Что такое шунтирование в электричестве

Электронные счетчики предлагают несколько способов борьбы с хищением электроэнергии и защиты от неправильных подключений

Что такое шунтирование в электричестве

Кража электрической энергии началась примерно с тех пор, как Томас Эдисон основал в 1878 году Edison Electric Light Company. В 1886 году Daily Yellowstone Journal опубликовал отчет о том, что «большое количество беспринципных лиц производит незаконное подключение к электросети и ворует электроэнергию Эдисон». Представительство компании ответило подключением дополнительных динамо-машин в систему с целью вывести из строя незаконно подключенное оборудование.

Проблема с воровством электроэнергии актуальна и до сих пор. Согласно данным недавнего исследования, глобальные потери от хищения электрической энергии в 2015 году составили примерно 89.3 миллиарда долларов США. При этом первое место заняла Индия (16,2 миллиарда долларов), второе Бразилия (10,5 миллиардов долларов), и на третьем месте Россия (5,1 миллиардов долларов).

Принятие новых умных сетей (Smart Grid) и умных счетчиков, а также внедрение новых технологий позволяет улучшить систему обнаружения хищения электроэнергии.

Общие способы воровства электроэнергии

Существует довольно большое количество способов воровства электрической энергии. Самым простым из них можно назвать подключение к линии электроснабжения до электрического счетчика или же его шунтирование. Более сложные схемы, как правило, направлены на снижения количества измеряемой электросчетчиком энергии путем внесения изменений в схемы его соединения или вмешательство в сам рабочий процесс электросчетчика.

К внешним изменениям можно отнести – замена местами подключения фаза – ноль, полное отсоединение нейтрального провода, обеспечения контура протекания тока через землю, а не через нейтраль, отсоединение одного из фазных проводов от электросчетчика.

Когда речь заходит о вмешательстве в работу самого электросчетчика, то здесь пальму первенства занимает мощный магнит.

Это связано с тем, что электроизмерительные приборы для своей работы используют магнитные устройства, и внешние магнитные поля способны оказывать существенное влияние на точность измерения.

Размещенный рядом со счетчиком мощный магнит может насытить магнитные сердечники датчиков и тем самым  внести существенное негативное влияние на работу счетчика, вплоть до его полной остановки.

«Интеллектуальный» измерительный блок

За последнее десятилетие энергокомпании развернули компанию по замене старых электромеханических счетчиков новыми электронными, или как их называют «умными» счетчиками. Это способствует снижению краж электроэнергии.

«Интеллектуальный» электросчетчик включают в себя микроконтроллер и датчики измерения тока и напряжения, двунаправленные и беспроводные системы связи, функции создания отчетов и определения неисправностей, а также различные методы выявления хищения электроэнергии и предотвращения фальсификации результатов измерения.

На рисунке ниже показан наиболее распространенный метод измерения потребляемой мощности с помощью аналого-цифрового преобразователя АЦП работающего с микропроцессором и датчиков тока и напряжения:

Применение такой схемы сокращает энергопотребление самого счетчика практически к нулю, так как микроконтроллер практически все время пребывает в режиме малого потребления или спящем режиме и просыпается только в случае необходимости выполнения измерений, приема или передачи данных, или же в случае возникновения предупреждений.

Меры против несанкционированного доступа

Умный счетчик использует несколько методов для обнаружения и предотвращения несанкционированного доступа. Для предотвращения вмешательства в работу электросчетчика необходимо ограничить к нему доступ. При попытке несанкционированного доступа к корпусу прибора об этом должен извещаться микроконтроллер.

Для предотвращения кражи электричества путем обвода фазного провода мимо счетчика или замены местами проводов фазы и нейтрали, необходимо измерять ток на нейтральном проводе. Если существует разница между входящим и выходящим током – происходит утечка электроэнергии.

Для трехфазных симметричных сетей ток нулевого провода должен быть равен нулю. Слишком большой ток в нулевом проводе может говорить о несанкционированном подключении в какой-то фазе.

Защита от внешних магнитов

Внешние магниты способны оказывать очень негативное влияние на измерительные трансформаторы тока ТТ.

