Какой ток у нас в сети

Какой ток в розетке

Современные электроприборы сконструированы максимально дружелюбными к пользователю и чтобы их использовать совершенно не обязательно знать какой ток в розетке, куда они подключаются. Подобные познания могут никогда не пригодится в повседневной жизни – обычно достаточно знать, что в розетке есть ток, благодаря которому работают все бытовые приборы.

Где могут пригодиться знания по электричеству

Хорошо если вопросы о принципах работы электроприборов возникают просто из «спортивного интереса». Хуже бывает в случае поездки в другую страну, где неподготовленные путешественники с удивлением обнаруживают розетки незнакомого типа. Если до этого человек обращал внимание на надписи возле «своих» розеток, то в «чужих» может оказаться другая частота и напряжение. Для понимания почему так происходит, надо хотя бы в общих чертах ознакомиться с основами электротехники.

Сразу необходимо оговориться, что все рассказанное ниже дано в очень упрощенном и утрированном виде. Некоторые аналогии могут полностью не отражать все происходящие в электропроводке процессы и даны исключительно для общего их понимания.

Постоянный и переменный ток

Это одна из важнейших характеристик электрического тока. Каждый электроприбор рассчитан под определенный его вид и при неправильном подключении в лучшем случае просто не будет работать.

Любой из этих токов создается электромагнитным полем, что заставляет двигаться свободные электроны в металлах или других проводниках. Но при постоянном они все время летят в одну сторону, а переменный ток дергает их туда-сюда.

В любом случае они двигаются и совершают работу, но устройства для преобразования электрической энергии в механическую приходится делать разными.

То есть электродвигатель, к примеру, можно сделать как от постоянного, так и от переменного тока, но первый нельзя включать во вторую цепь.

Если большинство электроприборов работает от постоянного тока, то для передачи электроэнергии на большие расстояния выгоднее использовать переменный – он не так чувствителен к сопротивлению проводников. Поэтому не может быть двух мнений по поводу какой ток в бытовой розетке: постоянный или переменный – всегда используется второй вариант.

В этом видео описываются исторические предпосылки использования переменного тока в электросетях:

Фаза и ноль

Эти понятия относятся исключительно к переменному току. Принято считать, что фаза в розетке является аналогом плюса постоянного тока, а ноль – минуса, поэтому ноль «не бьется», если до него дотронуться.

На самом деле все несколько сложнее – в переменном токе плюс и минус постоянно меняются местами, поэтому в замкнутой цепи (при подключенной нагрузке) по нолю тоже протекает ток.

Но дело в том, что он действительно не бьется, даже если брать его голыми руками – при электромонтажных работах ищут где находится фаза в розетке и в обязательном порядке изолируют этот провод, а остальные без особой опаски оставляют оголенными.

В правильно подключенной и нормально работающей электропроводке ноль не бьет человека током потому что применяется так называемая схема подключения потребителей с глухозаземленной нейтралью. Это значит, что нулевой провод на подстанции и в месте ввода в дом заземлены и ток, если он есть в проводе, проходит «мимо» человека.

Есть ряд условий, при которых нулевой провод может ударить током. Если нет соответствующего опыта обращения с электропроводкой, не стоит рассчитывать на то, что нуль всегда безопасен.

Заземление

Розетка без провода заземления не редкость для старых домов, потому что раньше в быту практически не использовались мощные электроприборы. Современные требования к безопасности электроприборов гораздо жестче, поэтому розетки устанавливаемые без заземления просто не могут быть использованы даже в проекте.

Смысл заземления в дополнительной защите. Если используется розетка без защитного заземления, то в большинстве случаев корпус приборов подключен к рабочему нолю.

Как итог – если фаза попадает на корпус устройства (при пробое изоляции), то происходит короткое замыкание и выбивает защитные пробки. Это приводит к порче прибора, и сравнительно безопасно для человека, при одном условии – если он на момент замыкания не касался устройства.

В противном случае, пока не сработает защита, человека бьет ток короткого замыкания, который в десятки раз выше номинального.

Розетки с заземлением разделяют ноль на рабочий, необходимый для функционирования устройства, и защитный. Корпус теперь, соединен с заземлением, а ноль работает в штатном режиме.

Если на корпус попадает фаза, то розеточный заземляющий контакт «уводит» ее от человека, даже если он на этот момент касается устройства, а защитная автоматика выключает питание.

Человека током не бьет, короткого замыкания не происходит и устройство по возможности остается в сохранности. Остается только найти место где повредилась изоляция и устранить неисправность.

Розетка без исправного заземления будет работать точно так же как и с ним, но при возникновении нештатной ситуации не сможет обеспечить должную защиту подключенным устройствам и человеку.

Как итог, вопроса что лучше ставить – розетки работающие без заземления или все-таки с ним, не существует – ПУЭ однозначно требуют поставить устройство второго типа.

Напряжение электрического тока

путь тока от электростанции (кликните для увеличения)

Если не использовать такие научные термины как «напряженность электрического поля» и «разность потенциалов», то понять какое напряжение в сети и почему оно именно такое помогут следующие аналогии:

Потенциальная и кинетическая энергия – пример очень упрощенный, но смысл в том, что напряжение показывает, какие силы могут быть задействованы при перемещении электрического заряда. Главное отличие в том, что потенциальная энергия переходит в кинетическую, а напряжение всегда стабильно.

Использовать эту аналогию можно потому, что пока в розетку не включен никакой прибор, то в ней есть напряжение, готовое начать двигать заряженные частицы, но нет электрического тока.

Движение электрического тока начинается только при подключении к проводам нагрузки (или при замыкании ноля и фазы).

Чем больше напряжение, тем выше его «проталкивающая» способность – это значит, что при достаточно больших его значениях ток «пробьет» диэлектрик между проводами.

В обычных условиях диэлектриком между проводами является воздух, поэтому чем больше напряжение, тем выше вероятность возникновения молнии (замыкания) между ними.

Это свойство используется в пьезозажигалках и механизмах розжига промышленных печей, только в первых расстояние между контактами 0,5 мм и напряжение в несколько Вольт, а во втором случае – между контактами 10-15 сантиметров, а напряжение около 10 тысяч Вольт.

От напряжения зависит насколько удобно передавать ток на большие расстояния – чем оно больше, тем меньше потерь.

Для линий электропередач между городами используется напряжение 150-600 тыс. Вольт, в пригороде это 4-30 тыс. Вольт, а у потребителей напряжение в розетке уже 100-380 Вольт. В разных странах действуют свои стандарты, поэтому перед поездкой стоит уточнять этот момент.

Частота электрического тока

Один из параметров переменного тока, показывающий сколько раз за секунду он поменяет направление движения от плюса к минусу. Полный цикл изменений – от ноля к плюсу, затем к минусу и обратно к нолю называется Герц. Во всем мире используется два стандарта частоты – 50 и 60 Герц.

От частоты, как и от напряжения, зависят потери тока при его передаче – чем выше частота, тем меньше потерь. Поэтому первый вариант используется при напряжении сети около 220 Вольт, а второй – при 110.

Частота тока зависит от того, с какой скоростью крутятся генераторы на вырабатывающих электричество станциях. Она всегда остается неизменной – в отличие от напряжения допускается погрешность в 0,5-1 Герц.

Сила тока

розетка на 16а (кликните чтобы увидеть надпись на крышке)

На крышке розетки можно увидеть надпись 6, 10 или 16А. Это не значит, что сила тока в розетке будет достигать таких величин – это максимальные его значения, на которые рассчитаны розеточные контакты. Соответственно, чтобы узнать, какая сила тока, а точнее – сколько ампер в розетке на данный момент, следует установить в электрическую цепь измерительное устройство – амперметр.

Примерно силу тока можно высчитать, если известна мощность устройства – по формуле I=P/U (напряжение в сети известно – на постсоветском пространстве это 220 Вольт).

К примеру, если электрочайник потребляет 2000 Ватт, то надо 2000 разделить на 220. Получается примерно 9 Ампер – сила тока, в 18 раз большая чем нужно, чтобы убить человека.

Сложнее подсчитать ампераж, к примеру, компьютера. Во-первых, при его работе в сеть включено сразу несколько устройств. Во вторых – энергосберегающие технологии используют ресурсы процессора по минимуму, разгоняя его только при решении сложных задач. Поэтому сила тока будет периодически изменяться.

Это все основные характеристики электрического тока, которые достаточно знать, чтобы получить про него хотя бы общее представление. При поездке в другую страну, где могу действовать иные нормативы, достаточно будет выяснить какие там в сети напряжение и частота. Если они отличаются от тех, на которые рассчитана зарядка телефона (или другие устройства, которые могут быть взяты в поездку), то дополнительно придется решать, как быть в этой ситуации.

Источник: https://yaelectrik.ru/jelektrojenergija/kakoj-tok-v-rozetke

Почему в США напряжение в сетях 110 В, а в России 220 В?

Еще в 1880 году Томас Эдисон предложил и запатентовал трехпроводную электрическую сеть постоянного тока, в которой было два провода +110 и -110 В и нулевой проводник. Такая сеть свободно питала лампу накаливания. Для ее работы необходимо было 100 В, а 10% Эдисон накинул, учитывая потери при движении тока в проводе.

Со временем Джордж Вестингауз начал применять переменный ток для бытовых потребителей. С того момента началась так называемая «война токов», в которой постоянный ток Эдисона отчаянно проигрывал. В 1898 году люди начали массово переходить на применение переменного тока.

