Откуда берется ток в проводах

Введение, закон Ома

Откуда берется ток в проводах

Робототехника – прикладная наука, занимающаяся разработкой автоматизированных систем. Это комплексная наука, состоящая из электроники, электрики, электротехники, механики, кибернетики, телемеханики, мехатроники, информатики, радиотехники, и возможно чего-то ещё.

В рамках моих уроков мы разобьём робототехнику на программирование и электронику. Программирование и работу с Arduino (и микроконтроллерами ATmega/ATtiny) мы уже изучили, осталось подтянуть электронную часть.

В этом блоке уроков я буду совмещать программную часть и железо для большей наглядности.

Введение в электронику

Всем модулям, датчикам, дисплеям и вообще любым подключаемым железкам, помимо логики (управляющих сигналов), нужно питание. Питание всегда состоит идёт по двум проводам, называют их обычно плюс и минус, но по факту это земля (GND, 0 вольт) и питание (VCC, величина может быть разной). Именно разность потенциалов даёт напряжение.

Земля GND является не только нулём для питания: в паре с землёй также работают все логические провода. Сигнал не ходит по одному проводу, для подключения всегда нужно минимум два, одним из которых является GND! Именно поэтому земля у всех подключенных устройств обычно одна, все провода соединяются в один общий GND, который отвечает и за питание, и за работу остальных проводов.

Вот пример проекта с метеостанцией, где куча модулей, но земля и питание у всех соединяются в одну точку:

Закон Ома

Закон Ома является одним из самых важных законов, на его базе в мире электричества завязано очень многое. Этот закон относится к тем, которые нужно именно понять: запомнить формулу – не проблема, её знают все, а вот понять и применять – к сожалению умею немногие. I=U/R Сила тока равна напряжению, деленному на сопротивление. Следовательно чем выше сопротивление, тем меньше ток. Когда и где это играет роль?

Сечение провода

Ни для кого не секрет, что провода бывают разной толщины, т.е. площади поперечного сечения. Чем больше сечение провода, тем больший ток он может через себя пропустить без потерь (т.н.

просадок) напряжения, это вытекает из формулы расчета сопротивления проводника: R=r*l/S, где r – удельное сопротивление материала, l – его длина, S – площадь сечения.

Чем больше площадь S, тем меньше будет сопротивление, и тем больший ток сможет пройти через проводник.

Длина провода

Также из формулы видно, что на сопротивление проводника влияет ещё материал и длина проводника. Откуда берутся потери? Чем больше сопротивление провода, тем большее напряжение на нём упадет при большом токе. Простой пример: подключаем 12 вольтовую светодиодную ленту. Заранее известно, что лента потребляет 4 ампера при 12 вольтах, и в расчетах можно грубо заменить ленту сопротивлением 12/4=3 ома.

Если подать на ленту 12 вольт, она скушает 4 Ампера, но это идеальный случай. Подключать мы будем проводами, провода тоже имеют сопротивление (внутреннее сопротивление источника питания не учитываем). Допустим мы взяли длинные тонкие провода, общее сопротивление которых равно 0.5 Ом. Общее сопротивление цепи составит 3.5 Ома, в цепи потечёт ток 12/3.5=3.4 Ампера.

На обоих потребителях “упадет” напряжение, пропорциональное их сопротивлению: на проводе 1.72 вольт, а на ленте – 10.28. что это значит? Лента светит не в полную яркость, потому что питается не 12 вольтами. Если мы укоротим провода подключения ленты, или заменим их на более толстые провода, общее сопротивление которых будет допустим 0.05 Ом, ленте достанется напряжение уже 11.8 вольт, что уже близко к 12.

Мораль этого мысленного эксперимента очень проста: чем больший ток нужен нагрузке, тем толще нужно брать провод.

Источник: https://alexgyver.ru/lessons/electricity/

Отрывок из книги «Что течёт по проводам?»

Откуда берется ток в проводах

13 июня, 2019

Чайник, утюг, пылесос, стиральная машина, компьютер и множество других устройств без электричества работать не смогут – это знает каждый. Но вот откуда берётся электричество? Как оно попадает в розетки, батарейки и аккумуляторы? Что такое электроны и какие бывают электростанции?

Откуда берётся электричество?

Откуда берётся электричество? Как от¬куда?! Из настенных розеток, к которым тянутся провода от телевизора и компью¬тера. А ещё из патронов, куда вкручива¬ются электрические лампочки. Или из маленьких батареек, которые вставляют в пульт от телевизора или в карманный фонарик.

Но про розетки и патроны это, конеч¬но, в шутку! Так могут думать только са¬мые маленькие, а ты-то уже и читать умеешь. На самом деле электричество «рождается» на многих и очень разных электростанциях: тепловых, атомных, приливных, ветровых, гидроэлектростан¬циях.

И прежде, чем попасть к нам, ему предстоит проделать немалый путь по проводам ЛЭП — линий электропередач. 

Какая это великая сила — электричество, даже говорить не надо! У тебя дома на нём работают пылесос, холодильник, стиральная машина, кон¬диционер, оно нагревает конфорки ку¬хонной плиты. Кухонный комбайн тоже электрический, как и звонок в дверях. Электрический мотор поднимает и опу¬скает лифт. А на улицах электричество приводит в движение троллейбусы и трамваи, под землёй — вагоны метро. Электровозы ведут тяжёлые поезда на железных дорогах. На фабриках и за¬водах от электричества работают стан¬ки. В тёмное время оно даёт свет.

В общем, в наши дни без электричества не прожить. Ты знаком с этой великой силой с само¬го рождения и поэтому, возмож¬но, считаешь, что так было всегда. Но на деле электричество верой и правдой служит людям всего вто¬рой век. Хотя с явлениями электри¬ческой природы люди сталкивались ещё в глубокой древности. 

Чудеса с янтарём

Древним грекам две с лишним тысячи лет назад было известно такое загадочное явление: стоило потереть шерстью кусочек янтаря, и он начинал притягивать к себе мелкие и лёгкие частички различ¬ных веществ. Объяснить, почему так происходит, ни один мысли¬тель тогда не мог.  Янтарь — окаменевшую смолу, попадавшую в Древнюю Грецию из далёких северных мест, гре-ки называли «электроном».

А уже много позже, вспомнив давние опыты с янтарём, учёные назвали элек¬тронами мельчайшие частички вещества. Ведь они-то и были причиной того, что казалось древним грекам чудом. 

При трении шерсти об янтарь он на¬электризовывался — получал электри¬ческий заряд, состоящий из огромно¬го количества отрицательно заряженных электронов. Этот заряд и притягивал к янтарю лёгкие предметы.

 

Ты можешь сам уподобиться древним грекам и провести такой же опыт, но заменив янтарь обыкновенной пластмас¬совой расчёской. Проведи ей несколько раз по волосам, расчёска точно так же наэлектризуется от трения и будет при¬тягивать к себе, например, ку¬сочки газетной бумаги. Только в отличие от учёных Древней Греции, тебе уже понятно, от¬чего происходит такое «элек¬трическое» чудо.

  Древние народы не понима¬ли, почему грозовые тучи раз¬ражаются мощными огненными стрелами — молниями. Они считали, что это гнев богов, а на самом деле причина тут опять-таки трение. В грозо¬вых тучах содержится огромное количество крошечных льдинок и капелек воды. Они непрерыв¬но трутся друг о друга, и вну¬три тучи постепенно накаплива¬ется электрический заряд.

 

А молния — это не что иное, как искра, проскаки¬вающая между двумя силь¬но наэлектризованными туча¬ми, только искра эта огромных размеров. 

Кто придумал  батарейку?

Всерьёз изучать электрические заряды учёные принялись толь¬ко к середине XVIII века, больше двухсот пятидесяти лет назад. Тогда в голландском городе Лей¬дене было изобретено устрой-ство, названное «лейденской банкой». В эту банку, а точнее на помещённую внутри неё оло-вянную пластину, можно было «собирать» электричество, полу¬чаемое с помощью трения.

«Банка» позволила сделать важные открытия — например, что металлы хорошо проводят электрический ток. Правда, тогда ещё не знали, что ток — это направленное движение мель-чайших заряженных частиц, и до открытия самих этих частиц было почти сто пятьдесят лет. 

Другое очень важное открытие сде¬лал в 1800 году итальянский учёный Алессандро Вольта.

Он обнаружил, что электрический ток появляется не только от трения или в атмосфере во время грозы, но и при химическом взаимодействии некоторых веществ. 