Трансформатор тока является одним из наиболее популярных устройств измерения тока в цепях переменного напряжения. Ниже показан его принцип работы:

Протекая через шину или провод, переменный ток создает магнитный поток в сердечнике трансформатора, который потом индуцирует переменный ток во вторичной обмотке. Если в первичной обмотке будет протекать ток нагрузки, то во вторичной обмотке протекает ток первичной, деленный на N (количество витков вторичной обмотки). Выходной ток трансформатора тока будет потенциально изолирован от напряжений и токов первичной цепи.

Если на прибор будет действовать сильное внешнее магнитное поле, то оно может привести к насыщению сердечника трансформатора тока и ввести ошибки в его работу. Проще говоря – вывести его из строя.

Есть несколько способов борьбы с таким явлением:

  1. Если трансформатор тока является встроенным в счетчик устройством, то необходимо добиться такого его расположения внутри устройства, чтобы ограничить доступ внешних магнитных полей. Если добиться такого расположения не представляется возможным, то необходимо предусмотреть его экранирование от внешних магнитных полей.
  2. Также возможен вариант с заменой трансформатора тока на катушку Роговского. Данная катушка не имеет металлического сердечника, и применение внешних магнитных полей никак не повлияет на точность ее измерения.
  3. Существует вариант с использованием измерительного шунта. В качестве шунта может быть использован резистор малого напряжения. Этот метод обеспечивает довольно точное измерение, однако это прямой метод измерения и нужно выполнять специальные защиты для системы управления.
  4. Помещение рядом с уязвимым элементом датчика магнитного поля. Когда значение магнитного поля превысит допустимое значение (несмотря на его полярность), датчик подаст сигнал в микроконтроллер о том, что магнитное поле превысило допустимое.
ЭТО ИНТЕРЕСНО:  Как расшифровывается Пвс кабель

Защита источника питания

Силовой трансформатор для питания системы управления счетчика тоже является уязвимым к внешним магнитным полям, как и трансформатор тока. Успешная атака на блок питания может привести к полному отключению электросчетчика.

Если смарт счетчик потребляет мало мощности, то одним из вариантов обеспечения надежности питания является реализация drop-cap топологии, которая не требует наличия трансформатора. drop-cap источник использует емкостное сопротивление конденсатора для уменьшения напряжения.

На рисунке ниже показана схема питания drop-cap источника для трехфазного электронного счетчика:

Источник: https://elenergi.ru/elektronnye-schetchiki-predlagayut-neskolko-sposobov-borby-s-xishheniem-elektroenergii-i-zashhity-ot-nepravilnyx-podklyuchenij.html

Что такое шунт в электричестве — Все об электричестве

Что такое шунтирование в электричестве

1.1. Электрическая цепь. Основные понятия и определения 13

Если цепь содержит не менее двух узлов и контуров и не менеетрёх ветвей, то такая цепь являетсяразветвлённой, в противном случае––неразветвлённой.

Смешанным соединением участков электрической цепи называется сочетание последовательных и параллельных соединений.

Взависимости от соотношения сопротивления источника и нагрузки различают четыре режима электрической цепи:

1. Рабочие ––

•номинальный (Rн =Rнн, все параметры цепи соответствуют расчётным);

•согласованный (Rн =Rвн, обеспечивает передачу максимальной мощности от источника к нагрузке при КПД 50 %).

2.Предельные ––

•холостого хода (Rн Rвн, разрыв электрической цепи, напряжение на выходных разъёмах равно ЭДС);

•короткого замыкания (Rн Rвн, характеризуется высоким значением силы тока, которая ограничена только внутренним сопротивлением источника, обычно является аварийным режимом).

1.1.4.1. Номинальный режим
Номинальный режим –– режим электри-
ческой цепи, в котором сопротивление нагруз- i
ки соответствует паспортному или расчётному
(Rн =Rнн, рис.1.3). Rвн
Номинальный режим является основным u Rнн
рабочим режимом любой электрической цепи.
e
Номинальному режиму соответствует но-
минальные или расчётные значения напряже-
ния (u =uн) и тока (i =iн).
Параметры номинального режима приво- Рис. 1.3.
дятся в паспорте устройства а также на пас-

Номинальный режим

портной табличке (шильдике), расположенном на корпусе устройства.