С того момента начал работать стандарт сетей в 100-127 В. В США ЭУ запитаны от переменного тока с заземлением TN-C-S. При этом одна фаза от вторичной обмотки понижающего трансформатора подается в трехпроводную сеть 120/240 В (с расчетами погрешности). Поэтому в дом к американскому жителю приходят три провода: две фазы и ноль. Между нулем и фазой напряжение 120 В — для маломощных потребителей, а между фазами — 240 В, для мощных бойлеров, варочных панелей и обогревателей.

Со временем в Европе начали использовать лампы с нитью накаливания из металла, для которой необходимо напряжение выше, чем 110 В. Так начали появляться сети с напряжением в 220 В. Потери электроэнергии в таких сетях вчетверо ниже, чем в сетях 110 В. Почему же тогда США не перешла на 220 В? Ответ кроется в экономической невыгодности таких реформ.

Во-первых, сеть 110–127 В — это возможность борьбы с импортом техники, то есть американцы в большинстве своем используют устройства своего производства. Во-вторых, поражение электрическим током при 110 В гораздо слабее, чем при 220 В (многое зависит от времени воздействия тока).

В-третьих, переход на «новую» сеть — это затраты миллиардов долларов на перестройку подстанций и других электроустановок.

Почему в России напряжение 220 В?

В СССР, как и в США, долгое время применялось напряжение 100–127 В. Однако в середине 60-х годов с увеличением количества потребителей сеть стала не справляться. Необходимо было увеличивать или сечение проводов, или напряжение в сети до 220 В.

Экономически выгоднее стало использовать более высокое напряжение. Последующая глобальная электрификация страны привела к тому, что стандарт 220 В 50 Гц стал распространен не только в современной России, но и во всех странах постсоветского пространства.

В каких странах кроме сша распространен стандарт 100 — 127 в?

Вот список стран, где используются сети 100–127 В. Это стоит учитывать, если планируете поехать на отдых заграницу.

Страна Напряжение, В
Самоа 120
Ангилья 110
Аруба 127
Багамские о-ва 120
Барбадос 110
Белиз 120
Бермуды 120
Бонайре 127
Бразилия 127
Венесуэла 120
Виргинские о-ва 110
Гаити 110
Гватемала 120
Гондурас 110
Гуам 110
Доминиканская республика 110
Каймановы о-ва 120
Канада 110
Тайвань 110
Колумбия 120
Коста-Рика 120
Куба 110
Либерия 110
Ливия 127
Мадагаскар 127
Марокко 127
Мексика 127
Микронезия 120
Антильские о-ва 127
Никарагуа 120
Панама 110
Пуэрто-Рико 120
Сальвадор 115
Саудовская Аравия 127
Сент-Китс и Невис 110
Суринам 127
Таити 110
Тринидад и Тобаго 115
Эквадор 120
Ямайка 110
Япония 100

Как видим, не так уж и мало стран, где напряжение 100–127 В.

Что делать, если купили технику из США?

Большинство техники из США рассчитано на работу от 110-230 В. Поэтому если вы приобрели ноутбук или другую технику из Штатов, то достаточно просто купить переходник с американской вилки на европейскую. Цена вопроса 100–150 рублей.

Другое дело, если прибор работает исключительно от сети в 110 В. Здесь обычный адаптер не поможет. Однако есть решение этой проблемы. Их два:

1. Переделать блок питания для работы от 220 В. В большинстве приборов идет импульсный блок питания, в котором достаточно поменять конденсатор (поставить на 400 В) и варистор, с напряжением на пробой в 360 — 390 В. Конденсатор найти не сложно — их продают в любом магазине радиодеталей, а вот с варисторами могут быть проблемы. Конечно, переделка блока питания — дело непростое, но зато сможете запускать импортный пылесос или другую технику без проблем.

2. Установить понижающий трансформатор. Он позволит использовать технику, работающую от 110 В, включая ее в нашу сеть. Однако, важно подобрать трансформатор соответствующей мощности. Большинство трансформаторов на рынке имеют китайское происхождение, поэтому советуем брать их с запасом по мощности в 10 — 20 %. Стоимость китайского прибора мощностью 10 Вт составляет примерно 1000–2000 рублей. На 100 Вт и выше будет стоить от 5000 рублей.

Источник: https://ichip.ru/tekhnologii/pochemu-v-ssha-napryazhenie-v-setyah-110-v-a-v-rossii-220-v-704922

Переменный ток. 1

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: переменный ток, вынужденные электромагнитные колебания

Переменный ток — это вынужденные электромагнитные колебания, вызываемые в электрической цепи источником переменного (чаще всего синусоидального) напряжения.

Переменный ток присутствует всюду. Он течёт по проводам наших квартир, в промышленных электросетях, в высоковольтных линиях электропередач. И если вам нужен постоянный ток, чтобы зарядить аккумулятор телефона или ноутбука, вы используете специальный адаптер, выпрямляющий переменный ток из розетки.

Почему переменный ток распространён так широко? Оказывается, он прост в получении и идеально приспособлен для передачи электроэнергии на большие расстояния. Подробнее об этом мы поговорим в листке, посвящённом производству, передаче и потреблению электрической энергии.

А сейчас мы рассмотрим простейшие цепи переменного тока. Будем подключать к источнику переменного напряжения поочерёдно: резистор сопротивлением , конденсатор ёмкости и катушку индуктивности . Изучив поведение этих элементов, мы в следующем листке «Переменный ток. 2» подключим их одновременно и исследуем прохождение переменного тока через колебательный контур, обладающий сопротивлением.

Напряжение на клеммах источника меняется по закону:

(1)

Как видим, напряжение может быть положительным и отрицательным. Каков смысл знака напряжения?

Всегда подразумевается, что выбрано положительное направление обхода контура. Напряжение считается положительным, если электрическое поле зарядов, образующих ток, имеет положительное направление. В противном случае напряжение считается отрицательным.

Начальная фаза напряжения не играет никакой роли, поскольку мы рассматриваем процессы, установившиеся во времени. При желании вместо синуса в выражении (1) можно было бы взять косинус — принципиально от этого ничего не изменится.

Текущее значение напряжения в момент времени называется мгновенным значением напряжения.

Условие квазистационарности

В случае переменного тока возникает один тонкий момент. Предположим, что цепь состоит из нескольких последовательно соединённых элементов.

Если напряжение источника меняется по синусоидальному закону, то сила тока не успевает мгновенно принимать одно и то же значение во всей цепи — на передачу взаимодействий между заряженными частицами вдоль цепи требуется некоторое время.

Между тем, как и в случае постоянного тока, нам хотелось бы считать силу тока одинаковой во всех элементах цепи. К счастью, во многих практически важных случаях мы действительно имеем на это право.

Возьмём, к примеру, переменное напряжение частоты Гц (это промышленный стандарт России и многих других стран). Период колебаний напряжения: с.

Взаимодействие между зарядами передаётся со скоростью света: м/с. За время, равное периоду колебаний, это взаимодействие распространится на расстояние:

м км.

Поэтому в тех случаях, когда длина цепи на несколько порядков меньше данного расстояния, мы можем пренебречь временем распространения взаимодействия и считать, что сила тока мгновенно принимает одно и то же значение во всей цепи.

Теперь рассмотрим общий случай, когда напряжение колеблется с циклической частотой . Период колебаний равен , и за это время взаимодействие между зарядами передаётся на расстояние . Пусть — длина цепи. Мы можем пренебречь временем распространения взаимодействия, если много меньше :

(2)

Неравенство (2) называется условием квазистационарности. При выполнении этого условия можно считать, что сила тока в цепи мгновенно принимает одно и то же значение во всей цепи. Такой ток называется квазистационарным.

В дальнейшем мы подразумеваем, что переменный ток меняется достаточно медленно и его можно считать квазистационарным. Поэтому сила тока во всех последовательно включённых элементах цепи будет принимать одинаковое значение — своё в каждый момент времени. Оно называется мгновенным значением силы тока.

ЭТО ИНТЕРЕСНО:  Как расшифровывается Пвс кабель

Резистор в цепи переменного тока

Простейшая цепь переменного тока получится, если к источнику переменного напряжения подключить обычный резистор (мы полагаем, разумеется, что индуктивность этого резистора пренебрежимо мала, так что эффект самоиндукции можно не принимать во внимание) , называемый также активным сопротивлением (рис. 1)

Рис. 1. Резистор в цепи переменного тока

Положительное направление обхода цепи выбираем против часовой стрелки, как показано на рисунке. Напомним, что сила тока считается положительной, если ток течёт в положительном направлении; в противном случае сила тока отрицательна.

Оказывается, мгновенные значения силы тока и напряжения связаны формулой, аналогичной закону Ома для постоянного тока:

Таким образом, сила тока в резисторе также меняется по закону синуса:

Амплитуда тока равна отношению амплитуды напряжения к сопротивлению :

Мы видим, что сила тока через резистор и напряжение на нём меняются «синхронно», точнее говоря — синфазно (рис. 2).

Рис. 2. Ток через резистор совпадает по фазе с напряжением

Фаза тока равна фазе напряжения, то есть сдвиг фаз между током и напряжением равен нулю.

