсивное образование озона при горенииНизкая цветовая температураНизкий коэффициент цветопередачиПродолжительное разгорание
Дуговые натриевые трубчатые лампы Относительно высокая светоотдачаДлительный срок службы Продолжительное время разгоранияНизкий показатель экологичности
Люминесцентные лампы Хороший показатель светоотдачиРазнообразие световых оттенковДлительный срок службы Высокий показатель химической опасностиМерцание лампНеобходимость использования дополнительного оборудования для пускаНизкий коэффициент мощности
Светодиодные лампы Низкий показатель энергопотребленияДлительный срок службыВысокий ресурс прочностиРазнообразие цветовой гаммы светового потокаНизкое рабочее напряжениеВысокий показатель экологической и пожарной безопасностиРегулируемая интенсивность Относительно высокая цена

Исходя из данной таблицы, можно сделать вывод, что светодиодные лампы практически по всем показателям превосходят другие типы осветительных элементов. А что касается цены, то вряд ли этот фактор можно назвать существенным недостатком. К тому же, при грамотном подходе к вопросу выбора и установки светодиодного оборудования, к примеру на складе, оно окупит себя в относительно короткие сроки.

Проконсультироваться по поводу технических характеристик и стоимости светодиодных промышленных светильников, а также выбрать из каталога необходимое вам изделие, вы можете на нашем сайте. Также наши специалисты проведут аудит текущего освещения на вашем объекте и предложат подходящий проект  по модернизации системы. 

Источник: https://itw-systems.com/ru/blog/chto-takoe-lyumeny-lyuksy-kelviny-vatty-v-primenenii-k-osveshheniyu/

Что измеряется в люменах и какие нормы освещенности на 1 квадратный метр?

› Освещение ›

28.07.2018

Люмен — единица измерения яркости излучения. Является световой величиной в международной системе единиц. Люмен характеризует количество светового излучения, отдаваемого источником. Является более точной величиной, чем мощность, поскольку источники света с одинаковой мощностью, но различными КПД и спектральными характеристиками, излучают неодинаковый поток света.

Что такое люмен?

Существует несколько единиц измерения освещенности. Основные величины — люкс и люмен. Их отличие заключается в том, что люкс показывает освещенность единицы площади поверхности, а люмен это единица измерения всего потока излучения источника света. Таким образом, чем больше величина люкс, тем ярче освещена поверхность, а чем больше люмен, тем ярче сам светильник. Данное различие помогает оценить эффективность осветительных устройств различной конструкции.

Необходимо рассмотреть, что такое люмены в светодиодных лампах. Это поможет понять тот факт, что такие источники света характеризуются направленным излучением. Лампы накаливания и люминесцентные излучают свет во всех направлениях. Для получения одинаковой освещенности поверхности необходимы светодиодные элементы меньшей яркости, поскольку излучение сосредоточено в одном направлении.

Лампы накаливания и экономичные дают ненаправленное излучение, что требует применения рефлекторов (отражателей), перенаправляющих поток света в необходимом направлении. При использовании светодиодных устройств необходимость в рефлекторах отсутствует.

Параметры, определяющие показатель светового потока и его расчет

На параметры освещенности влияет не только уровень яркости источников освещения. Следует принимать в расчет:

  1. Длину волны излучаемого света. Освещение с цветовой температурой 4200 К, которая соответствует естественному белому цвету, лучше воспринимается зрением, чем более приближенное к красному или синему участку спектра.
  2. Направление распространения света. Узконаправленные осветительные приборы позволяют сконцентрировать излучение света в нужном месте, не устанавливая более яркие светильники.

Источник: https://odinelectric.ru/osveshhenie/chto-izmeryaetsya-v-lyumenah

Яркость светодиода – параметры и способы регулировки световыми потоками

О регулировке силы света традиционной лампочки накаливания знают многие. Но яркостью светодиода тоже можно управлять. Для этого в схему электроприбора устанавливаются широко-импульсные модуляторы или аналоговые регуляторы. Принято говорить, что такие светильники имеют опцию диммирования.

Многим потребителям до недавнего времени не приходилось задумываться над вопросом, от чего зависит яркость свечения, так как единственным параметром обычной лампочки накаливания считалась лишь потребляемая мощность, указываемая в ваттах.