Год спустя учёный соорудил «столб» из двух десятков пар медных и цинко¬вых кружков, разделённых суконками, смоченными солёной водой. Опыты показали, что в проволоке, соединяю¬щей концы столба, появляется доволь¬но сильный электрический ток. Это была первая в мире электрическая ба¬тарея.  Наверняка ты уже знаешь, как ва¬жен для папиного автомобиля акку¬мулятор. Он даёт ток электрическо¬му стартеру, запускающему двигатель. «Вольтов столб» как раз и был про¬стейшим предком автомобильного ак¬кумулятора, а также множества раз¬нообразных батареек, с которыми ты тоже хорошо знаком.  Конечно, и аккумуляторы и ба¬тарейки теперь совершенно не похожи на своего далёкого пред-ка, и устроены они по-разному. Об этом говорят даже их со¬временные названия: свинцово- кислотные, кадмиево-никелевые, литий-ионные, хлорно-цинковые, щелочные, марганцево-цинковые. Вот эти вещества и вступают в химические реакции — возникает электрический ток — направленное движение мельчайших заряженных частиц к электродам батарей. 

Ну а с помощью первых, пусть ещё примитивных электрических батарей учёные сделали другие очень важные открытия, которые, в конце концов, позволили выяс¬нить загадочную природу электри¬чества и поставить эту мощную силу на службу людям.

Отрывок из книги «Что течёт по проводам?». Редакция «Аванта»
 

Источник: https://www.karusel-tv.ru/news/8149

Автомобильный аккумулятор — в ИБП!

Откуда берется ток в проводах

  • 25 июня 2019 г. в 11:16
  • 9057

Представляем вашему вниманию статью Михаила Ткачева из Риги, который в соавторстве с Михаилом Ярошенко (SamElectric.ru) расскажет о том, как можно использовать обычный автомобильный аккумулятор для резервного питания важного оборудования.

Источник бесперебойного питания (ИБП) является не просто защитником электропотребителей от скачков и перепадов питающего напряжения, но и полноценным источником накопленной энергии.

С постоянным совершенствованием электронных компонентов снижается и их стоимость. Если 10–15 лет назад ИБП мощностью 1000 ВА был достаточно дорогим прибором, то сейчас такой ИБП можно приобрести по доступной цене.

В современных ИБП используются дорогие необслуживаемые свинцовые аккумуляторные батареи, произведенные по технологии AGM (Absorbent Glass Mat). Суть технологии — использование вместо жидкого электролита токонепроводящего пористого материала с жидким электролитом в порах.

Такой аккумулятор безопасен с точки зрения использования (может использоваться в положении «на боку» или «вниз головой») и не требует обслуживания, но имеет один существенный минус: высокая цена.

Обычная автомобильная стартерная аккумуляторная батарея (АКБ) имеет жидкий электролит и стоит в 2–3 раза дешевле при такой же емкости, но накладывает на использование в ИБП некоторые ограничения. Поэтому производители ИБП предпочитают ставить в свои изделия именно AGM батареи.

Применение обычных АКБ существенно снизит стоимость, увеличит емкость накопленной энергии и продолжительность работы ИБП

Далее мы рассмотрим обслуживаемые кислотно-свинцовые АКБ, используемые в автомобилях, и покажем, как «обмануть систему» и применить АКБ в обычных ИБП.

Теоретическая часть

АКБ имеет два крайних рабочих состояния — полностью разряжена и полностью заряжена:

Внимательный читатель, а особенно автоэлектрик возразит: «Напряжение на заряженной АКБ не будет выше 13 вольт!» И будет прав! Напряжение на полностью заряженной АКБ будет в пределах 12,75–12,80 вольт при плотности электролита 1,26 г/см3 и при температуре 25°С. И называется оно напряжение покоя АКБ.

Напряжение покоя измеряется только после отключения АКБ от потребителей или зарядных устройств через как минимум 24 часа. Во время зарядки и разрядки в АКБ происходят сложные химические процессы, длящиеся после отключения зарядного устройства или нагрузки какое-то время. Это можно назвать химической инерцией.

Если АКБ отключить от нагрузки, ее напряжение начнет подниматься. А при зарядке, если отключить АКБ от зарядного устройства, напряжение будет снижаться

Во время зарядки АКБ набирает электрическую емкость. Это один из самых главных показателей АКБ. Электроемкость АКБ — это произведение постоянного тока разряда АКБ на время разряда при номинальном напряжении (для автомобильного АКБ это 12 вольт).

За час АКБ электроемкостью 60 А·ч может отдать 60 ампер напряжением 12 вольт до ее полной разрядки. Практически это выглядит так: если АКБ нагружать током 60 ампер один час, ее напряжение снизится с 12,75–12,80 вольт до 12,00 вольт.

Но откуда же 14,4 вольта? Далее мы детально рассмотрим процесс заряда АКБ и откуда берется это напряжение.

Принцип заряда АКБ

Существует два способа зарядки АКБ:

  • Зарядка постоянным током используется чаще всего. В начале заряда АКБ заряжается током, равным 1/10 от емкости АКБ, и напряжением, близким к номинальному напряжению заряда или чуть выше (обычно 14,50–14,80 вольт) до начала кипения электролита. Потом ток понижается до 1/20 от емкости АКБ и опять заряжается до начала кипения электролита. После этого процесс зарядки прекращается. Кипение электролита — это процесс выделения из него под воздействием электролиза паров водорода.

Зарядить АКБ до значения, близкого к 100% ее емкости, зарядкой постоянным током можно только постоянно понижая ток заряда. Сначала до 1/40, довести до кипения, потом до 1/80 довести до кипения, потом до 1/160 и так до 1/2000. Причем нужно следить, чтобы процесс кипения электролита не начинался, а только подходил к нему. Это достаточно кропотливая и нудная задача — нужно постоянно следить за процессом зарядки.

  • Зарядка постоянным напряжением подразумевает зарядку АКБ точным номинальным напряжением заряда (с точностью до сотых долей вольта) и плавным понижением тока зарядки без кипения электролита. Такие зарядные устройства достаточно сложны и дороги, но позволяют использовать ресурс АКБ по максимуму.

Рассмотрим второй способ заряда АКБ (постоянным напряжением), так как он обычно используется в ИБП при заряде АКБ. Такой способ не допускает кипения электролита и заряжает АКБ до реальных 100% емкости. Процесс зарядки АКБ логарифмичен (нелинеен), поэтому зарядить АКБ полностью на 100% — задача достаточно сложная.

Если на начальных этапах зарядки для типичной АКБ емкостью 70 А·ч ток заряда 1/1 0 от емкости (7 А), то на конечных этапах зарядки (90–98%) ток равен 1/400 от емкости (175 миллиампер). И на этапах зарядки (от 98–100%) ток заряда должен быть чуть больше тока саморазряда АКБ.

А это менее 1/2000 от емкости АКБ (менее 35 миллиампер).

Номинальное напряжение заряда для каждой АКБ индивидуально (производитель, материалы, технологии и даже смена, в которую АКБ изготавливался на заводе) и может колебаться в пределах от 14,35 до 14,45 вольт.

При выкипании водорода из электролита происходит увеличение его плотности. Поэтому в элек-тролит в таком случае нужно добавлять дистиллированную воду для компенсации его плотности до 1,26 г/ см3. На практике технологии производства стартерных АКБ за более чем 100-летний период производства отточены до совершенства и выпускаются с учетом номинального напряжения заря-да, близкого к 14,40 вольтам.

Полностью зарядить АКБ (на все 100% ее электрической емкости) без выкипания электролита можно только напряжением 14,40 вольт!

Теперь рассмотрим практическую часть зарядки постоянным напряжением на конкретных примерах. Так как АКБ набирает емкость заряда нелинейно, при подключении АКБ к зарядному устройству без ограничения тока заряда АКБ в течение первых секунд может потреблять ток заряда, равный своей емкости. Например, для АКБ емкостью 70 А·ч первые секунды ток заряда будет 70 А. Потом ток заряда плавно понижается с повышением внутреннего сопротивления АКБ.

20–30% своей емкости АКБ может набрать за 15–20 минут зарядки током 1/10 от своей емкости (в нашем примере 7 А).

Автомобилисты знают, что «прикуривать» от соседского автомобиля подсевшую АКБ достаточно минут 5–10, чтобы крутануть стартер, а если АКБ села «в ноль», времени понадобится немного больше — здесь мы и наблюдаем логарифмичность процесса зарядки.

ЭТО ИНТЕРЕСНО:  Что такое напряжение сети

Чтобы зарядить АКБ на 50% емкости, понадобится уже пару часов, а никак не 30–40 минут, так как ток заряда все время уменьшается. А вот чтобы зарядить АКБ на 80%, понадобится как минимум 6–7 часов. 80–85% емкости АКБ достигается, когда напряжение заряда поднялось до 13,60–13,80 вольт.