Конденсатор в цепи переменного тока

Постоянный ток через конденсатор не течёт — для постоянного тока конденсатор является разрывом цепи. Однако переменному току конденсатор не помеха! Протекание переменного тока через конденсатор обеспечивается периодическим изменением заряда на его пластинах.

Рассмотрим конденсатор ёмкости , подключённый к источнику синусоидального напряжения (рис. 3). Активное сопротивление проводов, как всегда, считаем равным нулю. Положительное направление обхода цепи снова выбираем против часовой стрелки.

Рис. 3. Конденсатор в цепи переменного тока

Как и ранее, обозначим через заряд той пластины конденсатора, на которую течёт положительный ток — в данном случае это будет правая пластина. Тогда знак величины совпадает со знаком напряжения . Кроме того, как мы помним из предыдущего листка, при таком согласовании знака заряда и направления тока будет выполнено равенство .

Напряжение на конденсаторе равно напряжению источника:

Отсюда

Дифференцируя это равенство по времени, находим силу тока через конденсатор:

(3)

Графики тока и напряжения представлены на рис. 4. Мы видим, что сила тока каждый раз достигает максимума на четверть периода раньше, чем напряжение. Это означает, что фаза силы тока на больше фазы напряжения (ток опережает по фазе напряжение на ).

Рис. 4. Ток через конденсатор опережает по фазе напряжение на

Найти сдвиг фаз между током и напряжением можно также с помощью формулы приведения:

Используя её, получим из (3):

И теперь мы чётко видим, что фаза тока больше фазы напряжения на .

Для амплитуды силы тока имеем:

Таким образом, амплитуда силы тока связана с амплитудой напряжения соотношением, аналогичным закону Ома:

где

Величина называется ёмкостным сопротивлением конденсатора. Чем больше ёмкостное сопротивление конденсатора, тем меньше амплитуда тока, протекающего через него, и наоборот.

Ёмкостное сопротивление обратно пропорционально циклической частоте колебаний напряжения (тока) и ёмкости конденсатора. Попробуем понять физическую причину такой зависимости.

1. Чем больше частота колебаний (при фиксированной ёмкости ), тем за меньшее время по цепи проходит заряд ; тем больше амплитуда силы тока и тем меньше ёмкостное сопротивление. При ёмкостное сопротивление стремится к нулю: . Это означает, что для тока высокой частоты конденсатор фактически является коротким замыканием цепи.

Наоборот, при уменьшении частоты ёмкостное сопротивление увеличивается, и при имеем . Это неудивительно: случай отвечает постоянному току, а конденсатор для постоянного тока представляет собой бесконечное сопротивление (разрыв цепи).

2. Чем больше ёмкость конденсатора (при фиксированной частоте), тем больший заряд проходит по цепи за то же время (за ту же четверть периода); тем больше амплитуда силы тока и тем меньше ёмкостное сопротивление.

Подчеркнём, что, в отличие от ситуации с резистором, мгновенные значения тока и напряжения в одни и те же моменты времени уже не будут удовлетворять соотношению, аналогичному закону Ома. Причина заключается в сдвиге фаз: напряжение меняется по закону синуса, а сила тока — по закону косинуса; эти функции не пропорциональны друг другу. Законом Ома связаны лишь амплитудные значения тока и напряжения.

Катушка в цепи переменного тока

Теперь подключим к нашему источнику переменного напряжения катушку индуктивности (рис. 5). Активное сопротивление катушки считается равным нулю.

Рис. 5. Катушка в цепи переменного тока

Казалось бы, при нулевом активном (или, как ещё говорят, омическом) сопротивлении через катушку должен потечь бесконечный ток. Однако катушка оказывает переменному току сопротивление иного рода.
Магнитное поле тока, меняющееся во времени, порождает в катушке вихревое электрическое поле , которое, оказывается, в точности уравновешивает кулоновское поле движущихся зарядов:

(4)

Работа кулоновского поля по перемещению единичного положительного заряда по внешней цепи в положительном направлении — это как раз напряжение . Аналогичная работа вихревого поля — это ЭДС индукции .

Поэтому из (4) получаем:

(5)

Равенство (5) можно объяснить и с энергетической точки зрения. Допустим, что оно не выполняется. Тогда при перемещении заряда по цепи совершается ненулевая работа, которая должна превращаться в тепло. Но тепловая мощность равна нулю при нулевом омическом сопротивлении цепи. Возникшее противоречие показывает, что равенство (5) обязано выполняться.

Вспоминая закон Фарадея , переписываем соотношение (5):

откуда

(6)

Остаётся выяснить, какую функцию, меняющуюся по гармоническому закону, надо продифференцировать, чтобы получить правую часть выражения (6). Сообразить это нетрудно (продифференцируйте и проверьте!):

(7)

Мы получили выражение для силы тока через катушку. Графики тока и напряжения представлены на рис. 6.

Рис. 6. Ток через катушку отстаёт по фазе от напряжения на

Как видим, сила тока достигает каждого своего максимума на четверть периода позже, чем напряжение. Это означает, что сила тока отстаёт по фазе от напряжения на .

Определить сдвиг фаз можно и с помощью формулы приведения:

Получаем:

Непосредственно видим, что фаза силы тока меньше фазы напряжения на .

Амплитуда силы тока через катушку равна:

Это можно записать в виде, аналогичном закону Ома:

где

Величина называется индуктивным сопротивлением катушки. Это и есть то самое сопротивление, которое наша катушка оказывает переменному току (при нулевом омическом сопротивлении).

Индуктивное сопротивление катушки пропорционально её индуктивности и частоте колебаний. Обсудим физический смысл этой зависимости.

1. Чем больше индуктивность катушки, тем большая в ней возникает ЭДС индукции, противодействующая нарастанию тока; тем меньшего амплитудного значения достигнет сила тока. Это и означает, что будет больше.

2. Чем больше частота, тем быстрее меняется ток, тем больше скорость изменения магнитного поля в катушке, и тем большая возникает в ней ЭДС индукции, препятствующая возрастанию тока. При имеем , т. е. высокочастотный ток практически не проходит через катушку.

Наоборот, при имеем . Для постоянного тока катушка является коротким замыканием цепи.

И снова мы видим, что закону Ома подчиняются лишь амплитудные, но не мгновенные значения тока и напряжения. Причина та же — наличие сдвига фаз.

Резистор, конденсатор и катушка, рассмотренные пока что по отдельности, теперь соберутся вместе в колебательный контур, подключённый к источнику переменного напряжения. Читайте следующий листок — «Переменный ток. 2».

Источник: https://ege-study.ru/ru/ege/materialy/fizika/peremennyj-tok-1/

Сила тока в сети: как узнать, сколько ампер в квартире, и какой ток в розетке – переменный или постоянный?

Человек, хоть частично знакомый с электричеством, знает какой ток протекает в розетке – переменный или постоянный. Но большинство граждан, которые пользуются благами электричества ежедневно, не задумываются об этом, и зря. Ответ на вопрос прост, ведь практически вся производимая электроэнергия относится к переменному току.

Какой ток в розетках постоянный или переменный?

98% вырабатываемой энергии – это переменный ток, и домашняя проводка не исключение. Переменный ток – это тот, который периодически изменяет величину и направление. Частота измеряется в Герцах (период изменения в секунду).

Переменный ток производить намного легче чем постоянный, также не вызывает сложностей передача на большие расстояния. При передачи электроэнергии величина напряжения может как увеличиваться, так и уменьшаться неоднократно, поэтому розетки делаются для переменного значения.

Но также существуют электронные приборы, которые питаются постоянным током, и их нужно приводить к одному типу.

Преимущества:

  • легко передавать на большие расстояния;
  • простое генераторное оборудование, упрощение устройства электродвигателей;
  • отсутствие полярности.

Недостатки:

  • расчеты проводятся на максимальное значение, по факту используется не более 70%;
  • электромагнитная индукция, приводящая к неравномерному распределению электричества по сечению проводника;
  • сложность проверки и измерения параметров;
  • увеличивается сопротивление, так как используется не весь кабель.

Для чего нужно знать сколько ампер в розетках в квартире

Сила тока измеряется в Амперах (А). Знать этот показатель необходимо, так как розетки различаются по нему.

Стандартные современные розетки рассчитаны на 6, 10 и 16 А. У советских приборов максимальный номинал равен 6,3 А. Для потребителей с повышенной мощностью выбирают соответствующие розетки, у которых повышенная стойкость к большим значениям.

Знание основ электротехники пригодится при поездке в другую страну. У государств могут различаться стандарты частоты и напряжений, и невозможно будет подключить привезенные с собой приборы к местной сети. Каждая розетка имеет маркировку, на которой указана максимальная сила тока.

Сила тока в розетке

Стандартами частоты в России  и европейских странах является 50 Гц, в Америке – 60 Гц. Сила тока в квартирах ограничивается 16 Амперами, в частных загородных домах это значение может достигать 25 А.

Токовые измерения проводят различными способами. Можно опытным путем – подключить прибор в розетку, и если он функционирует – электроэнергия есть. Существуют мультиметры, которые замеряют значения, контрольные лампы, тестеры и индикаторы напряжения.

220 В

Номинальным напряжением в домашней сети является 220В, но на практике это значение может варьироваться. Отклонения до 20-25 Вольт.

На этот показатель влияют:

  • техническое состояние,
  • нагрузки сети,
  • загруженность электростанций.