Новые технологии дали миру совершенно иные представления о светотехнике, существенно расширили характеристики ламп, прописываемые в их маркировке, на упаковке или потребительском ярлыке, размещенном непосредственно на изделии. Интенсивность освещения, в сегодняшнем представлении, зависит не только от напряжения в электросети, но и от других, не всем понятных обозначений.

К тому же, регулятор яркости светодиодов позволяет управлять опцией, выставляя уровень освещенности по своему усмотрению, что важно в вопросе экономии электроэнергии.

Зачем нужно регулировать яркость

Любая сравнительная таблица наглядно показывает взаимосвязь потребления электроэнергии от яркости свечения лампы. Диммер дает реальную возможность экономии, так как позволяет снизить интенсивность светового потока, к примеру в комнате, где в данный момент семья смотрит телевизор, или увеличить освещение во время приема гостей за столом.

Многие малыши боятся темноты, а престарелые люди плохо ориентируются при выключенном свете. И в том, и в другом случае пригодится опция диммирования. Но она должна присутствовать не в общем выключателе, а в схеме светодиодного электроприбора.

В период вечернего отдыха свет можно сделать мягче. Тогда как при необходимости выполнения какой-либо работы – увеличить освещение до требуемого максимума. Следует отметить, что некоторые модели светильников комплектуются дистанционным или автоматическим управлением, учитывающим временные промежутки или факт передвижения объекта в поле охвата специально устанавливаемого датчика.

Узнать цену

Источник: http://likosvet.ru/yarkost-svetodioda-parametry-i-sposoby-regulirovki-svetovymi-potokami/

Светотехнические испытания

Измерить потребляемую мощность осветительного прибора очень легко. Поэтому часто принято оценивать яркость светодиодных светильников по этому параметру. Это в корне не верно. Яркость приборов одинаковой мощности может отличаться в несколько раз. К тому же для правильного построения системы освещения важно иметь диаграммы светораспределения в разных плоскостях и IES файлы для построения моделей в программах типа «dialux».

Измерить же световой поток, кривые распределения и другие световые параметры невозможно без дорогостоящего специализированного оборудования. Для того, чтобы представлять нашим клиентам честную информацию о яркости светильников и реальные IES файлы мы оборудовали лабораторию в которой установлен гониофотометр фирмы Lisun Electronics Co.

, Lt, прибор измерения цветовой температуры и индекса цветопередачи, прибор для измерения пульсаций светового потока и приборы для измерения электрических параметров проверяемых изделий. Оборудование откалибровано и данные испытаний синхронизированы с данными испытаний лаборатории ВНИСИ ( расхождение 1%) Практика испытаний показала , что 90% заявленных данных производителями или продавцами светодиодных изделий не совпадают с реальными и сильно завышены.

Для китайских изделий часто в разы. Поэтому, для тех, кто хочет узнать точные параметры светодиодного изделия , его реальной эффективности и параметрах светораспределения мы предлагаем провести испытания в нашей лаборатории.

Стоимость испытания и построения IES файла значительно дешевле чем в известных лабораториях.

 В  программу испытаний включены следующие данные и параметры :

— Максимальная и осевая сила света Ivmax [cd],

— Ivax [cd] — Диаграмма пространственного распределения силы света (силы излучения) в нескольких плоскостях пространства шаг 5 градусов , Iv () [cd(deg)]

— Угловые характеристики излучения по 2-м любым уровням силы света каждой плоскости (n*Iv) [deg (n*cd)] -Световой поток, Ф [lm]

— Освещённость (энергетическая освещённость) поверхности от исследуемого источника излучения на любом расстоянии от него, E [lx], E [W/m2]

-Распределение светового потока по любым уровням силы света или углам излучения в пределах диаграммы в плоскостях измерения, Ф() [lm(n*cd)], [lm(deg)]

— 3D вид фотометрического тела (не входит в сокращенную программу)

— Коэффициент использования светильника

-Коэффициент ослепления UGR

— Цветовая температура, К (не входит в сокращенную программу)

— Индекс цветопередачи % (не входит в сокращенную программу)