Ток заряда на этом этапе будет меньше одного ампера, и продолжит понижаться. А при 14,20 вольтах АКБ заряжена до 90–95%. Фактически на этапе зарядки около 97–99% происходит прецизионная зарядка.

При превышении напряжения зарядки даже на 0,01 вольт или тока зарядки на 10 миллиампер мы получим начало закипания электролита.

Практическая часть

Источник: https://www.elec.ru/articles/avtomobilnyj-akkumulyator-v-ibp/

Наведенное напряжение. Причины возникновения и опасность

Наводка напряжения на линиях воздушной электропередачи возникает не так уж редко. Это наведенное напряжение также возникает в бытовых условиях и в электроустановках, связанных с линиями электропередач. Это явление создает такую же опасность для жизни человека, как и рабочее напряжение. Для того, чтобы правильно защитить себя от такого опасного явления, необходимо рассмотреть природу его появления.

Причины возникновения

Наведенное напряжение может появиться на воздушной линии электропередач, которая выведена в ремонт и отключена от питания, из-за воздействия на нее находящейся рядом действующей электроустановки, либо другой линии под напряжением. Действие оказывает не сама линия или электроустановка, а их электромагнитное поле.

Поэтому, воздушная линия, параллельно протянутая возле обесточенной линии, наводит внешний потенциал, представляющий большую опасность для ремонтного и обслуживающего персонала. Величина такого наведенного напряжения не является постоянной, и меняется в зависимости от длины участка линии, параллельной действующей, а также значения рабочего напряжения, тока нагрузки, удаленности фазных проводников, погодных условий.

Наведенное напряжение на линии электропередач разделяется по видам воздействия:

  • Электромагнитная часть. Возникает вследствие воздействия магнитного поля, появляющегося от течения электрического тока по действующей линии электропередач. Особенностью и отличием такой составляющей является фактор того, что при заземлении линии в разных нескольких местах, электромагнитное влияние не исчезает и ее величина остается прежней. Влияет разве что нахождение точки нулевого потенциала.
  • Электростатическая составляющая. Она отличается от электромагнитной тем, что исчезает путем подключения заземления на краях линии и в месте производства работы. Уменьшить значение наведенного напряжения можно путем заземления одной точки линии.

Разберемся, отчего возникает наводка, и каков его принцип действия. На рисунке изображен проводник А-А. При прохождении по нему переменного тока образуется электромагнитное поле, действие которого снижается по мере удаления от провода (окраска менее яркая).

Пульсации электромагнитного поля также изменяются при изменении величины электрического тока и его направления. Если в это поле попадает другой проводник, то в нем возникает наводка. На рисунке показаны провода с подсоединенными приборами измерения для контроля значения напряжения.

Необходимо определить, какая величина напряжения будет опасной для человека, обслуживающего линию электропередач. Принято считать, что наличие на отключенной воздушной линии наведенного напряжения не более 25 вольт, предполагает применение защитных мер обычного использования.

Если это значение будет превышено, то требуются специальные средства безопасности и осуществление мероприятий, создающих необходимую степень защиты от опасного действия потенциала напряжения. Такими мерами являются отключение заземления по концам линии, подключение заземления на рабочем участке воздушной линии, а также возможен разрез проводника на отдельные части.

Опасность наведенного напряжения

Это явление считается более опасным и уникальным в отличие от действующего рабочего напряжения, ввиду того, что защитные устройства на него не действуют. Если электромонтер попадет под наводка, то под его действием он будет находиться, пока не освободится от него. А при воздействии рабочего напряжения срабатывает устройство защиты и электричество автоматически отключается.

При коротком замыкании на действующей линии осуществляется наводка на обесточенную линию, и ток возрастает в несколько раз. Это оказывает опасное воздействие на ремонтный персонал, работающий на обесточенной линии передач. Последствия таких наведений напряжения бывают очень серьезными: сильные ожоги тела, поражения током важных органов, летальные исходы. Поэтому необходимо соблюдать правила безопасности при работах на выключенных линиях электропередач.

Наведенное напряжение может достигать несколько десятков киловольт. Иногда приходится работать одновременно в нескольких местах. При работе с вышки, ее обязательно необходимо заземлить, при этом нельзя забывать о выравнивании потенциала провода заземления и корзины вышки, с которой производится работа.

При заземлении линии по ее концам, на участке работы напряжение может превысить допустимую величину, так как нулевой потенциал сместится в точку между заземлениями. Если возникла необходимость работы на линии в нескольких местах, то вся линия должна быть разделена на отдельные участки, электрически не связанные между собой.

На таком участке можно приступить к ремонту, заземлившись в одной лишь точке.

Для гарантии безопасности необходимо устанавливать на рабочем месте два заземления. Случится что-нибудь с одним заземлением – подстрахует второе. Это особенно необходимо, если предстоит разъединить провод. До разъединения провода заземление следует устанавливать с обеих сторон от места предполагаемого разрыва с обязательным подсоединением их к одному заземлению

Теперь можно разъединить шлейф, не опасаясь, что замкнете на себя уравнительный ток между концами провода. Заземлив линию в единственной точке на участке только на месте работы, можете быть уверены, что вашей жизни ничто не угрожает.

Нельзя забывать об основных мерах безопасности при осуществлении различных измерений на линии. Соединительные провода, вольтметр и рама разъединителя могут быть под напряжением, поэтому для безопасности необходимо перед измерением собрать схему измерений, а потом уже подключать ее к проводникам фаз.

Соединительные проводники должны иметь изоляцию, которая рассчитана на минимальное напряжение 1 кВ. Работники должны находиться в диэлектрических перчатках и ботах. Если при измерении напряжения будет нужно изменить пределы шкалы прибора, то сначала отключают от напряжения всю схему измерений от воздушной линии.

Наведенное напряжение в квартире

Явление наводки напряжения кроме воздушных линий может возникать и в бытовых условиях в квартире, либо собственном доме в бытовой сети. Наводка возникает в кабеле, находящемся рядом с проводником, подключенным к бытовой сети. Рассмотрим это на примере.

При отключенном выключателе на лампах освещения, которые имеют в своей конструкции светодиоды, может появиться слабое свечение. Это явление образуется вследствие расположенного рядом проводника питания фазного напряжения. Поэтому при воздействии электромагнитного поля возникает наведенное напряжение, хотя и незначительное, но достаточное для слабого свечения светодиодов.

Другим примером может служить наведенное напряжение в розетке. Она появляется в том случае, если образовался обрыв провода ноля. При этом, измеряя индикатором в розетке напряжение, обнаруживаются две фазы. На самом деле фаза одна. Вторая фаза исчезнет после устранения обрыва нулевого проводника.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/jelektrobezopasnost/navedennoe-napriazhenie/

Фаза и нуль в электрике: что значит

В каждом современном доме есть электричество, благодаря которому работают розетки, лампочки и многие другие виды электрооборудования. Включая свет в комнате, пылесос в розетку или заряжая смартфон, мало кто задумывается, как же этот свет и зарядка в гаджете появляются. Что становится причиной работы лампочки и гула пылесоса? Вопросов, если подумать, много, но ответ один — электроэнергия

Фаза и нуль в электрике

Электроэнергия появляется в результате упорядоченного движения заряженных частиц в проводах — электронов.

Рождаются эти электроны в огромных электростанциях — таких как, например, Волгоградская ГРЭС (гидроэлектростанция), Нововоронежская АЭС (атомная электростанция) и многих других в нашей стране.

Далее по очень толстым проводам эта энергия передается на промежуточные подстанции (как правило, такие стоят по периферии городов), а от них — до местных КТП (комплектная трансформаторная подстанция), которые есть почти в каждом дворе.

Линия электропередач

Уровни напряжения в таких сетях варьируются от 750000 вольт до 380 вольт в конечной КТП. И именно последние делают так, что в розетке обычного дома появляется 220В. Казалось бы, все просто, но! В розетке находятся два провода. И из уроков физики каждый знает, что в электрике есть «фаза» и «нуль». Эти два слова дают нам свет, тепло, воду, газ и многое другое, чем мы пользуемся каждый день. Теперь по-порядку.

КТП

Фаза и нуль: понятия и отличие

Существует такое понятие, как напряжение. Это слово означает степень напряженности электрического поля в данной точке или цепи. Иначе его называют потенциалом. Если очень простыми словами, то это некий поршень, что дает толчок для электронов, чтобы они прошли по проводам и зажгли лампочку в люстре.

В общей цепи (фаза ноль), той, что приходит на люстру или розетку, есть два провода. Один из них и есть фаза. Именно этот провод находится под напряжением. Фаза в электротехнике сравнима с плюсом в автомобиле — это основное питание для сети.