Более 220 В

Для силовой электрической техники используются трехфазные сети, которые питаются напряжением 380 Вольт и выше. Чаще всего их можно встретить в электротранспорте – трамваях, троллейбусах, электричках. Для такого напряжения токовая нагрузка составляет до 32 А.

Сколько ампер в розетке 220В

Домашние розетки делаются на разную силу тока, которую она способна пропустить. Наибольшее значение – 16 А для напряжения в 220 Вольт. Каждая электророзетка промаркирована – если отмечено значение 6 А, то суммарная подключаемая нагрузка не более этого числа.

Нагрузка которую может выдержать соединение определяется по сумме  подключенных электроприборов. Например микроволновая печь, стиральная машина  подключаются через отдельные розетки не менее чем на 16 А, а для осветительных приборов, телефонов требуются устройства с меньшим номиналом.

Живя в ХХІ веке, используя блага научных открытий, человеку обязательно знать тип и величину тока, протекающего в домашней сети. Без этой информации невозможно купить электророзетку, правильно рассчитать нагрузку для электроприборов. Стандарты различаются для разных стран, и это стоит учитывать при поездке в другое государство.

Источник: https://elektrika.expert/rozetki/kakoj-tok-v-rozetke.html

Что будет, если подать в электросеть постоянный ток

Война токов завершилась, и Тесла с Вестингаузом, похоже, победили. Сети постоянного тока сейчас используются кое-где на железной дороге, а также в виде свервысоковольтных линий передачи.

Подавляющее большинство энергосетей работают на переменном токе. Но давайте представим, что вместо переменного напряжения с действующим значением 220 вольт в ваш дом внезапно стали поступать те же 220 В, но постоянного тока.

Театр начинается с вешалки, а наш электрический цирк — с вводного щитка.

Автоматы

И сразу хорошие новости: защитные автоматы будут работать как положено. Автомат имеет два расцепителя: тепловой и электромагнитный. Тепловой служит для защиты от длительной перегрузки. Ток нагревает биметаллическую пластинку, она изгибается и размыкает цепь.

Электромагнитный элемент срабатывает от кратковременного импульса тока при коротком замыкании. Он представляет собой соленоид, который втягивает в себя сердечник и, опять же, разрывает цепь. Обе эти системы прекрасно работают на постоянном токе.
источник картинки: выключатель-автоматический.

рф

Дополнения от Bronx и AndrewN:

Магнитный расцепитель срабатывает по амплитудному значению тока, то есть в 1,4 раза больше действующего. На постоянном токе его ток срабатывания будет в 1,4 раза выше. Дугу постоянного тока сложнее погасить, так что при коротком замыкании увеличится время разрыва цепи и ускорится износ автомата. Существуют специальные автоматы, рассчитанные на работу с постоянным током.

УЗО

Помимо автоматов, в щитке есть устройство защитного отключения (УЗО). Его цель — обнаруживать утечку тока из сети на землю, например при касании человеком токоведущих частей. УЗО измеряет силу тока в двух проводниках, проходящих через него. Если в нагрузку втекает такой же ток, что и вытекает — всё в порядке, утечки нет. Если же токи не равны, УЗО бьёт тревогу и разрывает цепь.

Чувствительный элемент УЗО — дифференциальный трансформатор. У такого трансформатора две первичные обмотки, включенные в противоположных направлениях. Если токи равны, их магнитные поля компенсируют друг друга и на выходе сигнала нет. Если токи не скомпенсированы, на выходе сигнальной обмотки появляется напряжение, на которое реагирует схема УЗО.

На постоянном токе трансформатор работать не будет, и УЗО окажется бесполезным.

Счетчик

Неважно, какой у вас электросчетчик — старый механический или новый электронный — работать он не будет. Механический счетчик представляет собой электродвигатель, где ротором служит металлический диск, а статор содержит две обмотки. Одна обмотка включена последовательно с нагрузкой и измеряет ток, вторая включена параллельно и измеряет напряжение.

Таким образом, чем больше потребляемая мощность, тем быстрее крутится диск. Работа такого счетчика основана на явлении электромагнитной индукции, и при постоянном токе в обмотках диск останется неподвижен. Электронный счетчик устроен по-другому.

Он напрямую измеряет напряжение (через резистивный делитель) и ток (при помощи шунта или датчика Холла), оцифровывает их, а затем микропроцессор пересчитывает полученные данные в киловатт-часы. В принципе, ничто не мешает такой схеме работать с постоянным током, но во всех бытовых счетчиках постоянная составляющая программно отфильтровывается и на показания не влияет.

Счетчики постоянного тока существуют в природе, их ставят, например, на электровозы, но в квартирном щитке вы такой не найдёте. Ну и ладно, не хватало ещё платить за всё это безобразие! Идём дальше по цепи и смотрим, какие электроприборы могут нам встретиться.

Нагревательные приборы

Тут всё прекрасно. Электронагреватель — это чисто резистивная нагрузка, а тепловое действие тока не зависит от его формы и направления. Электроплиты, чайники, кипятильники, утюги и паяльники будут работать на постоянном токе точно так же, как и на переменном. Биметаллические терморегуляторы (как, например, в утюге) тоже будут функционировать правильно.

Лампы накаливания

Старая добрая лампочка Ильича на постоянном токе чувствует себя не хуже, чем на переменном. Даже лучше: не будет пульсаций света, лампа не будет гудеть. На переменном токе лампочка может гудеть из-за того, что спираль (особенно, если она провисла) работает как электромагнит, сжимаясь и растягиваясь дважды за период. При питании постоянным током этого неприятного явления не будет.

Однако если у вас установлены регуляторы яркости (диммеры), то они работать перестанут. Ключевым элементом диммера является тиристор — полупроводниковый прибор, который открывается и начинает пропускать ток в момент подачи управляющего импульса. Закрывается тиристор, когда ток через него прекращает течь. При питании тиристора переменным током он будет закрываться при каждом переходе тока через ноль.

Подавая управляющий импульс в разное время относительно этого перехода, можно менять время, в течение которого тиристор будет открыт, а значит, и мощность в нагрузке. Именно так и работает диммер. При питании постоянным током тиристор не сможет закрыться, и лампа всегда будет гореть на 100% мощности. А возможно, управляющая схема не сможет «поймать» переход сетевого напряжения через ноль и не подаст импульс для открытия тиристора.

Тогда лампа не загорится совсем. В любом случае, диммер будет бесполезен.

Люминесцентные лампы

Люминесцентную лампу нельзя включать напрямую в сеть, для нормальной работы ей нужен пуско-регулирующий аппарат (ПРА). В простейшем случае он состоит из трёх деталей: стартёра, дросселя и конденсатора. Последний нужен не самой лампе, а остальным потребителям в сети, так как он улучшает коэффициент мощности и фильтрует помехи, создаваемые лампой.

Стартёр — это неоновая лампочка, один из электродов которой при нагреве изгибается и касается второго электрода. Дроссель — большая катушка индуктивности, включенная последовательно с лампой: Штатно всё это работает так: при включении зажигается разряд в стартёре, его контакты нагреваются и замыкаются между собой.

Ток течёт через нити накала лампы, отчего те разогреваются и начинают испускать электроны. В это время стартёр остывает и размыкает цепь. Ток резко падает, и за счет самоиндукции на дросселе появляется импульс высокого напряжения. Этот импульс зажигает разряд в лампе, и дальше он горит самостоятельно.

Дроссель теперь ограничивает ток разряда, работая как добавочное сопротивление. Что же будет на постоянном токе? Стартёр сработает, лампа зажжётся как положено, но вот дальше всё пойдёт наперекосяк. В цепи постоянного тока у дросселя не будет индуктивного сопротивления (только активное сопротивление проводов, а оно мало), а значит, он больше не сможет ограничивать ток.

Чем выше ток разряда, тем сильнее ионизируется газ в лампе, сопротивление падает, и ток растёт ещё сильнее. Процесс будет развиваться лавинообразно и закончится взрывом лампы.

Лампы с электронным ПРА

Электромагнитные ПРА просты, но не лишены недостатков. У них низкий КПД, дроссель громоздкий и тяжелый, гудит и нагревается, лампа загорается с диким миганием, а потом мерцает с частотой 100 Гц. Всех этих недостатков лишен электронный пускорегулирующий аппарат (ЭПРА). Как он работает? Если посмотреть схемы различных ЭПРА, можно заметить общий принцип.

ЭТО ИНТЕРЕСНО:  Каким проводом обозначается фаза

Напряжение сети выпрямляется (преобразуется в постоянное), затем генератор на транзисторах или микросхеме вырабатывает переменное напряжение высокой частоты (десятки кГц), которое питает лампу. В дорогих ЭПРА есть схемы разогрева нитей и плавного запуска, которые продлевают срок службы лампы.
источник картинки: aliexpress.

com Схожую схемотехнику имеют как блоки для линейных ламп, так и компактные «энергосберегайки», которые вкручиваются в обычный патрон. Поскольку на входе ЭПРА стоит выпрямитель, можно питать всю схему постоянным напряжением.

