Как определить мощность однофазного асинхронного двигателя

Однофазные электродвигатели

Как определить мощность однофазного асинхронного двигателя

Бытовые электродвигатели — это двигатели однофазные, по ошибке их часто называют («двухфазные двигатели») т.к. они применятся в сети с напряжением 220В. В связи с этим двигатели однофазные называют электродвигатель 220 или двигатель 220в.

Электродвигатели серии АИРЕ (двигатели однофазные — «бытовые электродвигатели») асинхронные однофазные с короткозамкнутым ротором конденсаторные предназначены для работы от сети переменного тока напряжением 220 В частотой 50 Гц. Допускается работа от сети напряжением 230 В частотой 50 Гц и 220, 230 В частотой 60 Гц. Двигатели однофазные выполнены с двухфазной обмоткой на статоре («двухфазные двигатели»).

Для уменьшения влияния температуры окружающей среды на емкость конденсаторов их следует размещать в местах, наименее подверженных колебаниям температуры. В процессе эксплуатации двигателя рекомендуется периодически контролировать величину емкости конденсатора.

Условия эксплуатации

  • Напряжение и частота: 220 В при частоте 50 Гц.
  • Вид климатического исполнения: У2, У3, У5, УХЛ,2, Т2.
  • Режим работы: S1.
  • Степень защиты базового варианта: IP 54.
  • Степень охлаждения — IC 041.
  • Класс нагревостойкости изоляции: электродвигатели изготавливаются с изоляцией класса нагревостойкости «В» или «F» по ГОСТ 8865-93.
  • Номинальные значения климатических факторов по ГОСТ 15150-69 и ГОСТ 15543.1-89.
  • Запыленность воздуха не более 2 мг/м3.
  • Группа механического исполнения М1 по ГОСТ 17516.1-90.
  • Воздействие вибрационных нагрузок для двигателей, соответствующих 1 степени жесткости по ГОСТ 17516.1-90.

Область применения однофазных двигателей

Однофазный асинхронный двигатель предназначен для привода механизмов. В частности насосов, вентиляции и для другово бытового оборудования. Электродвигатели  с питанием напряжения 220в комплектуются как одним, так и двумя конденсаторами (рабочий и пусковой).

Электродвигатели серии АИРЕ, АИРМУТ, АИРУТ, АДМЕ, АИСЕ, АИС2Е (однофазные с двумя конденсаторам) последние подходят для использования на оборудовании требующей большой пусковой момент: деревообрабатывающих станков, транспортеров, компрессоров, подъемников и др., применяется для привода средств малой механизации: кормоизмельчителей, бетоносмесителей и др.

Электропитание осуществляется от сети переменного тока напряжением 220В. Как правило, двигатели поставляются заводами-изготовителями укомплектованными конденсаторами (потребителю остается только подключить двигатель к однофазной сети согласно схеме подключения). Монтажные исполнения однофазных двигателей и их габаритно-присоединительные размеры соответствуют общепромышленным двигателям серии АИР(АИРМ, 5А , АДМ и пр.

) Расшифровка обозначения : АИРЕ, АИРМУТ, АИСЕ — однофазный электродвигатель с двухфазной обмоткой и рабочим конденсатором. АИР3Е, АИР3УТ — однофазный электродвигатель с трехфазной обмоткой и рабочим конденсатором.

АИРE 100S4 У3 IМ1081

  • АИРЕ
    • А асинхронный,
    • И унифицированная серия (Интерэлектро)
    • Р привязка мощностей к установочным размерам (Р по ГОСТ, С -по (CENELEK, DIN)
    • Е  однофазный двигатель
  • 100 -габарит двигателя(высота между центром вала и основанием)
  • S — установочный размер по длине станины
  • 4 — число полюсов
  • У3 -климатическое исполнение и категория размещения
  • IМ1081 — исполнения на лапах
  • IM1081 (лапы)
  • IM2081 (лапы+фланец)
  • IM3081 (фланец )

Конструктивные исполнения по способу монтажа: IM1081

Конструктивное исполнение по способу монтажа: IM1081 — на лапах с одним цилиндрическим концом вала.