Вам это будет интересно  Какова единица измерения силы токаФаза, ноль, земля в розетке

Нуль — это провод, который не находится под напряжением (это именно то, чем отличается ноль от фазы). Он не перегружен в процессе отбора мощности, но, тем не менее, по нему так же течет электрический ток, только в направлении, обратном фазному. В отсутствии напряжения он является безопасным в плане поражения человека электротоком.

Зачем нужен ноль в электричестве

Нуль замыкает электрическую цепь. Без этого провода в цепи не может быть электрического тока, который и дает мощность для питания бытовых приборов. По сути, нулевой провод — это земля.

Откуда берется ноль в электросети

Начало свое нуль берет от комплектной трансформаторной подстанции 6(10)/0,4 кВ, где трансформатор своей нулевой шиной соединен с контуром заземления. Изначально именно земля является проводником с нулевым потенциалом, и именно поэтому многие путают нуль с землей.

ВЛ (воздушная линия электропередачи), выходя из КТП, имеет 4 провода — 3 фазы и нуль, который в начале линии соединен с нулем трансформатора.

На протяжении воздушной линии через одну опору производится повторное заземление, которое дополнительно связывает нуль линии с землей, что дает более полноценную связь цепи «фаза — нуль» для того, чтобы у конечного потребителя в розетке было не менее 220В.

Фаза, ноль и земля в проводе

Зачем нужен нуль

Основное назначение нулевого провода — замыкание цепи для создания электрического тока для работы любого электроприбора. Ведь для того, чтобы ток появился, необходима разность потенциалов между двумя проводами. Нуль потому так и называется, что потенциал на нем равен нулю. Отсюда и уровень напряжения 220В — 230В.

Как найти нуль и фазу

В домашних условиях, даже не имея специальных приборов и приспособлений, возможно определить в обычной розетке, какой из двух проводов является фазой, а какой нулем. В этом случае используются электролампа или индикаторная отвертка.

Проверка с помощью электролампы

Для поиска нуля и фазы достаточно взять обыкновенный патрон с лампочкой и прикрутить два провода на его штатные места. Затем один из этих проводов подключить к заземляющим ножам в розетке, а второй — к любому из двух силовых разъемов.

Фазным будет являться тот разъем, при подключении к которому лампочка будет загораться. Это происходит потому, что по Правилам устройства электроустановок (ПУЭ), в вводном электрощите нулевые провода всех розеток должны быть соединены с земляными проводами этих же розеток. А отдельно земляная шина должна быть соединена с защитным контуром заземления. Именно это и обеспечивает наличие надежного нуля во всей цепи энергоснабжения дома.

Вам это будет интересно  Особенности расчета делителя напряженияЭлектролампа

Обратите внимание! Самостоятельно подобные процедуры допустимо делать только в том случае, когда квалифицированной помощи ждать неоткуда, а также в случае аварийной ситуации (пожар, короткое замыкание, попадание человека под напряжение). Не стоит забывать, что электрический ток очень опасен. Не стоит рисковать своим здоровьем и своей жизнью из-за лампочки!

Индикаторная отвертка

Для того, чтобы определить фазу в сети переменного тока напряжением 220В — 230В, можно использовать бытовой указатель напряжения — индикаторную отвертку. Продается он практически в любом хозяйственном магазине и стоит (в зависимости от конструкции) очень недорого.

Пример исправной индикаторной отвертки

Как правило, инструкции к применению у подобных инструментов нет, поэтому, чтобы не получить электротравму, следует помнить несколько простых правил, применимых к любому инструменту, соприкасающемуся с токоведущими частями:

  1. Использовать инструмент только по назначению (запрещается применять указатель напряжения — индикаторную отвертку — в качестве обыкновенной отвертки для закручивания/откручивания винтов, саморезов, шурупов и т.д.)
  2. Перед использованием инструмента следует внимательно рассмотреть состояние изоляции на рукояти и жале (применимо для любых отверток, в том числе для индикаторных). Ни в коем случае не использовать приспособление, если изоляционное покрытие имеет сколы или вообще отсутствует.
  3. Проверять работоспособность индикаторных устройств необходимо на электроустановках, заведомо находящихся под напряжением (например, в удлинителе, в который включен работающий электроприбор).

Отвертка с изолированным жалом

В случае сомнения в работоспособности индикатора следует считать его неисправным, а электроустановку действующей.

Так же существуют более точные и безопасные приборы для определения наличия напряжения в сети — это мультиметры, токоизмерительные клещи, вольтамперфазометры (ВАФ) и другие.

Мультиметр

В быту, как правило, используются простые мультиметры. Они способны показать наличие напряжения в сети и его значение. Намного безопаснее использовать для определения фазы именно эти приборы, так как их щупы имеют диэлектрическую рукоятку. Принцип определения такой же, как и в случае с патроном — достаточно один щуп приложить к земляному контакту розетки, а второй накладывать на один из двух контактов розетки.

Пример мультиметра

Электроэнергия (согласно второму закону Ньютона) не появляется из ниоткуда и не уходит в никуда. Она производится, транспортируется и потребляется на глазах. Нужно знать, откуда она берется, как к нам попадает и в каком виде.

Каждый должен понимать, что в бытовом потреблении есть провода, которые могут нанести вред здоровью человека, а есть и такие, которые совершенно безвредны, поэтому необходимы небольшие знания и минимум приборов для определения и разграничения этих проводов.

Но любые манипуляции с электричеством лучше доверять профессионалу — квалифицированному специалисту, чтобы избежать беды.

Источник: https://rusenergetics.ru/polezno-znat/faza-nol

Две фазы в розетке, причины и решение

При нормальном режиме работы розетки проверяя наличие напряжения картина должна выглядеть следующим образом. При прикосновении индикатора напряжения к фазному проводу, должно появляться световое оповещение, а при прикосновении к нулевому, лампочка индикатора светиться не должна.

Но если розетка не работает, а индикатор показываетна проводах в розетке две фазы, что делать и как такое может быть?

Такое явление встречается довольно часто, как правило в домах со старой или некачественно выполненной электропроводкой.  Откуда же берутся эти две фазы в розетке, давайте разберем возможные причины их появления:

Отгорел нулевой провод во внутренней системеэлектропроводки

Это наиболее распространенная причина. При отсутствии нулевого соединения фаза через нить накаливания лампочек в люстре, либо через электроприборы  включенные в другие розетки  наведенным током будет присутствовать и на нулевом проводе. При этом розетка, в которой находиться две фазы не работает.

Правильно диагностировать данную причину можно выключив из всех розеток включенные в них электроприборы путем отсоединения вилок от розеток. Далее нужно перевести все выключатели в положение выключено.

Если вы не знаете в каком положение выключатель включен, а в каком выключен, можно просто выкрутить из люстр и светильников лампочки эффект будет тот же. После того как вы произвели все действия указанные выше, нужно еще раз проверить напряжение в розетке.

У вас должно получиться следующее, на фазном проводе должна быть фаза, соответственно индикатор делает световое оповещение, а при прикосновении к нулевому, лампочка индикатора  светиться не должна. В этом случае причину неисправности следует начать искать:

  •  в местах недавно повешенных на стену картинах, фотографиях. Как правило в  95% случаев такой тюнинг жилья заканчивается перебитым проводом. В этом случае нужно отключить электропитание квартиры (выключить пробки, автоматы, пакетные выключатели) убедиться в отсутствии напряжения. Далее снять слой штукатурки  и освободить провод, визуально диагностировать место повреждения и устранить неисправность путем соединения проводов и их изоляцией. После проведения всех работ, включаем подачу напряжения и проверяем работоспособность розетки. После этого место повреждения можно замазывать штукатурным либо гипсовым раствором.
  • если же никаких работ по обновлению дизайна жилья перед тем как в розетке появились две фазы не проводилось, то  возможная неисправность может быть в распределительной коробке. В этом случае поиски  начать следует с распределительных коробок, которые находиться в комнате где расположена розетка. Отключаем электроснабжение квартиры, снимаем крышку распределительной коробки, ищем обгоревшие, оплавленные либо отвалившееся провода. Если в этой распределительной коробке неисправности нет открываем ближайшее. После того как вы визуально диагностировали неисправность, приступаем к ее устранению. Делаем новое соединение, изолируем, закрываем крышку распределительной коробки, включаем электропитание и проверяем работоспособность розетки.
  •  в электро щитке. Если вы имеете доступ в силовой щит, вы можете открыть его и визуально просмотреть все контакты и соединения. При обнаружения оплавленных проводов, подгоревших контактов, отвалившихся от мест присоединения проводов нужно немедленно обратиться в обслуживающую данный электрощит организацию для устранения неполадок. Производить самостоятельный ремонт без снятия напряжения ОПАСНО ДЛЯ ЖИЗНИ.