Светодиодные лампы

Светодиод требует для работы небольшое постоянное напряжение (около 3.5 В, обычно соединяют несколько диодов последовательно) и ограничитель тока. Схемы светодиодных ламп весьма разнообразны, от простых до довольно сложных. Самое простое — последовательно со светодиодами поставить гасящий резистор. На нём упадёт лишнее напряжение, он же будет ограничивать ток. Такая схема имеет чудовищно низкий КПД, поэтому на практике вместо резистора ставят гасящий конденсатор. Он также обладает сопротивлением (для переменного тока), но на нём не рассеивается тепловая мощность. По такой схеме собраны самые дешёвые лампы. Светодиоды в них мерцают с частотой 100 Гц. На постоянном токе такая лампа работать не будет, так как для постоянного тока конденсатор имеет бесконечное сопротивление.
источник картинки: bigclive.com

Источник: https://habr.com/ru/post/372749/

Что такое электрический ток?

Сейчас мы не представляем себе ни нормального дня без электричества, этот вид энергии так хорошо прижился у нас в быту, что мы попросту ничего без него не сможем сделать. Только представьте на минуту этот ужас без электричества, когда весь наш мир поглотит кромешная темнота Невозможно будет без электричества приготовить пищу, не смогут работать телевизор и интернет.

Зайдите к себе на кухню и посчитайте количество электрических приборов, наверняка насчитаете, как минимум, десять штук. А если вернуться в прошлое, когда электрическая энергия не была так распространена? Мы ведь как-то обходились без неё. Да, но с её появлением наша жизнь стала намного проще, у нас появилось больше времени и мы стали больше успевать сделать дел.

Мы уже и не говорим о промышленности, какой скачок произошел в ее развитии с появлением этого вида энергии, открылись новые возможности и технологии, человечество просто взлетело вверх в своем развитии.

Вы спросите, почему электричество, почему этот вид энергии, ведь есть много альтернативных источников энергии? Например, для работы электротехники можно использовать тепловую энергию, механическую, энергию солнца, приливов и так далее.

Но почему именно этот вид энергии? Да потому, что ее использование экономически выгодно и эффективно, ее легко получить и передать и что немаловажно — преобразовать в другие нужные нам виды энергии. Еще немаловажным плюсом всех электрических машин является компактность. Если сравнить двигатель внутреннего сгорания и простой электродвигатель одинаковой мощности, то второй как минимум в два раза будит меньше. Не говоря уже о стоимости обслуживания, потерях и количества энергии затраченного на выполнение одинаковой работы.

Каким бывает ток?

Ну, мы думаем, хватит распевать все преимущества электрической энергии, настало время поговорить о ней самой, что же она из себя представляет, и с чем ее едят.

Во-первых, хотим уяснить, что все представление об электрической энергии делится на два вида: постоянный ток и переменный. У нас в быту в основном применяется переменный ток, и только в некоторых случаях – постоянный.

Например, для зарядки мобильных телефонов, да и компьютеры тоже работают на постоянном токе, батарейки и различного типа аккумуляторы тоже являются источниками постоянного тока.

Этим двум видам энергии есть научные определения.

Переменный ток

Начнем с переменного тока. Переменным электрическим током называется направленное упорядоченное движение электрически заряженных частиц, которое изменяется по величине и направлению в течении времени.
Существуют несколько электрических величин характеризующих электрическую энергию.Все наверное знают такой термин как напряжение.

Обозначается оно буквой U латинского алфавита и измеряется в вольтах (В). Вторая величина, называемая силой тока, обозначается буквой I и измеряется в амперах (А). Именно ток потребляется из сети, когда мы что-то подключаем к ней. Также существует такое понятие, как частота.

Она присуща только переменному току, так как переменный ток изменяется в течении времени по закону синуса. Количество этого изменения в течение одной секунды и является частотой в нашей сети. Частота составляет 50 герц, то есть ток и напряжение в течении секунды изменяются по величине и направлению 50 раз.

Замеры различных физических величин можно произвести при помощи электроизмерительных приборов

Постоянный ток

А вот постоянным током называют упорядоченное направленное движение электрически заряженных частиц, но, в отличие от переменного тока, не изменяющееся с течением времени. Этот род тока также характеризуется напряжением и силой тока. Но эти два рода тока в одних и тех же условиях ведут себя по разному, но есть закон, которому подчиняются и переменный и постоянный токи.

Это всем давно известный закон Ома. Он заключается в том, что сила тока, протекающая в цепи прямо пропорциональна напряжению этой цепи и обратно пропорциональна сопротивлению этой цепи I=U/R. Появляется новая характеристика — сопротивление R, измеряется в омах (ОМ), оно указывают на сопротивление, которое оказывает цепь, то есть проводник протеканию по нему тока.

Первые упоминания об электричестве указываются в физике. Есть отдельная наука, которая занимается изучением этого вида энергии, также есть много ответвлений от этой науки, которые изучают поведение электричества в различных условиях.

Мы уверены, что этот вид энергии за малое количество времени так глубоко внедрился в нашу жизнь, что мы еще очень долгое время будем зависимы от неё.

Самыми надежными марками считаются отечественные

Источник: https://staby.ru/page.php?page=elektricheskiy_tok

Краткая история электричества, или Почему «умные дома» питаются постоянным током

Заказать этот номер

2015№3

В современных «умных домах» есть множество электрических помощников, работающих в фоновом режиме и делающих нашу жизнь еще более комфортной. Они включают сигнализацию, регулируют освещение и системы отопления и кондиционирования, блокируют двери гаража и открывают жалюзи на окнах, впуская дневной свет. Практически каждым электронным устройством и электронной системой в доме теперь можно управлять через смартфон или планшетный компьютер.И это только начало. В то время как наши дома по-прежнему подключены к сети переменного напряжения, вся домашняя электроника питается постоянным током. И скоро это будет относиться и к системам освещения! Краткая прогулка по истории электричества объяснит нам, почему именно переменный ток стал стандартом. Глядя в будущее, я хотел бы рассказать о множестве новых решений, которые ждут нас «прямо за углом».

Все началось в 1881 году на международной электротехнической выставке в Париже, где Томас Алва Эдисон представил всему миру свое новое изобретение — электрический свет, производимый лампой накаливания. В те времена сети постоянного тока были нормой. Чтобы сделать свой продукт коммерчески успешным, Эдисону пришлось решать сложнейшую проблему электрификации величайших городов того времени — Нью-Йорка, Лондона и Парижа.

Томас Эдисон работал с сетью 110 В DC. Из-за высокого падения напряжения при прохождении постоянного тока по проводам, энергия могла передаваться только на относительно небольшие расстояния. Это означало, что источники энергии следовало располагать прямо в центре города, поскольку каждая подстанция могла обслуживать здания в радиусе не более 1,5 км. Сегодня это трудно себе представить, однако такие электростанции действительно были построены во всех крупных городских центрах.

Очень быстро стало очевидным, что сети постоянного тока не могут обеспечивать разумные экономические показатели на менее застроенных территориях. Поэтому Джорджу Вестингаузу вскоре пришла в голову идея перевести передачу энергии на переменный ток, который имеет два серьезных преимущества: уровень АС-напряжения легко повысить с помощью трансформатора и для его передачи можно использовать более длинные и тонкие провода без существенных потерь мощности.

Эти изобретатели стали главными противниками в «войне токов», происходившей в начале 1890-х. В конце концов, Вестингауз взял верх, не в последнюю очередь благодаря помощи Николы Теслы — создателя многофазной асинхронной машины переменного тока. Вот почему у нас в домах все еще используется АС-сеть, в то время как миллиарды работающих во всем мире источников питания снабжают нашу домашнюю электронику постоянным током.

Возрождение постоянного тока?

Сможет ли экономичный «умный дом» будущего открыть новую эру постоянного тока? И станет ли DC-сеть снова привлекательной? Эти вопросы оказываются не настолько надуманными, как может показаться на первый взгляд.

Давайте просто взглянем на солнце, которое дает нам энергию изо дня в день и при минимальных затратах.

Таким образом, фотоэлектрические солнечные станции способны стать одними из самых популярных источников энергии для тех домовладельцев, которые хотят меньше зависеть от центральных сетей.

Однако оба эти основных источника энергии не всегда совместимы. Практически все наши здания подключены к сетям переменного тока. То есть энергию, получаемую от солнечных панелей, нельзя использовать без преобразования в стандартное АС-напряжение 230 В/50 Гц. Даже с учетом того, что эффективность современных инверторов превышает 95%, часть мощности все равно теряется.

Энергия солнечного света не всегда доступна, например в вечернее время, когда мы в ней особенно нуждаемся. Именно поэтому фотоэлектрические станции, как правило, работают на основную сеть.

В недавнем прошлом это было очень выгодно, поскольку тарифы на электроэнергию искусственно поддерживались на высоком уровне.

Во время нынешней рецессии государственная поддержка возобновляемых источников энергии постепенно уменьшается, и подключение солнечных панелей к питающей сети больше не является столь привлекательным решением, как было несколько лет назад.

Собственники фотоэлектрических станций, следовательно, должны пересмотреть систему электроснабжения зданий таким образом, чтобы использовать постоянный ток от солнечных батарей для своих собственных нужд. Это может быть сделано с помощью независимой сети постоянного тока для снабжения потребителей. Избыток энергии может запасаться в буферной батарее, обеспечивающей подачу энергии, когда солнечный свет отсутствует.

На рис. 1 показана структура домашней DC-сети, которая вскоре может стать стандартной для «умного дома». Внутренние источники постоянного тока обеспечивают энергией бытовую технику, систему освещения и элементы управления зданием. Идеальным считается питание от сети 24 В DC — такой уровень напряжения наиболее эффективен с учетом длины и сечения кабелей.