Габаритные, установочные и присоединительные размеры IM1081

Тип двигателяЧисло полюсовУстановочные и присоединительные размеры, мм l1 l10 b1 b11 h d1 d10 l30 l33 h31 d30
АИРМУТ 63 2,4 30 80 5 129 63 14 7 227 261 154 135
АИРУТ 71 2,4 40 90 6 135 71 19 7 272,5 316,5 188 163
АИРЕ 80 А 2,4 50 100 6 155 80 22 10 296,5 350 204,5 177
АИРЕ 80 В 2,4 50 100 6 155 80 22 10 320,5 374 204,5 177
АИРЕ 100S 4 60 112 8 200 100 28 12 360 424 246,5 226
АИСЕ 100L 2 60 140 8 200 100 28 12 391 455 246,5 226
АИС2Е100LВ 2 60 140 8 200 100 28 12 391 455 246,5 226
АИС2Е112МВ 2 80 140 10 228 112 32 12 435 520 285 246

Конструктивные исполнения по способу монтажа: IM2081

Конструктивное исполнение по способу монтажа: IM2081 — на лапах с одним цилиндрическим концом вала.

Габаритные, установочные и присоединительные размеры IM2081

Тип двигателяЧисло полюсовУстановочные и присоединительные размеры, мм l1 l10 b1 b10 b11 h d1 d10 d20 d22 d25 n l30 h31 d24
АИРМУТ 63 2,4 30 80 5 100 129 63 14 7 130 10 130 6 227 154 160
АИРУТ 71 2,4 40 90 6 112 135 71 19 7 165 12 130 7 272,5 188 200
АИРЕ 80 А 2,4 50 100 6 125 155 80 22 10 165 12 130 8 296,5 204,5 200
АИРЕ 80 В 2,4 50 100 6 125 155 80 22 10 165 12 130 9 320,5 204,5 200
АИРЕ 100S 4 60 112 8 160 200 100 28 12 215 15 180 11 360 246,5 250
АИСЕ 100L 2 60 140 8 160 200 100 28 12 215 15 180 12 391 246,5 250
АИС2Е100LВ 2 60 140 8 160 200 100 28 12 215 15 180 12 391 246,5 250
АИС2Е112МВ 2 80 140 10 190 228 112 32 12 265 15 230 13 435 285 300

Источник: https://kontmotor.ru/category/odnofaznye

Как определить мощность и ток электродвигателя

Как определить мощность однофазного асинхронного двигателя

Июль 3, 2014

53408 просмотров

Все электрические двигатели выпускаются с табличками на корпусе, из которых можно узнать основные характеристики электродвигателя: его марку, потребляемый номинальный рабочий ток и мощность, частоту вращения, тип двигателя, КПД и cos(fi). Так же эти данные указаны в паспорте к устройству.

Из всех параметров наиболее важное значение для подключения имеют: мощность электродвигателя и потребляемый ток, не стоит его путать с пусковым. Именно эти данные позволяют нам определить достаточность мощности для привода, необходимое сечение кабеля для подключения мотора и подобрать подходящие по номиналу для защиты автомат и тепловое реле.

Но бывает, что нет паспорта или таблички и для определения этих величин необходимо будет сделать измерения. Как узнать мощность,  рабочий ток и снизить пусковой, Вы узнаете далее из этой статьи.

Как определить мощность электродвигателя

Проще всего посмотреть на табличку и найти величину в киловаттах. Например, на картинке она равна 45 кВт.Учтите, что эта величина на табличке указывает на потребляемую активную мощность из электросети. Полная же мощность будет равна сумме активной и реактивной мощности.

Электрические счетчики в доме или гараже считают только расход активной электроэнергии, а учет реактивной энергии ведется только на предприятиях при помощи специальных счетчиков. Чем выше у электродвигателя cos(fi), тем меньше будет составляющая реактивной энергии в полной мощности. Не стоит путать cos(fi) с КПД. Этот показатель показывает сколько электроэнергии переводится в полезную механическую работу, а сколько в бесполезное тепло.

Например, КПД равный 90 процентам, говорит о том, что десятая часть потребленной электроэнергии уходит на тепловые потери и трение в подшипниках.