Произошло перенапряжение

  • Перенапряжение — это повышение или понижение значений напряжения с нормальных (220-230 вольт) до высоких (360-380 вольт) или наоборот низких (40-80 вольт). Когда происходит перенапряжение, сначала может моргать свет, потом начинают очень ярко или очень тускло гореть лампочки.
ЭТО ИНТЕРЕСНО:  Какая должна быть длина скрутки проводов

Основную опасность представляют те случаи когда происходит повышение напряжения (360-380 вольт). Начинают сильно светиться лампочки, в некоторых случаях даже гудят, начинает дымиться  бытовая электроника.

 Моментально реагируют на повышенное напряжение: компьютеры, микроволновые печи, электронные часы, телевизоры, аудио и видео техника. Перегорают, либо начинают некорректно работать.

При низких значениях напряжения (40-80 вольт) такого значительного ущерба бытовой технике не наноситься, из-за низкого напряжения она просто не включается, а освещение при этом еле светиться, так, что можно разглядеть еле тлеющую нить накала в лампочке. Причина очень банальна, где то по линии электропроводки от подстанции до вашего счетчика повредился нулевой провод.

Что происходит во время перенапряжения? В современных электросетях используются четырех жильные кабельные линии. Три жилы используются для передачи трех независимых фаз, а четвертая для нуля.

Когда повреждается нулевой провод, ток подобно воде мгновенно заполняет свободную нишу и устремляется туда где самая маленькая нагрузка, в итоге получается что по по фазному проводу и по нулевому приходят две фазы вместо положенных 220 вольт, так получается 380.

Соответственно раз ток убежал в свободную нишу с маленькой нагрузкой, то там откуда он убежал остается маленькое напряжение  (40-80 вольт) или совсем ничего.

Что делать?

  • Нужно быстро отключить электроснабжение квартиры
  • выключить из розеток все бытовые приборы
  • перевести все выключатели в положение отключено.
  • Вызвать обслуживающий электро персонал.  Дождаться устранения бригадой электромонтеров причин перенапряжения, далее ими делаются контрольные замеры напряжения, составляется акт и только после этого можно вновь восстановить электропитание вашей квартиры.

Наведенный ток

Розетка работает в нормальном режиме, но при замере индикатором диагностируются две фазы. Такое явление часто встречается, если рядом с вашим домом проходит высоковольтная линия электропередач.

Это один из самых опасных случаев, так как наведенное напряжение будет диагностироваться индикатором даже при полностью отключенной подачей напряжения в квартиру, что может ввести в заблуждение даже профессионала в данном вопросе. В этом случае поможет вольтметр, либо мультиметр, он безошибочно покажет наличие или отсутствие напряжения.

Треугольник

Для передачи электроэнергии между населенными пунктам напряжение электрической сети многократно повышается. Это делается для сокращения токовой нагрузки сети, проще говоря с ростом напряжения сила тока в линиях электропередачи понижается.

Например, если приходя в ВРУ жилых строений линейное напряжение сети (между фаз) составляет 380 Вольт, то на высоковольтных линиях электропередач напряжение может повышаться от 6 000 до 1150 000 Вольт.

Понижение до 380 Вольт, происходит внутри трансформаторных подстанций, где установлен понижающий трансформатор тока.

В электрике существуют две схемы соединения обмоток понижающих трансформаторов «звезда» и «треугольник». В большинстве случаев в современных электрических сетях для бытовых нужд применяется схема «звезды», здесь все стандартно, есть 3 фазы и ноль (глухозаземленная нейтраль). Линейное напряжение = 380 Вольт (напряжение между фаз), а  фазное = 220-240 Вольт (между фазой и нулем, землей).

На ВРУ, как  правило, приходит четырех жильный кабель, по которому подается напряжение 380 Вольт, далее происходит разделение на отдельные лини «ноль + фаза», которые и приходят в квартиру. В итоге на розетке получаем напряжение сети 220-240 Вольт.

А вот в «треугольнике» нуля нет, есть только три фазы и все. На ВРУ приходит трехжильный кабель, по которому подается напряжение 380 Вольт.

Так как в схеме треугольника фазное напряжение = линейному,  далее он делится на отдельные линии «фаза + фаза» и именно в таком виде напряжение приходит в жилые квартиры. То есть в такой сети на обоих контактах розетки будет две фазы, при этом бытовые электроприборы в нормальном режиме работы будут исправно функционировать.  В розетке будет напряжение 380 Вольт.

Стоит отметить, что схема треугольника в современных сетях встречается все реже и реже, в большинстве случаев в районах городов и селений старого жилого фонда.

Источник: https://elektrika-svoimi-rykami.com/v-rozetke-dve-fazi/v-rozetke-dve-fazy

Бесплатное электричество существует!

Попытка откопать бесплатное электричество на нашем сайте уже была. Когда-то я написал про это статью, которую посетители сайта буквально освистали. И я должен признать: освистали вполне заслуженно. Я не удосужился вдуматься в суть вопроса, а просто поспешил поделиться информацией, которая мне попалась в интернете и показалась чрезвычайно интересной.

На этот раз я хочу рассказать вам о том, что, по моему разумению, является вполне реализуемым на практике делом. Этот источник бесплатного электричества доступен каждому из нас. Однако если вы решите им воспользоваться, систему его получения вам потребуется разработать самостоятельно. Я расскажу лишь об эксперименте извлечения дармовой электроэнергии.

Бесплатное электричество, которое никто не использует, встречается нам практически повсюду. У кого-то кран бьет током из-за того, что у соседа не заземлен бойлер. У кого-то батарея отопления практически искрит. И вот часть этой бесплатной энергии вполне можно использовать в практических целях.

Эту энергию вполне можно каким-то образом собрать, чтобы запитать, например, приборы освещения или обеспечить зарядку мобильных устройств.

Схема получения дармовой электроэнергии

Первое, что нужно сделать, это отыскать достаточно толстый провод и подсоединить его к надежному заземлению. Точкой заземления может явиться, например, водопроводная труба.

Затем следует найти второй провод и подсоединить его к нулевой жиле электрической сети. Чтобы определить ноль необходимо сделать следующее:

  • вилку подобранного провода вставить в розетку. При этом надо проявлять особую осторожность, т.к. оголенные концы находятся под напряжением;
  • с помощью индикатора фазы определить фазный провод. Это позволяет понять, что второй провод является нулевым;
  • вынуть вилку из розетки, четко запомнив ее положение и запомнив, какой из проводов является фазным;
  • фазный провод заизолировать, чтобы избежать удара током. Этот провод в ходе эксперимента не понадобится.

Между двумя подготовленными проводами всегда имеется определенный потенциал. Его можно определить путем измерения.

Полученное напряжение ничтожно, но его вполне достаточно, чтобы заставить светиться светодиод.

Итак, в результате описанного эксперимента удалось снять некоторое напряжение. Чтобы снятая электрическая энергия приобрела практическую ценность, напряжение необходимо увеличить.

Как довести напряжение до приемлемой величины

Вполне понятно, что это можно сделать с помощью обычного трансформатора. Поскольку описывается лишь эксперимент, для его проведения используется, как вы уже наверняка заметили, всякое ненужное старье.

Таким старьем является и трансформатор: он извлечен из звукового канала древнего лампового магнитофона «Яуза». В схеме этого прибора он применялся в качестве понижающего. Но, как известно, при соблюдении определенных условий, такой трансформатор может использоваться и в обратном направлении для повышения исходного напряжения, что и было сделано в ходе эксперимента.

После подключения снятого напряжения на вход трансформатора его выход выдает целых 233 В!

Таким напряжением уже можно запитать зарядное устройство телефона.

Это напряжение вполне достаточно и для того, чтобы засветилась электрическая лампочка.

Полученное бесплатное электричество очень удобно использовать для питания, например, ночника. Однако полученной на дармовщину энергией обольщаться не стоит. Это напряжение очень нестабильно, в течение суток оно может очень изменяться. Но, прочитав мою статью, вы теперь знаете о наличии неиссякаемого источника, о практическом использовании которого надо еще хорошенько подумать.

Данная статья подготовлена на основе вот этого видеоматериала, откуда в качестве иллюстрации были использованы и отдельные его кадры.

Мне нравится: 105 Не нравится: 71

Источник: https://allremont59.ru/inzhenerka/elektrika/besplatnoe-elektrichestvo-sushhestvuet.html

Наведенное напряжение: причины возникновения и меры защиты

Ремонтные бригады довольно часто сталкиваются с проблемой наличия напряжения в разорванной цепи. Такое явление случается на воздушных линиях, нередко в бытовой электросети. Это так называемое наведенное напряжение, появляющееся на отключенных проводах вследствие воздействия электромагнитного поля, от работающих рядом электролиний.