14 1. Основные положения
Согласованный режим–– режим элек-
i трической цепи, в котором сопротивление
нагрузки равно внутреннему сопротивле-
Rвн нию источника (Rн =Rвн, рис.1.4).
Rн= Rвн u Характерной особенностью согла-
e сованного режима является максимум
передаваемой мощности от источника к
нагрузке. Основным недостатком этого ре-
жима является низкий КПД (50 %).
Рис. 1.4. Согласованный Рассмотрим согласованный режим по-
дробнее.
режим Ток в цепи и мощность в цепи, при-
ведённой на рис. 1.4 определяются следую-
щими выражениями: e
i =
Rвн+ Rн
p = Rнi2 = Rн e2
(Rвн +Rн)2
Найдём максимум мощности приёмника, приравняв к нулю про-
изводную мощности по сопротивлению нагрузки:
dp = e2 (Rвн +Rн)2 − 2(Rвн +Rн)Rн = 0.
dRн (Rвн +Rн)4

Полученное равенство будет выполняться при условии равенства нулю делителя (при e = 0 наступит режим холостого хода и передача энергии осуществляться не будет):

(Rвн +Rн)2 − 2(Rвн +Rн)Rн = 0.

И окончательно:

Rвн= Rн.

Следствием равенства сопротивлений нагрузки и источника является низкое значение КПД:

1.1. Электрическая цепь. Основные понятия и определения 15
μ = Rнi2 = = 1 .
(Rн +Rвн)i2 2Rн 2

В связи с низким КПД, согласованный режим применяется главным образом в маломощных (в первую очередь электронных) цепях.

1.1.4.3. Режим холостого хода

Режим холостого хода –– режим электрической цепи, в котором сопротивление нагрузки значительно превышает внутренне сопротивление источника (Rxx Rвн, рис. 1.5).

Говоря о режиме холостого хода, обычно, подразумевают работу без нагрузке, что, в случае электрических цепей, соответствует бесконечно большому сопротивлению или разрыву цепи.

ЭТО ИНТЕРЕСНО:  Какой кабель использовать для розеток

Режиму холостого хода соответствует максимум напряжения (будет равно ЭДС: uхх =e) и равенство нулю тока (iхх = 0).

iхх= 0

Rвн

uхх= e

e

Рис. 1.5. Режим холостого хода

1.1.4.4. Режим короткого замыкания

Режим короткого замыкания –– режим электрической цепи, в котором сопротивление нагрузки значительно ниже внутреннего сопротивления источника (Rкз Rвн, рис. 1.6).

Говоря о режиме короткого замыкания, обычно, подразумевают аварийный режим вызванный разрушением изоляции или попаданием в цепь постороннего предмета.

Важно отметить, что в ряде случаев (например при исследовании трансформатора), для получения характеристик электрического устройства, проводят опыт короткого замыкания. В этом случае режим короткого замыкания не является

i e

u

e

Рис. 1.6. Режим короткого замыкания

аварийным, т. к. токи и напряжения в электрической цепи не превышают номинальных.

Режиму короткого замыкания соответствует минимум напряжения (uкз = 0) и большое значение тока (фактически ток ограничен внутренним сопротивлением источника,iкз → ∞).

1.1.4.5.Сводная таблица параметров основных режимов электрической цепи

Наименование режима Сопротивление Напряжение Сила тока
Номинальный Rн= Rнн uн= uнн iн= iнн
Согласованный Rн= Rвн –– ––
Холостого хода RнRвн uн = e iн → 0
Короткого замыкания RнRвн uн → 0 iн → ∞

Rн ––сопротивление нагрузки;

Rнн ––номинальное сопротивление нагрузки;Rвн ––внутреннее сопротивление источника;uн ––напряжение на нагрузке;

uнн ––номинальное напряжение на нагрузке;e ––ЭДС;

iн ––сила тока в нагрузке;

iнн ––номинальная сила тока в нагрузке;

1.1.4.6. Шунт

Рис. 1.7. Шунт

Rш ––шунт,

R ––шунтируемый элемент

Шунт (от англ. shunt––ответвление)––элемент электрической цепи, сопротивление которого, в заданном диапазоне частот, значительно меньше сопротивления шунтируемого элемента, к которому шунт включается параллельно (рис.1.7).