— IES файл

— Уровень пульсаций светового потока изделия % (не входит в сокращенную программу)

— Потребляемая электрическая мощность, W, коэффициент мощности

 — Уровень гармоник на входе ТНD, % . (не входит в сокращенную программу)

— Эффективность изделия , lm/W

Стоимость полной программы испытаний 8500 руб с НДС (24 часа)

Измерение цветовой температуры и индекса цветопередачи 1500 руб

Оценочное измерение в 2 плоскостях  — 2000 руб

Сокращенный отчет и построение IES  файла с шагом 5 градусов — 6000 руб (24 часа)

Измерение параметров отдельных светодиодов ( 5730, 2835 , 1W  и тд). Три значения тока.  от 1000 руб

Измерение электрических параметров приборов  на 220 вольт включая  THD — 500 руб

Измерение пульсаций светового потока — 500 руб

МАКСИМАЛЬНАЯ ДЛИННА СВЕТИЛЬНИКА 1270мм!!!!

Максимальный вес 20 кг

Источник: http://www.complar.ru/tests/

Как определить необходимую яркость бегущей строки

Яркость, требуемая от бегущей строки, зависит от ряда факторов. Прежде всего она зависит от места установки. Информация должна хорошо читаться на улице и не слепить покупателей в торговом зале с приглушённым светом. 

В этой статье мы рассмотрим, от чего зависит яркость бегущей строки на светодиодах, и как её правильно выбрать.

Как измеряется яркость бегущей строки

В технических характеристиках светодиодов можно встретить выражение яркости Лм. Люмен характеризует световой поток точечного источника, которым является светодиод. 1 Лм – это световой поток источника, способного создать силу света 1 Кд на угол 1 стерадиан.

Мощные сверхяркие светодиоды обеспечивают до 4500 Лм и более. Для ламп накаливания с мощностью до 100 Вт предел — 1300 Лм. Соотношение потребляемой мощности и производимой яркости для различных технологий приведена в таблице.

Основной единицей яркости светящихся тел, в том числе экранов, базирующихся на различных технологиях: лампы накаливания, светодиодная подсветка, панель светодиодов, является Нит. В единой системе измерения 1 Нт соответствует панели площадью 1 квадратный метр, производящей свет с силой 1 Кд.

Современная бегущая строка – матрица из светодиодов. С определённого расстояния её можно считать равномерно светящимся телом. Чтобы приблизительно посчитать яркость в Нитах, умножают яркость каждого светодиода на их количество и делят на площадь.

Какой должна быть яркость бегущей строки

Экран компьютера производит световой поток примерно 300-350 Нт. Но с удалением от источника, сила света уменьшается обратно пропорционально квадрату расстояния. Поэтому если сделать бегущую строку с яркостью 300 Нит, то она будет бледной в помещении на расстоянии уже 3-5 метров. А при уличном освещении информация с табло не будет различима вовсе.

Рекомендуемые значения яркости для бегущих строк на светодиодах.

  • Для использования в помещении со скудным освещением достаточно 1500-2000 Нт.

  • Для помещений с большим количеством окон и торговых залов рекомендуется 2-3,5 тысячи Нт.

  • Для наружной установки яркость табло должна быть не меньше 3500-4000 Нт.

  • Если бегущая строка должна быть видна даже в самый солнечный день, то требуется не менее 5000 Нт.

При выборе модулей для бегущей строки существует соблазн сэкономить. Чем ярче светодиод, тем дороже он стоит. Растёт и потребляемая мощность табло. С другой стороны, важно, чтобы информация с табло хорошо читалась. После 10 лет использования яркость светодиодов значительно убавится, поэтому стоит иметь определённый запас.

Инженеры компании «Смарт Технологии-М» считают, что светодиодная бегущая строка в Волгограде, известном своим ярким солнцем, должна быть рассчитана в точном соответствии с местом будущей установки. Для этого может быть сделан предварительный выезд на объект. Только так можно гарантировать, что табло будет достаточно ярким в любых условиях и при этом не ослепит ваших клиентов.

Источник: https://ms34.ru/news/353/

Понравилась статья? Поделиться с друзьями:
Электро Дело
Какие цифры показания счетчика электроэнергии

Закрыть