Рис. 1. Внутренняя разводка сети постоянного тока, генерируемого фотоэлектрической станцией (синяя цепь), буферной батареей и преобразователем электромобиля (центральная АС-сеть (красная цепь) подключена к наиболее мощным потребителям, она также служит в качестве резервного зарядного устройства для аккумулятора)

В тех случаях, когда солнечного света недостаточно для подзарядки аккумулятора, она может осуществляться от центральной сети 230 В AC. Следовательно, «умные дома» пока не могут полностью отказаться от использования этой цепи. К ней подключаются крупные бытовые приборы, такие как стиральные машины, холодильники, электрические плиты, а также водогрейные котлы и тепловые насосы, причем система управления отоплением может питаться от сети постоянного тока.

Много ли потребителей у постоянного тока?

Зачем мы вообще рассматриваем вопрос об использовании DC-сети? Разве не очевидно, что большинство электрических приборов в наших домах рассчитано на питание от сети переменного тока? Однако на самом деле это не совсем верно.

У множества современных бытовых приборов основную мощность потребляют не электромоторы, а электронные компоненты. Как правило, они созданы с применением полупроводниковых технологий, поэтому рассчитаны на работу с постоянным током.

Иными словами, в действительности АС-напряжение 230 В/50 Гц из нашей розетки преобразуется в напряжение 24, 12 или 5 В постоянного тока, которое затем подается на электронное устройство.

Стереосистемы, персональные компьютеры и другая оргтехника оснащены множеством источников питания, снабжающих различные внутренние узлы с определенным уровнем потребления постоянного тока.

Такой подход не является расточительным, поскольку, когда устройство находится в эксплуатации, эффективность источника питания, как правило, превышает 90%. Однако в режиме ожидания расход энергии оказывается неоправданно большим. И будем честными: большинство устройств в наших офисах и домах находится в режиме ожидания большую часть времени, потребляя энергию без какой-либо цели.

К счастью, такая ситуация в ближайшее время изменится благодаря новой Директиве Европейского союза по энергопотребляющим устройствам — EuP (Energy-using Products).

В соответствии с этим документом с начала 2013 года электронные устройства в режиме ожидания не должны потреблять больше 500 мВт (для дисплеев: 1 Вт).

Для удовлетворения требованиям директивы блок питания должен включать небольшой AC/DC-модуль и реле, как показано на рис. 2. Это единственный способ сократить энергопотребление в режиме ожидания ниже заданного предела.

Рис. 2. Режим ожидания с применением маломощного AC/DC-модуля для обеспечения минимального потребления энергии (например, RAC03, 80 мВт). Вход основного источника питания коммутируется через реле

Самые энергоемкие потребители энергии зачастую даже не очень заметны. Мы говорим сейчас о зарядных устройствах, которые в больших количествах обнаруживаются в наших домах и офисах. Обычно это простые и недорогие изделия, их типовая схема показана на рис. 3. Самой проблемной частью данного устройства с точки зрения потерь мощности является линейный регулятор напряжения (например, серии LM78).

Применение этого узла снижает эффективность использования энергии до совершенно недопустимых величин: от 60 до 65%. Несмотря на то, что можно значительно повысить эффективность преобразования (>95%), установив импульсный регулятор напряжения (например, серии R-78), большинство производителей электроники не хочет тратить лишние деньги.

Возникает вопрос: справедлив ли этот подход в отношении потребителей, которые в конечном счете получают более высокие счета за электроэнергию?

Рис. 3. Зарядное устройство с энергоемким линейным регулятором

С развитием LED-технологий системы освещения также становятся электронными устройствами, потребляющими постоянный ток. Однако светодиоды нельзя подключать непосредственно к DC-сети: для управления LED-лампой необходим специальный AC/DC-драйвер.

Мощность домашних светодиодных светильников, как правило, находится в диапазоне 15-30 Вт (учитывая, что 25-Вт LED-лампа обеспечивает такой же уровень освещения, как лампа накаливания мощностью 100 Вт).

Отметим, однако, что эффективность AC/DC LED-драйверов в этом диапазоне редко превышает 80%.

Данный пример показывает, что питание электронных устройств от источника переменного тока приводит к потере 15-20% потребляемой энергии. Использование домашней DC-сети позволяет устранить эти проблемы «одним ударом».

Если мы учтем мощность, рассеиваемую при преобразовании энергии солнечных панелей (минимум 5%), то общий уровень потерь увеличится примерно до четверти потребляемой мощности. Это явно не по карману потребителю во времена постоянно растущих расходов на электроэнергию.

Журавль в небе?

Можно подумать, что сети постоянного тока целесообразно использовать только в новых зданиях, поэтому их внедрение не оказывает большого влияния на общее энергопотребление. Однако, вероятно, имеет смысл прямо сейчас начать разработку и внедрение концепций, ориентированных на будущее, даже если они подходят не для всех нынешних потребителей?

Более того, уже есть решения, которые можно успешно интегрировать в существующие системы переменного тока. Хорошим примером является источник питания RAC03-SCR, разработанный компанией RECOM (рис. 4, слева). Благодаря компактному дисковому корпусу он встраивается

Рис. 4. Плоский дисковый модуль RECOM для установки в обычные розетки (слева) и комплект для монтажа модулей RAC01-RAC10 на универсальную DIN-рейку (справа)

в обычную розетку. Этот модуль с легкостью интегрируется даже в стандартный выключатель или гнездо розетки, что делает его идеальным для применения в экономичных источниках питания устройств управления настенными дисплеями электрических ставен, жалюзи и систем освещения. Блок RAC03-SCR также удобен для зарядки мобильных телефонов и других подобных устройств, поскольку он встраивается в настенный USB-коннектор.

Поскольку блоки управления часто устанавливаются в распределительные щитки, хорошим решением для данного случая является монтаж компактных источников питания на верхнюю DIN-рейку. Это легко сделать с помощью универсального DIN-адаптера (рис. 4, справа), разработанного RECOM для своих AC/DC-модулей. Существует возможность индивидуальной настройки таких блоков в диапазоне мощности от 1 до 10 Вт.

Эдисон был бы счастлив узнать, что его идеи переживают настоящий Ренессанс. Нет сомнения, что в ближайшем будущем самые «умные дома» будут получать энергию от возобновляемых источников постоянного тока. А сейчас почему бы не начать экономить энергию с помощью интеллектуальных новинок, таких как плоский модуль питания RECOM?

—>

Сообщить об ошибке

Если Вы заметили какие-либо неточности в статье (отсутствующие рисунки, таблицы, недостоверную информацию и т.п.), просьба сообщить нам об этом. Пожалуйста укажите ссылку на страницу и описание проблемы.

Источник: https://www.kit-e.ru/preview/pre_2015_03_84_elhistory.php

В розетке постоянный ток или переменный?

> Выключатели и розетки > В розетке постоянный ток или переменный?

Люди давно привыкли к благам электричества и многим все равно, какой ток в розетке. На планете 98% вырабатываемой электроэнергии – это переменный ток. Его намного легче производить и передавать на значительные расстояния, чем постоянный. При этом напряжение может многократно изменяться по величине в сторону понижения и повышения. Сила тока существенно влияет на потери в проводах.

Передача электроэнергии на расстояние

Параметры домашней сети всегда известны: переменный ток, напряжение 220 вольт и частота 50 герц. Они подходят преимущественно для электродвигателей, холодильников и пылесосов, а также ламп накаливания и многих других приборов.

Многие потребители работают при постоянном напряжении в 6-12 вольт. Особенно это относится к электронике. Но питание приборов должно приводиться к одному типу.

Поэтому для всех потребителей ток в розетке должен быть переменным, с одним напряжением и частотой.

Различие между токами

Переменный ток периодически изменяется по величине и направлению. С генераторов электростанции выходит переменный ток с напряжением 220-400 тыс. вольт. До многоэтажного дома оно снижается до 12 тыс. вольт, а затем на трансформаторной подстанции преобразуется до 380 вольт.

Ввод в частный дом может быть трехфазным или однофазным. Три фазы заходят в многоэтажный дом, а затем в каждую квартиру с межэтажного щитка, через пакетный выключатель снимается 220 вольт между нейтральным проводом и фазой.

Схема подключений в квартире от однофазной сети переменного тока

В квартире напряжение подается на счетчик, а с него поступает через отдельные автоматы на соединительные коробки каждого помещения. С коробок делается разводка по комнате на две цепи осветительных приборов и розеток. В схеме рисунка на каждое помещение приходится по одному автомату. Возможен другой способ подключений, когда на осветительную и розеточную цепи устанавливается по одному защитному устройству.

В зависимости от того, на сколько ампер рассчитана розетка, она может быть в группе или к ней подключается отдельный автомат. Постоянный ток отличается тем, что его направление и свойства не изменяются со временем. Он применяется во всей электронике дома, светодиодной подсветке и в бытовых приборах. При этом многие не знают, какой ток в розетке.

Он приходит из сети переменным, а затем преобразуется в постоянный внутри электроприборов, если в этом есть необходимость.

Если сделать схему снабжения квартиры постоянным током, обратное его преобразование в переменный обойдется значительно дороже.