Для лучшего понимания эффективности защитных мер при ремонте воздушных линий электропередач (ВЛ) рассмотрим более подробно физическую сущность наводки. Это поможет лучше понять механизмы защиты от поражения током, образовавшимся на отключенных проводах.

Официальная терминология наведённым напряжением называет потенциал, опасный для жизни, возникающий в результате электромагнитных воздействий параллельной воздушной линии или электричества циркулирующего в контактных сетях. Этот потенциал является паразитным, порождённым влиянием функционирующей параллельной линией электрической сети и прямо не относится к транспортируемому току. Отсюда и название – наведённое напряжение.

В чем опасность явления?

наличие в проводах потенциала, наведённого переменным током или статическим электричеством часто невозможно предсказать. в этом кроется главная опасность наводки. на наведённое напряжение не реагируют штатные защитные приборы. на электромеханика, попавшего под действие наводки, будет действовать ток, пока он самостоятельно, либо с помощью напарника не высвободит руку или другую часть тела, соприкоснувшуюся с оголенным проводом.

если в результате короткого замыкания на вл произойдёт срабатывание защиты, отключающее рабочее напряжение, провода могут оказаться под наведённым током. опасность также возникает при появлении грозовых разрядов, в т. ч. и междуоблачных.

обратите внимание: штатная защита не реагирует на напряжения срабатывания, возникшие в результате наводки. поэтому при отключенной вл – следует применять особые схемы заземления, позволяющие создавать точки нулевого потенциала в конкретной зоне, при обслуживании линий.

опасность обусловлена поведением наведённого тока. дело в том, что источником тока является наводка от соседних вл, распространяющаяся по всей длине провода не одинаково. поэтому поведение таких токов отличается от привычного для нас рабочего электричества.

наличие штатного линейного заземления не гарантируют безопасности, а наоборот, сопутствует появлению электрического тока в отсоединённых проводах. как видно на рисунке 1, максимальный ток находится в точках заземления, то есть на заземляющих ножах.

рис. 1. значение напряжений между заземляющими ножами

в некоторых случаях целесообразно отключить заземления вл, а для защиты использовать переносные заземления, которые устанавливают с каждой стороны от места повреждения, как можно ближе к точке проведения работ.

причины возникновения

Для начала рассмотрим физическую картину возникновение наводки, а потом выясним причины явления в различных ситуациях:

  • на воздушной линии;
  • электроустановках;
  • в квартире;
  • электропроводке.

Если расположить параллельно два длинных проводника и по одному из них пропустить переменный ток, то на втором возникнет напряжение. Причём проявится электромагнитное влияние и действие электростатической составляющей. Величины электрических потенциалов на неподключённом проводнике зависят от длины, расстояния между проводами, а также от тока нагрузки. Подобные явления происходят и в реально действующих линиях энергоснабжения.

На воздушной линии (ВЛ)

Ток, который создаёт электростатическая составляющая, имеет одинаковый потенциал по всему проводнику: Uэ = k×Uв, где Uэ – наведённое электростатическое напряжение, k является коэффициентом ёмкостной связи, а Uв – рабочее влияющее напряжение. Очевидно, что наведённое напряжение зависит от разницы потенциалов на проводах параллельно расположенной влияющей линии.

Заметим, что электростатическое напряжение является результатом не только действия расположенных поблизости электромагнитных полей фазных проводов. Любое статическое электричество вызывает такой же эффект. Например, в северных широтах статическую наводку может вызвать полярное сияние, а также, упомянутые выше грозовые разряды (показано на рисунке ниже).

Рис. 2. Статическое напряжение от полярного сияния

Для устранения электростатического потенциала достаточно заземлить провод в любом месте.

Компонент напряжения электромагнитной составляющей, сильно отличается от статического. Потенциал возникает вследствие действия электромагнитных полей, образованных токами проводов фазы. На рисунке 3 показана схема образования наведённого напряжения.

Электромагнитная составляющая наведённого напряжения

Важные особенности электромагнитной составляющей:

  • её величина пропорциональна рабочем току ВЛ;
  • зависит от расстояния до влияющей воздушной линии;
  • на наведённый потенциал влияет протяжённость взаимодействующих проводов;
  • выраженная зависимость от схемы переносного заземления ВЛ и от сопротивления заземления.

Наведённая ЭДС в этом случае вычисляется по формуле:

E = M × L× I, 

Здесь M – коэффициент индуктивной связи, L – протяжённость параллельного участка, I – сила тока влияющей линии.

Как видно из формулы, величина напряжения провода фазы не влияет на ЭДС.

В конкретной точке x наведённое напряжение можно вычислить по формуле:

U = – (E*x)/L+ E/2 , где E – ЭДС, L – длина параллельного следования, x – расстояние от точки вычисления напряжения до начала линии.

Очевидно, что напряжение в точке отсечения (где x  = 0) принимает значение: U = + E/2 , в середине линии (x равняется условной единице) U = 0, а в конечной точке U = – E/2. Понятно, что напряжение уже не является константой на всём участке проводов линии. Оно линейно изменяется между заземлениями, образуя нулевой потенциал в определённой точке. Если заземление одно, тогда положение нулевой точки находится в месте входа заземляющего ножа.

На схемах, приведённых ниже (рисунок 4), видно как распределяется наведённое напряжение. Обратите внимание, как перемещается точка нулевого потенциала и как она зависит от выбранного способа заземления.

Рис. 4. Схемы распределения наводимого напряжения в зависимости от расположения точек заземления

Из схематических изображений видно, как работа обслуживающего персонала одновременно в нескольких местах отключённой ВЛ может представлять опасность.

Ввиду несимметрии токов наведённое напряжение может распределиться таким образом, что нулевые потенциалы сдвинутся за пределы рабочего пространства людей. Вследствие этого ремонтники могут оказаться под опасным воздействием наведённого напряжения.

В электроустановках

Ввиду того, что стационарные электроустановки неразрывно связаны с ВЛ, существует вероятность попадания наведённого напряжения на токоведущие части оборудования. Чаще всего это случается при обрыве нуля.

Особенность электроустановок в том, что там используются изолированные кабели, в которых плотно уложены провода. Хотя длина такой проводки обычно незначительна, однако, наводка в кабеле может иметь существенный потенциал (из-за плотного размещения проводов).

Поэтому при работе с электроустановками необходимо обеспечивать защитные меры по снятию опасного наведённого напряжения, использовать средства индивидуальной защиты, отвечающие классу напряжения.

Необходимо придерживаться ПУЭ, выставлять ограждения для соблюдения безопасных расстояний к токоведущим частям электроприборов.

В квартире

Наводка в обычной бытовой сети наблюдается при обрыве нулевого провода на входе или на участке воздушной линии. Если поискать индикатором фазу в розетке – он покажет напряжение на каждом из выходов. В действительности же, рабочее напряжение существует на проводе фазы, а на нулевом – наблюдается ток наводки. При устранении неисправности всё становится на свои места.

Поскольку поиск и ликвидация неисправности в квартире проводится при отключенных предохранителях, то тем самым обеспечивается необходимая защита.

В электропроводке

Электропроводка в доме монтируется с использованием двух-, а иногда трёхжильных проводов. Обычно кабели укладываются в короба, откуда выходят разветвления. Если выключатель разъединяет нулевой провод, то при такой укладке в нём неизбежно появится наводка. Возникает напряжение безопасной величины, однако его достаточно для зажигания диодного освещения (выключенные диодные лампы тускло светятся). Проблема решается просто – необходимо на выключателе поменять местами провода фазы и нуля.

Известны случаи, когда для заземления розетки использовался провод трёхжильного кабеля. На этом проводнике всегда присутствует довольно ощутимое наведённое напряжение. Поэтому для заземления используйте отдельный одножильный кабель большого сечения и прокладывайте его как можно далее от проводки с номинальными напряжениями.

Меры защиты

Учитывая то, что наведённые токи могут достигать предельно опасных значений, особенно на участках ВЛ или в электроустановках, при их обслуживании следует применять меры защиты [ 2 ]:

  • использовать сигнализаторы напряжения;
  • обеспечивать безопасный уровень напряжения на участках, где предстоит работа;
  • использовать защитную одежду, диэлектрические коврики и т.п.;
  • пользоваться указателями напряжения, универсальными электроизолирующими штангами для оценки значений токов наводки.
  • применять приспособления для снятия напряжений.

Перед проведением работ на линиях с наводкой устанавливайте переносные заземления с двух сторон повреждённого участка ВЛ на небольшом расстоянии. Заземляйте провода с поверхности земли, используя изоляционные штанги. Выдерживайте расстояния срабатывания защиты заземлений.