Вы должны иметь ввиду, что в паспорте или на табличке указывается номинальная мощность, которая будет равна этому значению только при условии достижения оптимальной нагрузки на вал. При чем перегружать не стоит вал по целому ряду причин, лучше выбрать по мощнее мотор. На холостом ходу величина тока будет гораздо ниже номинала.

Как же определить номинальную мощность электродвигателя? В интернете Вы найдете много различных формул и расчетов. Для некоторых необходимо помереть размеры статора, для других формул понадобится знать величину тока, КПД и cos(fi). Мой совет не заморачивайтесь со всем этим. Лучше этих расчетов все равно будут практические измерения. И для их проведения ничего не понадобится вообще.

Как определить мощность любого электроприбора в доме или гараже? Конечно с помощью счетчика электроэнергии. Перед началом измерения отключите все электроприборы из розеток, освещение и все то, что подключено от электрощита.

Далее если у Вас электронный счетчик типа Меркурий, все очень просто надо включить мотор под нагрузкой и погонять минут 5. На электронном табло должна высветится величина нагрузки в кВт, подключенная к счетчику в данный момент.

Если же у вас дисковый индукционный счетчик учитывайте, что он учет ведет в киловатт/часах.

Запишите перед началом измерений последние показатели, включайте двигатель строго секунда в секунду ровно на 10 минут, затем после остановки отнимите новые показания от предыдущих и умножайте кВт\ч на 6.

Полученный результат и будет активной мощностью данного двигателя в Киловаттах, для перевода в Ватты разделите на 1000. Рекомендую прочитать статью: как снимать показания электросчетчика.

Если двигатель маломощный, тогда для более высокой точности можно посчитать обороты диска. Например, за одну минуту он сделал 10 полных оборотов, а на счетчике написано 1200 оборотов= 1 кВт/ч. 10 умножаем на количество минут в часе и получаем 600 оборотов за час. 1200 делим на 600 и получаем 500 Ватт или 0.5 кВт.

Чем дольше по времени будете измерять, тем точнее будут данные. Но время всегда должно быть кратно полной минуте. Затем делим 60 на количество минут измерения и умножаем на сосчитанные обороты.

После этого величину оборотов, равных одному Киловатт/часу для вашей модели электросчетчика делим на полученный результат и получаем необходимую величину мощности.

Как определить потребляемый ток электродвигателя

Зная мощность, легко можно высчитать величину потребляемого тока. Для 3 фазных двигателей, подключенных по схеме звезда на 380 Вольт, необходимо умножить мощность в киловаттах на 2. Например, при мощности 5 киловатт ток будет равен 10 Ампер. Опять же учитывайте, что такой ток мотор будет брать только под нагрузкой максимально близкой к номиналу. Полунагруженный электродвигатель и тем более на холостом ходу будет потреблять значительно меньший ток.

Для определения тока в однофазных сетях, необходимо мощность разделить на напряжение. Например, при работе двигателя напряжение в месте его подключения равно 230 Вольт. Это важно так, как после включения нагрузки напряжение скорее всего понизится в месте подключения электродвигателя.

Если например, мощность мотора на 220 Вольт по измерениям оказалась равной 1.5 кВт или 1500 Ватт. Делим 1500 на 230 Вольт и получаем, что рабочий ток двигателя приблизительно равен 6.5 Ампер.

Пусковой ток электродвигателя

При запуске любого типа электродвигателя возникает пусковой ток от 2 до 8 кратного значению номинального тока в рабочем режиме электродвигателя. Величина пускового тока зависит от типа двигателя, скорости вращения, схемы подключения, наличие нагрузки на валу и от других параметров.

Пусковой ток возникает, потому что в момент запуска наводится очень сильное магнитное поле в обмотках необходимое, что бы сдвинуть с места и раскрутить ротор. При включении мотора сопротивление обмоток мало, а следовательно по закону Ома, ток вырастает при неизменном напряжении в участке цепи. По мере того как двигатель раскручивается, возникает в обмотках ЭДС или индуктивное сопротивление и ток начинает уменьшаться до номинального значения.

Эти всплески реактивной энергии негативно сказываются на работе других электропотребителей, подключенных к этой же линии электропитания, что служит причиной возникновения особенно губительных для электроники скачков или перепадов напряжения.