Преобразователь постоянного тока

Параметры розеток

Как расположить розетки на кухне

ЭТО ИНТЕРЕСНО:  Что обеспечивает нейтральный провод с нулевым сопротивлением

Определяющими характеристиками для розеток являются уровень защиты и контактная группа. Для хозяина квартиры при выборе розетки необходимо учитывать:

  • место установки: внешняя, скрытая, в помещении или снаружи;
  • форма и соответствие друг другу вилки и розетки, безопасность использования;
  • характеристики сети, особенно, сколько ампер через нее может проходить.

Требования к штепсельным соединениям

Для подключения электроприбора к сети розетка с вилкой являются соответственно источником и приемником энергии, образуя штепсельное соединение. К нему предъявляются следующие требования.

  1. Надежный контакт. Слабое соединение приводит к разогреву и выходу его из строя. Важно также обеспечить надежную фиксацию от самопроизвольного отключения. Здесь удобно применять пружинящие контакты в розетке.
  2. Изоляция токонесущих частей друг от друга.
  3. Защита от прикосновения руками или разными предметами к деталям, находящимся под напряжением. Для защиты от детей в розетках предусматриваются специальные шторки, открывающиеся только тогда, когда вставляется вилка.
  4. Обеспечение полярности при подключении. Это важно, если через соединение течет постоянный ток или устройство применяется в сочетании с однополюсным выключателем. Конструкция розетки не допускает неправильного подключения.
  5. Наличие заземления для приборов 1 класса защиты. В розетках важно правильно подключить заземление.

Виды розеток

Как перенести розетку в другое место

В зависимости от условий эксплуатации розетки выполняют с разными уровнями защиты, которые обозначаются кодом IP и следующими за ним двумя числами. Первое (0-6) означает, насколько устройство не допускает попадание внутрь предметов, пыли и т.п. Следующее (0-8) предусматривает защиту от воды. Если розетка обозначена кодом IP68, значит, она имеет самую высокую защиту от внешних воздействий.

По типам изделия обозначаются латинскими буквами. Отечественные выпускаются без заземления (С) и с заземлением (F).

Приборы группы AC (~) предназначены для переменного тока. Постоянный ток обозначается DC (-).

Главным показателем является сила тока, которая допускается для той или иной розетки. Если на ней есть обозначение 6 А, то суммарная подключаемая нагрузка не должна превышать указанного количества ампер. При этом не имеет особого значения, переменный ток через нее проходит или постоянный.

Сколько нагрузки выдержит соединение, оценивают по общей мощности всех подключенных приборов. Для таких потребителей, как микроволновая печь, посудомоечная или стиральная машина используются отдельные розетки не менее чем на 16 ампер с обозначением типа тока.

Особое место занимает электроплита, для которой сила номинального тока составляет 25 ампер или больше. Ее следует подключать через отдельное УЗО. За основу берется номинальный ток – количество ампер, которое способна пропустить розетка в течение длительного времени.

Ампер – это единица измерения, по которой измеряется сила тока. Если указана только паспортная мощность, допустимый ток составит I = P/U, где U = 220 вольт. Тогда при мощности 2200 ватт сила тока будет равна 10 ампер.

Обратите внимание на подключение к розеткам электроприборов через удлинители. Здесь легко можно ошибиться с определением, сколько потребуется суммарной мощности нагрузки. Кроме того, удлинитель также должен соответствовать предъявляемым требованиям, поскольку у него имеются свои розетки с маркировкой.

Для переменного тока полярность в штепсельных соединениях особенно не нужна. Фазу обычно находят, если надо подключать к светильникам автомат или однополюсный выключатель. При их отключении прикосновение к нулевому проводу будет не таким опасным.

Розетки расширенной функциональности

Сейчас выпускают новые типы розеток с новыми функциями:

  1. Встроенные таймеры отключения.
  2. Переключение типа тока.
  3. С индикацией величины нагрузки (цвет меняется от зеленого до красного).
  4. Со встроенным УЗО.
  5. С автоматической блокировкой.

Проверка подключения

Розетка для варочной панели и духового шкафа

Напряжение проверяется в розетке подключением вольтметра или тестера. При его наличии прибор укажет, сколько в ней вольт.

Тестер напряжения в розетке

Сила тока может определяться амперметром, подключенным последовательно с работающей нагрузкой.

Электрики проверяют наличие напряжения индикатором. Однополюсный – выполняется в виде отвертки с лампочкой. С его помощью можно найти фазу, но подключение нулевого провода он не покажет. Это можно сделать двухполюсным индикатором, подключив его между фазой и нулем. Легко можно проверить напряжение в розетке контрольной лампой, которому она должна соответствовать.

Монтаж.

Про монтаж подрозетника в бетон рассказывается в этом видео.

В быту и промышленности преобладает переменный электрический ток. Его проще передавать на расстояния и изменять по величине. Для бытовых нужд переменный ток подается на освещение и к розеткам в доме, где подключаются электроприборы.

Источник: https://elquanta.ru/vyklyuchateli/elektrichestvo-v-kvartire.html

Сколько ампер в розетке 220В ?

Чтобы узнать сколько ампер в обычной домашней розетке 220В, в первую очередь вспомним, что в Амперах измеряется сила тока:

Сила тока «I» – это физическая величина, которая равна отношению заряда «q», проходящего через проводник, ко времени (t), в течении которого он протекал.

Главное, что нам в этом определении важно — это то, что сила тока возникает лишь когда электричество проходит через проводник, а пока к розетке ничего не подключено и электрическая цепь разорвана, движения электронов нет, соответственно и ампер в такой розетке тоже нет.

В розетке, к которой не подключена нагрузка, ампер нет, сила тока равно нулю.

Теперь рассмотрим случай, когда в розетку подключен какой-то электроприбор и мы можем посчитать величину силы тока

Если бы нашу электропроводку не защищала автоматика, установленная в электрощите, и максимальная подключаемая мощность оборудования (как и сила тока), ничем бы не контролировались, то количество ампер в бытовой розетке 220В могло быть каким угодно. Сила тока росла бы до тех пор, пока бы от высокой температуры не разрушились механизм розетки или провода.

При протекании высокого тока, проводники или места соединений, не рассчитанные на него, начинают нагреваться и разрушаются.  В качестве примера можно взять спираль обычной лампы накаливания, которая, при прохождении электрического тока, раскаляется, но т.к. вольфрам, из которого она сделана – тугоплавкий металл, он не разрушается, чего нельзя ждать от контактов механизма розетки.

Чтобы рассчитать сколько ампер будет в розетке, при подключении того или иного прибора или оборудования, если под рукой нет амперметра, можно воспользоваться следующей формулой:

Формула расчета силы тока в розетке

I=P/(U*cos ф) , где I — Сила тока (ампер), P — мощность подключенного оборудования (Вт), U — напряжение в сети (Вольт), cos ф — коэффициент мощности (если этого показателя нет в характеристиках оборудования, принимать 0,95)

Пример расчета:

Давайте рассчитаем по этой формуле сколько ампер сила тока в обычной домашней розетке с напряжением (U) 220В при подключении к ней утюга мощностью 2000 Вт (2кВт), cos ф у утюга близок к 1.

I=2000/(220*1)=9.1 Ампер

Значит, при включении и нагреве утюга мощностью 2кВт, в сила тока в розетке будет около 9,1 Ампер.

При одновременном включении нескольких устройств в одну розетку, ток в ней будет равен сумме токов этого оборудования.

Какая максимальная величина силы тока для розеток

Чаще всего, современные домашние розетки 220В рассчитаны на максимальный ток 10  или 16 Ампер. Некоторые производители заявляют, что их розетки выдерживают и 25 Ампер, но таких моделей крайне мало.

Старые, советские розетки, которые еще встречаются в наших квартирах, вообще рассчитаны всего на 6 Ампер.

Максимум, что вы сможете встретить в стандартной типовой квартире, это силовую розетку для электроплиты или варочной панели, которая способна выдерживать силу тока до 32 Ампер.

Это гарантированные производителем показатели силы тока, который выдержит розетка и не разрушится. Эти характеристики обязательно указаны или на корпусе розетки или на её механизме.

При выборе электроустановочных изделий имейте ввиду, что, например, розетка на 16 Ампер выдержит около 3,5 киловатт мощности, а на 10 Ампер уже всего 2,2 Киловатт.

Ниже представлена таблица, максимальной мощности подключаемого оборудования для розеток, в зависимости от количества ампер, на которые они рассчитаны.

ТАБЛИЦА МАКСИМАЛЬНОЙ МОЩНОСТИ ОБОРУДОВАНИЯ ДЛЯ РОЗЕТОК, РАССЧИТАННЫХ НА ТОК 6, 10, 16, 32 Ампер

Чаще всего, всё бытовое электрооборудование, которое включается в стандартные розетки 220В, не превышает по мощности 3,5кВт, более мощные приборы имеют уже иные разъемы для подключения или поставляются без электрической вилки, в расчете на подключение к клеммам или к электрическим вилкам для силовых розеток.

Я советую всегда выбирать розетки рассчитанные на силу тока 16 Ампер или больше – они надежнее. Ведь чаще всего электропроводку в квартирах прокладывают медным кабелем с сечением жил 2,5 мм.кв. и ставят автомат на розетки на 16 Ампер. Поэтому, если вы выберете розетку, рассчитанную на 10 Ампер и подключите к ней большую нагрузку, то защитная автоматика не сработает, и розетка начнет греться, плавится, это может стать причиной пожара.