На рисунке 5 показано как влияет расстояние от заземления на снижение наведённого напряжения.

Рис. 5. Снижение наведённого напряжения

Измерение напряжения проводите в изолирующих перчатках и ботах, а измерительные приборы располагайте на ковриках или подставках. Используйте только те измерительные устройства, которые предназначены для указанных целей и рассчитаны на измерение в соответствующих пределах. Помните, что штатные защитные приспособления для наведённого тока не предназначены. Нельзя проводить измерения в условиях тумана, осадков, а также при сильном ветре.

Всегда проверяйте наличие фазного тока на всех проводах. Если с помощью прибора УПСФ-10 вы определили линейное рабочее напряжение, то использовать переносное заземление запрещается.

В целях безопасности всегда считайте нулевой кабель таким, что находится под напряжением.

ЭТО ИНТЕРЕСНО:  Как расшифровывается Кабель КГ

в тему

Источник: https://www.asutpp.ru/navedennoe-napryazhenie.html

Фаза, ноль и земля – что это такое?

Электрическая энергия, которой мы пользуемся, вырабатывается генераторами переменного тока на электростанциях. Их вращает энергия сжигаемого топлива (угля, газа) на ТЭС, падающей воды на ГЭС или ядерного распада на АЭС.

До нас электричество добирается через сотни километров линий электропередач, претерпевая по дороге преобразования с одной величины напряжения в другую. От трансформаторной подстанции оно приходит в распределительные щитки подъездов и далее – в квартиру.

Или по линии распределяется между частными домами поселка или деревни.

Разберемся, откуда берутся понятия «фаза», «ноль» и «земля». Выходной элемент подстанции — понижающий трансформатор, с его обмоток низкого напряжения идет питание потребителю.

Обмотки соединяются в звезду внутри трансформатора, общая точка которой (нейтраль) заземляется на трансформаторной подстанции. Отдельным проводником она идет к потребителю. Идут к нему и проводники трех выводов других концов обмоток.

Эти три проводника называются «фазами» (L1, L2, L3), а общий проводник – нулем (PEN).

Система с глухозаземленной нейтралью

Поскольку нулевой проводник заземлен, то такая система называется «системой с глухозаземленной нейтралью». Проводник PEN называется совмещенным нулевым проводником.

До выхода в свет 7-го издания ПУЭ ноль в таком виде доходил до потребителя, что создавало неудобства при заземлении корпусов электрооборудования. Для этого их соединяли с нулем, и это называлось занулением.

Но через ноль шел и рабочий ток, и его потенциал не всегда равнялся нулю, что создавало риск поражения электрическим током.

Теперь из вновь вводимых трансформаторных подстанций выходят два нулевых проводника: нулевой рабочий (N) и нулевой защитный (РЕ).

Функции их разделены: по рабочему протекает ток нагрузки, а защитный соединяет подлежащие заземлению токопроводящие части с контуром заземления подстанции.

На отходящих от нее линиях электропередачи нулевой защитный проводник дополнительно соединяют с контуром повторного заземления опор, содержащих элементы защиты от перенапряжений. При вводе в дом его соединяют с контуром заземления.

Напряжения и токи нагрузки в системе с глухозаземленной нейтралью

Напряжение между фазами трехфазной системы называют линейным, а между фазой и рабочим нулем – фазным. Номинальные фазные напряжения равны 220 В, а линейные – 380 В.

Провода или кабели, содержащие в себе все три фазы, рабочий и защитный ноль, проходят по этажным щиткам многоквартирного дома. В сельской местности они расходятся по поселку при помощи самонесущего изолированного провода (СИП).

Если линия содержит четыре алюминиевых провода на изоляторах, значит, используются три фазы и PEN. Разделение на N и РЕ в таком случае выполняется для каждого дома индивидуально во вводном щитке.

К каждому потребителю в квартиру приходит одна фаза, рабочий и защитный ноль. Потребители дома распределяются по фазам равномерно, чтобы нагрузка была одинаковой. Но на практике этого не получается: невозможно предугадать, какую мощность будет потреблять каждый абонент. Так как токи нагрузки в разных фазах трансформатора не одинаковы, то происходит явление, называемое «смещением нейтрали».

Между «землей» и нулевым проводником у потребителя появляется разность потенциалов. Она увеличивается, если сечения проводника недостаточно или его контакт с выводом нейтрали трансформатора ухудшается. При прекращении связи с нейтралью происходит авария: в максимально нагруженных фазах напряжение стремится к нулю. В ненагруженных фазах напряжение становится близким к 380 В, и все оборудование выходит из строя.

В случае, когда в такую ситуацию попадает проводник PEN, под напряжением оказываются все зануленные корпуса щитов и электроприборов. Прикосновение к ним опасно для жизни. Разделение функции защитного и рабочего проводника позволяет избежать поражения электрическим током в такой ситуации.

Как распознать фазные и защитные проводники

Фазные проводники несут в себе потенциал относительно земли, равный 220 В (фазному напряжению). Прикосновение к ним опасно для жизни. Но на этом основан способ их распознавания. Для этого применяется прибор, называемый однополюсным указателем напряжения или индикатором.

Внутри него расположены последовательно соединенные лампочка и резистор. При прикосновении к «фазе» индикатором ток протекает через него и тело человека в землю. Лампочка светится.

Сопротивление резистора и порог зажигания лампочки подобраны так, чтобы ток был за гранью чувствительности человеческого организма и им не ощущался.

Конструкция однополюсного указателя напряжения

Конструкция однополюсного указателя напряжения
1 корпус
2 разъемное соединение
3 пружина
4 индикаторная неоновая лампа
5 контакт для прикосновения
6 изолированная часть
7 резистор

Распознать фазные проводники можно по их расцветке, для них используются черный, серый, коричневый, белый или красный цвет. Сложнее всего со старыми электрощитами: в них проводники одного цвета. Но «фазу» с помощью индикатора определить можно всегда и без ошибок.

Нулевой рабочий проводник – синего (голубого) цвета, защитный маркируется желто-зелеными полосами. Напряжение на них отсутствует, но лучше без нужды их не касаться. Есть у электриков такой закон: если сейчас напряжения нет, то оно может появиться в любой момент.

Источник: http://electric-tolk.ru/faza-nol-i-zemlya-chto-eto-takoe/

Электрический ток, откуда он берется и как добирается до наших домов?

Дороги и тропинки эти отнюдь не просты, порой извилисты и многократно меняют направление, но знать, как они выглядят – обязанность каждого культурного человека XXI века.

Века, облик которого во многом определяет покорившаяся нам электроэнергия, которую мы научились преобразовывать так, чтобы были удовлетворены все наши потребности – как в промышленности, так и в частном пользовании. Ток в проводах линий электропередач и ток в батарейках наших гаджетов – очень разные токи, но они остаются все тем же электричеством.

Какие усилия приходится прилагать электроэнергетикам, инженерам, чтобы обеспечить мощнейшие токи сталеплавильных заводов и маленькие, крошечные токи, допустим, наручных часов? Сколько работы приходится проделывать всем тем, кто поддерживает систему преобразований, передачи и распределения электроэнергии, какими такими методами обеспечена стабильность этой системы? Чем «Системный Оператор» отличается от «Федеральной Сетевой Компании», почему обе этих компании были, есть и будут в России не частными а государственными?

Вопросов очень много, ответы на них надо знать, чтобы более менее представлять, зачем нам так много энергетиков и чем же они, грубо говоря, занимаются? Мы ведь настолько привыкли, что с электричеством в домах и в городах все в полном порядке, что про электроинженеров вспоминаем только тогда, когда что-то вдруг перестает работать, когда мы выпадаем из зоны привычного уровня комфорта. Темно и холодно – вот только тогда мы с вами и говорим об энергетиках, причем говорим такие слова, которые мы печатать точно не будем.

Мы уверены, что нам откровенно повезло – взяться за эту не простую, нужную, да еще и огромную тему согласился настоящий профессионал. Просим любить и жаловать – Дмитрий Таланов, Инженер с большой буквы.

Знаете, есть такая страна – Финляндия, в которой звание инженера настолько значимо, что в свое время ежегодно издавался каталог с перечнем специалистов, его имеющих.

Хотелось бы, чтобы и в России когда-нибудь появилась такая славная традиция, благо в наш электронно-интернетный век завести такой ежегодно обновляемый каталог намного проще.

Статья, которую мы предлагаем вашему вниманию по инженерному коротка, точна и емка. Конечно, обо всем, что написал Дмитрий, можно рассказать намного подробнее, и в свое время наш журнал начал цикл статей о том, как в XIX веке происходило покорение электричества.