Шунтирование, в основном, применяется в измерительной технике для расширения пределов измерения амперметров.

Источник: https://contur-sb.com/chto-takoe-shunt-v-elektrichestve/

Шунт

Что такое шунтирование в электричестве

В электронике и электротехнике часто можно услышать слово “шунт”, “шунтирование”, “прошунтировать”. Слово “шунт” к нам пришло с буржуйского языка: shunt –  в дословном переводе “ответвление”, “перевод на запасной путь”. Следовательно, шунт в электронике – это что-то такое, что “примыкает” к электрической цепи и “переводит” электрический ток по другому направлению. Ну вот, уже легче).

По сути дела шунт представляет из себя простой резист ор который имеет маленькое сопротивление, проще говоря, низкоомный резистор. И как бы это ни странно звучало: шунт является простейшим преобразователем силы тока в напряжение. Но как это возможно? Да оказывается все просто!

Как работает шунт

Итак, имеем простой шунт. Кстати, на схемах он обозначается как резистор. И это неудивительно, потому что это и есть низкоомный резистор.

Условимся считать, что ток у нас постоянный и течет из пункта А в пункт Б. На своем пути он встречает шунт и почти беспрепятственно течет через него, так как сопротивление шунта очень маленькое. Не забываем, что электрический ток характеризуется такими параметрами, как Сила тока и Напряжение. Через шунт электрический ток протекает с какой-то силой ( I ), в зависимости от нагрузки цепи.

Помните Закон Ома  для участка электрической цепи? Вот, собственно и он:

где

U – напряжение

I – сила тока

R – сопротивление

Сопротивление шунта у нас всегда постоянно и не меняется, попросту говоря “константа”. Падение напряжение на шунте мы можем узнать, замерив вольтметром как на рисунке:

Значит, исходя из формулы 

получаем формулу:

и делаем простой до ужаса вывод: показания на вольтметре будут тем больше, чем бОльшая сила тока будет протекать через шунт.

Так что же это значит? А это значит, что мы спокойно можем рассчитать силу тока, протекающую по проводу АБ ;-). Все гениальное – просто! И самое замечательное знаете что? Нам даже не надо использовать амперметр ;-).

Вот такой принцип действия шунта. И чаще всего этот принцип используется как раз для того, чтобы расширить пределы измерения измерительных приборов.

Виды шунтов

Промышленные амперметры выглядят вот так:

На самом же деле, как бы это странно ни звучало – это вольтметры. Просто их шкала нарисована (проградуирована) уже с  расчетом по закону Ома. Короче говоря, показывает напряжение, а счет идет в Амперах ;-).

На одном из них можно увидеть предел измерения даже до 100 Ампер. Как вы думаете, если поставить такой прибор в разрыв электрической цепи и пропустить силу тока, ну скажем, Ампер в 90, выдержит ли тоненький провод измерительной катушки внутри амперметра? Думаю, пойдет белый густой дым). Поэтому такие измерения проводят только через шунты.

А вот, собственно, и промышленные шунты:

ЭТО ИНТЕРЕСНО:  Сколько герц в сети 220 вольт

Те, которые справа внизу  могут пропускать  через себя силу тока  до килоАмпера и больше.

К каждому промышленному амперметру в комплекте идет свой шунт. Для начала использования амперметра достаточно собрать  шунт с амперметром вот по такой схеме:

В некоторых амперметрах этот шунт  встраивается прямо в корпус самого прибора.

Работа шунта на практическом примере

В гостях у нас самый что ни на есть обыкновенный промышленный шунт для амперметра:

Сзади можно прочитать его маркировку:

Как же прочитать характеристику такой маркировки? Здесь все просто! Это означает, что если протекающая сила тока через шунт будет 20 Ампер, то падение напряжения на шунте будет 75 милливольт.

0,5  – это класс точности. То есть сколько мы замерили – это значение будет с погрешностью 0.5% от измеряемой величины. То есть допустим, мы замеряли падение напряжения 50 милливольт. Погрешность измерения составит 50 плюс-минус 0,25. Такой точности вполне хватит для промышленных и радиоэлектронных нужд ;-).