Если же у вас остались вопросы о характеристиках розеток или их выборе, обязательно пишите, постараюсь помочь. Кроме того, приветствуется любая критика, дополнения, мнения — пишите.

Источник: https://rozetkaonline.ru/poleznie-stati-o-rozetkah-i-vikluchateliah/item/171-skolko-amper-v-rozetke-220v

В чем сила, брат? а сила тока в розетке?

Для того, чтобы разобраться в данном вопросе, необходимо для начала отыскать в книгах или чертогах разума следующую информацию:

  • закон Ома
  • сопротивление амперметра, вольтметра, мультиметра
  • подключение амперметра, мультиметра в цепь для измерения силы тока

Хоть электрика опасная и строгая наука, но опытные, умудренные опытом спецы любят шутить на профессиональные темы. Например, в кабинетах или мастерских можно встретить различные смешные и не очень плакаты, относящиеся к теме электрики:

  • “не чапай — лясне”
  • “электрик! не трогай оголенные провода мокрыми руками, от этого они ржавеют и портятся”

Пару слов о физике процесса и законе Ома

Так вот, закон Ома. Закон Ома — сиди дома. Основополагающий закон, зная который, можно уже что-то сообразить. ПрименИм для цепей постоянного и переменного тока.

Разница лишь в сопротивлении: для переменного тока это будет полное сопротивление Z, в которое входит активная, индуктивная и емкостная составляющие. Для постоянного тока сопротивление только активное. Сама формула следующая: I=U/R для постоянки, и I=U/Z для переменки.

Хотя переменки это в школе, а у нас переменный ток. Более подробно про закон Ома в другом материале. У нас все же тема про розетки.

Значит розетка — это источник переменного напряжения в домашней сети, к которому мы подключаем нагрузку (чайник, стиралка, утюг, фен или удлинитель, к которому подключено несколько приборов разом). Ток появляется, когда есть напряжение и есть нагрузка.

Если выключить в квартире освещение и все приборы, то счетчик не будет вращаться, так как отсутствует ток и мощность равна нулю. Если мы включаем бытовой прибор, то “деньги начинают кАпать”.

Напряжение же в розетке есть всегда, если оно приходит от щитка и включен питающий автомат.

Вводная про подключение амперметра, вольтметра и измерения мультиметром

Следующим пунктом разберемся с нашими измерительными приборами, которыми мы измеряем ток или напряжение.

Для измерения тока используется амперметр. Амперметр включается последовательно с нагрузкой. И это не пустые слова. Сопротивление амперметра ничтожно мало — это необходимо, чтобы не вносить погрешности в измерения тока, потребляемого нашими приборами. Чтобы использовать амперметр для измерения большего тока, можно произвести его шунтирование.

Для измерения напряжения в цепи уже используется вольтметр. Вольтметр подключается параллельно цепи и имеет большое внутреннее сопротивление. Это сопротивление необходимо для того, чтобы уменьшить ток, протекающий через прибор. Ведь по закону Ома мы уже понимаем, что при постоянстве величины напряжения, чем больше сопротивление, тем меньше ток.

Мультиметр — это прибор, которым можно производить различные измерения электрических и не только величин. Так вот, мультиметром можно замерять и ток и напряжение. Важно при этом вставить измерительные концы в нужные гнезда и выставить нужный предел. А далее уже пользоваться им как вольтметром или амперметром.

Еще важным пунктом является предел измеряемых величин на приборах. То есть до измерения, желательно знать порядок величины, которая будет замерена.

Как измерить напряжение в розетке

Что мы будем делать дальше? Берем вольтметр или мультиметр, собранный для измерения переменного или постоянного напряжения. Одним концом тыкаем в одну дырку розетки, а вторым в другую дырку розетки. Что у нас получится?

  • прибор сгорит, если у вас выставлен предел меньше 220 вольт, или шкала прибора рассчитана вольт на 50. Это произойдет из-за того, что внутреннее сопротивление прибора окажется мало, и большАя величина тока вызовет порчу прибора (это может быть перегрев, оплавление, перегорание предохранителя и прочие неприятности)
  • прибор покажет примерно 220 В, и тем самым вы произведете нормальное такое измерение электрической величины

Какой величины ток в розетке и как его измерить

Теперь то, что делать нельзя!!! А то вдруг, вы сразу читаете и делаете. Потом претензии. Поэтому чисто теоретически. Берем мультиметр, подготовленный для измерения силы тока, или амперметр и один конец тыкаем в одну дырку розетки, второй во вторую. Что у нас произойдет?

  • Прибор сгорит. Так как его сопротивление мало, нагрузки нет, и ток будет настолько велик, что и прибор спалится и Вам может достаться, вплоть до больничной койки. Не стоит так делать, ей богу. По братски прошу, не стОит.
  • Прибор не сгорит, но только при условии, что у вас обесточена сеть. поэтому скорее достаем концы из розетки, чтобы сохранить материальную ценность от порчи.

Далее берем нагрузку. Нагрузка это любая штука, которая имеет сопротивление (активное, индуктивное, емкостное). Или же это прибор, который имеет свою электрическую схему (которая и есть сопротивление) и для работы ему необходимо подать питание на выходы ноль и фаза или плюс и минус. Схем огромное количество, как и приборов, где они применяются.

Суть вот в чем, у нас есть провод фазы и провод земли. Амперметр нам надо подключить в разрыв провода фазы. То есть либо перекусить его, либо через клеммник. Делать подключение надо при отсутствии напряжения, а то “лясне”. Сначала собираем измерительную схему — потом подаем на неё напряжение. Фаза пойдет через амперметр и прибор. Что получится:

  • Нагрузка у нас складывается последовательно. Сопротивление амперметра ничтожно мало, и ток, протекающий через прибор, пропорционален суммарному сопротивлению приборов. Стрелка на амперметре отклониться до величины потребляемого тока, или же на экране загориться значение, если измерительный прибор цифровой.
  • Прибор сгорит, если он предназначен для измерения постоянного тока, а мы включаем в цепь переменного тока, где нагрузка имеет активную и реактивную составляющие. Реактивная допустим большАя, активная — малипусенькая. Прибор постоянного тока видит только активную составляющую. Сопротивление суммарное будет ничтожным, а значит ток будет гигантским и прибор сгорит, да и измерителю может достаться
  • Прибор сгорит, если у нас выставлен предел на значение допустим 5А, а мы замеряем 20 ампер. Поэтому важно следить за величинами тока, которые мы измеряем.

Самый простой способ измерения силы тока — подключаем нагрузку в цепь, берем токоизмерительные клещи. Цепляем на провод по которому течет ток и замеряем его величину. Саааамый простой способ.

В общем измерение тока и напряжения это занятие, которое требует практической и теоретической подготовки от человека. Всегда лучше перестраховаться и вызвать специалиста, который разбирается в данных вопросах. Или хотя бы проконсультироваться.

За какой провод можно браться в розетке под напряжением? Фазный или нулевой?

Раз уж мы в разделе электробезопасность, то обсудим и вопрос касания нулевого и фазного провода в розетке. Случайно или специально электричество разбираться не будет, результат будет одинаков.

Коснулись сразу фазного и нулевого

Ток протек через Вас такой величины, как U/R. Где R — Ваше внутреннее сопротивление, которое зависит от различных факторов. То есть ток потечет и Вам будет печально или посмертно. Путей протекания тока через человека несколько.

Коснулись фазного проводника:

Если Вы парите в воздухе как птичка или стоите на сухой деревянной подставке плюс не касаетесь другими частями тела заземленных предметов, плюс еще куча факторов, которые вы “учли” (хотя скорее всего не учли, а просто так сложились обстоятельства) => Тогда Вас не ударит током.

Замечание: Допусти, ситуация сложилась так, что Вы выжили. И вы всем говорите, что вот так можно делать. Кто-то Вас послушает и повторит, но с более печальным исходом. То ли из-за влажного пола или рук, то ли из-за случайного касания заземленного корпуса оборудования. Значит, Вы обрекли человека на беду, только лишь, потому, что использовали “эффект выжившего”. Это не круто.

Коснулись рабочего нуля:

С вами ничего не случится, только если нагрузка в сети симметричная по всем трем фазам, и ток в нулевом проводе не течет (подробнее про смещение нейтрали), а это редкий случай, который иногда может встретиться на производстве.

Всегда проще обесточить сеть и произвести необходимые работы, чем подвергать свою жизнь риску. Как говорится, правила техники безопасности пишутся кровью. Но я не отрицаю, что находились люди, которые брались за фазный, нулевой провода и ничего им не было. Просто игры с электричеством не приведут ни к чему хорошему. Это как идти с закрытыми глазами через автобан ночью без опознавательных знаков.

Лично я всегда использую следующее правило: хочешь ковыряться в розетках или выключателях в квартире — отключи вводной автомат и следи, чтобы его никто не включил.

Сохраните в закладки или поделитесь с друзьями

Последние статьи

Причины повреждения кабелей

Определение температуры термосопротивления по ГОСТ

Расчет тока трансформатора по мощности и напряжению

Выпрямительные диоды: расшифровка, обозначение, ВАХ

Самое популярное

Единицы измерения физвеличин

Напряжение смещения нейтрали

Источник: https://pomegerim.ru/electrobezopasnost/sila-toka-v-rozetke.php

Понравилась статья? Поделиться с друзьями:
Электро Дело
Как правильно пользоваться паяльником

Закрыть
Для любых предложений по сайту: [email protected]