Георг Ом, Генрих Герц, Андре-Мари Ампер, Алессандро Вольт, Джеймс Ватт, Фарадей, Якоби, Ленц, Грамм, Фонтен, Лодыгин, Доливо-Добровольский, Тесла, Яблочков, Депрё, Эдисон, Максвелл, Кирхгоф, братья Сименсы и братья Вестингаузы – в истории электричества много славных имен, достойных того, чтобы мы о них помнили. В общем, если кому-то хочется припомнить подробности того, как все начиналось, милости просим, а статья Дмитрия – начало совсем другой истории. Очень надеемся, что она вам понравится, а продолжение статей Дмитрия Таланова мы увидим в самое ближайшее время.

Уважаемого Дмитрия от себя лично – с дебютом, ко всем читателям просьба – не скупитесь на комментарии!

Для чего нам электроэнергия и насколько она помогает нам жить, может узнать каждый, обведя критическим взглядом свое жилище и место работы

Первое, что бросается в глаза, это освещение. И верно, без него даже 8-часовой рабочий день превратился бы в муку. Добираться до работы во многих мегаполисах и так небольшое счастье, а если придется это делать в темноте? А зимой так и в оба конца! Газовые фонари помогут на главных магистралях, но чуть свернул в сторону, и не видно ни зги. Можно легко провалиться в подвал или яму. А за городом на природе, освещаемой только светом звезд?

Источник: http://geoenergetics.ru/2017/10/10/elektricheskij-tok-otkuda-on-beretsya-i-kak-dobiraetsya-do-nashix-domov/

Электрическое напряжение

> Теория > Электрическое напряжение

В современном быту, строительстве и других сферах жизни человека огромную роль играет энергия, которая необходима для приведения в движение различных механизмов, производственных станков и инструментов.

Электрическое напряжение, или как его принято называть в народе ток, занимает первое место среди ресурсов снабжения, поэтому человек во многом зависит от бесперебойной подачи электричества правильного номинала.

В данной статье рассмотрено определение электрического напряжения, его формула, а также, от чего зависит и на что влияет данный показатель.

Что такое напряжение

Электрическое напряжение – это работа, которая необходима для подачи заряда электрическим полем от поставщика до потребляемого прибора по проводам или без них. Проще говоря, это величина силы, потраченной для доставки определенного заряда тока по проводнику от одного конца на другой. Без напряжения не будет перемещения заряженных частиц, а, следовательно, ток не будет поступать к потребителю, номинальная величина в цепи будет равна нулю.

Электрическим током заряжены все элементы и предметы, которые окружают человека, разница лишь в величине напряжения – у некоторых вещей данный показатель минимален и фактически не заметен, у других – наличие тока более выражено.

За долгие годы исследований ученые изобрели множество приборов, которые способны вырабатывать электрический ток различного напряжения и силы, начиная от малогабаритных и заканчивая крупными электростанциями, питающими целые города.

Электрическое напряжение напрямую связано с силой тока: чем выше напряжение, тем выше будет величина силы тока.

Для более точного понимания определения напряжения тока необходимо разобраться в физике образования электричества в целом. Откуда берется электрический ток?

Все предметы и вещества состоят из атомов с положительным зарядом, число которых равно числу вращающихся вокруг них отрицательно заряженных частиц. Проще говоря, количество электронов равно количеству нейтронов.

Чтобы возникло напряжение в сети, из ядра извлекаются некоторые электроны, возникает разряжение, и оставшиеся частицы пытаются восполнить пробел путем притяжения электронов снаружи, возникает положительный заряд.

Если же добавить электроны в атом, возникнет переизбыток, и образуется отрицательное энергетическое поле.

В результате такого взаимодействия возникают положительный и отрицательный потенциалы, и чем больше контакта у этих элементов, тем выше сила и напряжение электрического тока. При соединении указанных потенциалов образуется энергетическое поле, которое увеличивается при повышении количества заряженных атомов внутри себя.

Формула для вычисления напряжения тока выглядит следующим образом:

U=A/q, где:

  • U – это само напряжение,
  • A – работа, необходимая для перемещения заряда,
  • Q – отрезок расстояния, на которое перемещается заряженный атом.

Таким образом, можно сделать вывод, что сила тока на протяжении всей цепи будет одинаковой, а напряжение на каждом из участков будет разным, в зависимости от нагрузки на данный отрезок. Как известно, энергия не возникает из ниоткуда и не пропадает в неизвестном направлении, поэтому при повышении напряжения на определенном участке провода избыточный ток выражается в тепловой нагрузке, проще говоря, материал, из которого изготовлен проводник, начинает греться.

Влияние температуры проводника на сопротивление

От чего зависит напряжение

Электрическое сопротивление

Существует три основных фактора, влияющих на норматив напряжения электрических токов, среди которых:

  1. Материал, из которого выполнен проводник. Для решения определенных задач существуют различные типы проводов, чаще всего можно встретить медные или алюминиевые изделия различного сечения и наружной оболочки. Наружная обмотка таких проводов бывает также из множества материалов, защитных и декоративных, например, ПВХ пленка или резиновая защита. Такая обработка позволяет использовать проводку в любых условиях, в том числе для организации наружного освещения;
  2. Температуры использования проводника;
  3. Уровня сопротивления электрического тока на данном участке. Данная величина зависит от свойств проводимости кабеля или иного предмета, подключенного к сети, и способности к беспрепятственному пропуску атомов через себя. Существуют материалы с нулевым сопротивлением или полностью диэлектрические, то есть не способные проводить электрический ток любого напряжения.

Ток и его напряжение напрямую зависят друг от друга, поэтому и их обозначения одинаковы. Напряжение тока измеряется в Вольтах и обозначается буквой В.

Вольт выражается в разности положительного и отрицательного потенциалов на двух удаленных от друг друга точках поля, силы которого совершают усилия, равные одному Дж, при доставке заряда от одного отрезка к конечному.

Номинал единицы заряда равен одному Кл, таким образом, обозначение 220 Вольт включает в себя понятие, что данная сеть способна потратить энергию в 220 Дж для транспортировки зарядов от входной точки до потребителя, это и называется электрическим напряжением в сети.

Виды напряжения электрического тока

Синусоида постоянного и переменного тока

Что такое электрическое напряжение, описывается в учебниках по физике, там же приводится его классификация на основании временного промежутка подачи энергии. По данному признаку напряжение бывает:

  1. Постоянное – это когда на одном конце проводника ток и электрическое напряжение положительные, а на другом – отрицательные, и их значение направлено в одну сторону. Чаще всего такая система встречается в автономных батареях слабой и средней мощности;

Важно! Случайная или умышленная замена полярностей может привести к выходу из строя прибора, а также короткому замыканию при соединении нескольких элементов, осуществлять это нужно последовательно, стыкуя минусовый контакт к плюсовому. Синусоида при постоянном токе будет ровной без рывков и волн.

  1. Переменный ток и электрическое напряжение отличаются от постоянных тем, что у них может быть несколько направлений, например, при частой замене потенциалов полярностей или их перемещении возникает обратное движение заряда, частота данного действия и будет показателем переменного тока. Чаще всего данную систему используют для транспортировки электричества по проводнику на большие расстояния, так как потери тока минимальны, следовательно, и напряжение не уменьшается. Также переменный ток используется в трехфазных двигателях и при доставке постоянного тока на трансформатор для его последующего разделения. Синусоида переменного тока выглядит неровной, волнообразной, с множественными скачками. Существуют формула и механизмы, которые используются для преобразования переменного тока в постоянный, это возможно при наличии конденсаторов и диодного моста.

Между фазами переменного тока также существуют свои показатели, в данном случае напряжение равно 380В, по количеству разности потенциалов в трехфазной сети. В сети напряженностью 220В всего два провода: один – с несущей фазой, второй – с нулем, также для безопасности добавляется кабель заземления. В трехфазной сети имеется четыре жилы, и один дополнительный заземляющий провод, в сумме напряжение всех трех фаз составляет 380В.

Меры предосторожности

Электрическое поле – это?

Ток и электрическое напряжение являются источником повышенной опасности, поэтому при работе и эксплуатации данного типа энергии необходимо соблюдать нормы и правила безопасности, не допускать аварийных ситуаций и обеспечить все приборы автоматической системой отключения питания.

Запрещается работать с проводкой, находящейся под напряжением, или без устройства для заземления. В случае возникновения короткого замыкания необходимо отключить все приборы от сети и предотвратить возгорание обмотки двигателя или кабеля.

Источник: https://elquanta.ru/teoriya/ehlektricheskoe-napryazhenie.html

Понравилась статья? Поделиться с друзьями:
Электро Дело
Для любых предложений по сайту: [email protected]