Итак, у нас имеется  простая автомобильная лампочка накаливания на 12 Вольт:

Выставляем на  Блоке питания напряжение в 12 Вольт, и цепляем нашу лампочку. Лампочка зажигается и мы сразу же видим, какую силу тока она потребляет, благодаря встроенному амперметру в блоке питания. Кушает наша лампа 1,7 Ампер.

Предположим, у нас нету встроенного амперметра в блоке питания, но нам надо знать, какая все-таки сила тока проходит через лампочку. Для этого собираем простенькую схемку:

И замеряем падение напряжения на самом шунте. Получилось 6,3 милливольта.

Так как мы знаем, что при 20 Амперах напряжение на шунте будет 75 милливольт, то какая сила тока будет проходить через шунт, если падение напряжения на нем составит 6,3 милливольта? Вспоминаем училку по математике Марьиванну и решаем простенькую пропорцию за 5-ый класс ;-)

Вспоминаем, что показывал наш блок питания?

Погрешность в 0,02 Ампера! Думаю, это можно списать на погрешность приборов).

Так как радиолюбители в основном используют малое напряжение и силу тока в своих электронных безделушках, то можно применить этот принцип и в своих разработках. Для этого достаточно будет взять низкоомный резистор и использовать его как датчик силы тока). Как говорится ” голь на выдумку хитра” ;-)

Где купить шунт

Почти такой же шунт, как у меня в статье, можно заказать на Али по этой ссылке:

Источник: https://www.ruselectronic.com/shunt-dlya-ampermetra/

Расчет сопротивления шунта амперметра

Часто при электротехнических измерениях необходимо узнать величину тока протекающего в цепи. Для этого используется амперметр. Как и другие измерительные приборы, амперметр имеет свой максимальный предел измерения, в тех случаях, когда его недостаточно, применяют шунтирование амперметра.

Шунт — это сопротивление, которое подключается параллельно к зажимам амперметра, с целью увеличения диапазона измерений. Добавление шунта параллельно амперметру вызывает разделение тока I, который протекает через данную цепь, на две составляющие – Iа и Iш.

По закону Кирхгофа известно, что сумма токов сходящихся в узле равна нулю, а значит, ток I представляет собой сумму токов Iа и Iш. Чем меньше сопротивление шунта Rш , тем ток Iш больше, а значит ток Iа, который протекает через амперметр — меньше. Зная, как соотносятся сопротивление амперметра Ra и шунта Rш, можно узнать величину измеряемого тока I или напротив, зная ток I, можно рассчитать необходимое сопротивление шунта Rш.

Формула для расчета сопротивления шунта:

Для увеличения диапазона измерения амперметра в n раз, формула для шунта:

Пример 1

Рассчитайте сопротивление шунта, который увеличит диапазон электромагнитного амперметра до 10 А, если известно, что амперметр имеет внутреннее сопротивление 5 Ом и измеряет ток до 1 А.

Измеряемый ток в 10 А, делится на два тока Iа = 1 А, и Iш, который равен:

Отсюда измеряемый ток должен разделиться в соотношении:

Так как по закону Ома сопротивление обратно пропорционально току, то

Откуда Rш:

Ответ: 0.556 Ом

Пример 2

Определите, какое должно быть сопротивление шунта, для того, чтобы увеличить предел измерения амперметра в 5 раз, если известно, что внутреннее сопротивление амперметра 2 Ом.

Сопротивление шунта рассчитывается по следующей формуле:

Ответ: 0,5 Ом.

Пример 3

Амперметр дает полное отклонение стрелки при токе в 3 А. Необходимо измерить с помощью него ток в 150 А. Определите сопротивление шунта, если известно, что внутреннее сопротивление амперметра 1 Ом.

Для проведения измерения необходимо увеличить ток в n раз:

По уже знакомой формуле рассчитаем сопротивление шунта:

Ответ: 0.02 Ом.

1 1 1 1 1 1 1 1 1 1 4.29 (12 Голоса)

Источник: https://electroandi.ru/toe/dc/raschet-soprotivleniya-shunta-ampermetra.html

Понравилась статья? Поделиться с друзьями:
Электро Дело
Как узнать какой провод фаза а какой ноль

Закрыть