Снизить вдвое пусковой ток можно при использовании специально разработанного для этих целей тиристорного блока, а лучше при помощи устройства плавного запуска (УПЗ). УПЗ с меньшим пусковым током и быстрее в полтора раза запускает мотор по сравнению с тиристорным запуском.  Устройства плавного запуска подходят как к синхронным, так и к асинхронным двигателям. УПЗ выпускаются предприятиями Украины и России.

Для запуска трехфазного асинхронного двигателя сегодня нередко используются и преобразователя частоты. Широкое их распространение пока сдерживает только цена.

Благодаря изменению величин частоты тока и напряжения удается не только сделать плавный запуск, но и регулировать скорость вращения ротора. По другому как только изменением частоты электрического тока, регулировать скорость вращения асинхронного двигателя нет возможности.

Но следует знать, что частотный преобразователь создает помехи в электросети, поэтому для подключения электроники и бытовой техники используйте сетевой фильтр.

Использование устройства плавного запуска и частотного преобразователя позволяет не только сохранить стабильность электропитания у Вас и Ваших соседей, подключенных к одной линии электроснабжения, но и продлить срок службы электродвигателей.

Источник: http://jelektro.ru/elektricheskie-terminy/moshhnost-tok-jelektrodvigatelja.html

Как определить мощность электродвигателя без бирки

Как определить мощность однофазного асинхронного двигателя

Если техническая документация к двигателю утеряна, а надписи на корпусе стерлись или не читаемы, возникает вопрос: как определить мощность электродвигателя без бирки? Существуют несколько методов, о которых мы вам расскажем, и вам останется выбрать из них наиболее удобный в вашем случае.

Практические измерения

Самый доступный способ – проверка показаний бытового счетчика электроэнергии. Сначала следует отключить абсолютно все бытовые приборы и выключить свет во всех помещениях, поскольку даже горящая лампочка на 40Вт будет искажать показания.

Проследите, чтобы счетчик не крутился или индикатор не мигал (в зависимости от его модели).

Вам повезло, если у вас счетчик «Меркурий» — он показывает величину нагрузки в кВт, поэтому от вас потребуется только включить двигатель на 5 минут на полную мощность и проверить показания.

Индукционные счетчики ведут учет в кВт/ч. Запишите показания до включения мотора, дайте ему поработать ровно 10 минут (лучше воспользоваться секундомером). Снимите новые показания счетчика и путем вычитания узнайте разницу. Умножьте эту цифру на 6. Полученный результат отображает мощность двигателя в кВт.

Если двигатель маломощный, вычислить параметры будет несколько сложнее. Выясните, сколько оборотов (или импульсов) равно 1кВт/ч – информацию вы найдете на счетчике. Допустим, это 1600 оборотов (или вспышек индикатора).

Если при работающем двигателе счетчик делает 20 оборотов в минуту, умножьте эту цифру на 60 (количество минут в часу). Получается 1200 оборотов в час. Разделите 1600 на 1200 (1.3) – это и есть мощность двигателя.

Результат тем точнее, чем дольше вы измеряете показания, но небольшая погрешность все равно присутствует.

Определение по таблицам

Как узнать мощность электродвигателя по диаметру вала и другим показателям? В интернете нетрудно найти технические таблицы, с помощью которых можно узнать тип мотора и, соответственно, его мощность. Вам потребуется снять следующие параметры:

  • диаметр вала;
  • частота его вращения или число полюсов;
  • крепежные размеры;
  • диаметр фланца (если двигатель фланцевый);
  • высота до центра вала;
  • длина мотора (без выступающей части вала);
  • расстояние до оси.

Далее – вопрос времени и внимательности. Согласитесь, надежнее измерить детали и узнать точный, без погрешностей результат. В сети есть параметры абсолютно всех, даже очень старых моторов.

Вычисление по количеству оборотов в минуту

Определите визуально количество обмоток статора. Используйте тестер или миллиамперметр для того чтобы узнать число полюсов – при этом не требуется разбирать мотор. Подключите прибор к одной из обмоток и равномерно вращайте вал. Количество отклонений стрелки – это число полюсов. Учтите, что частота вращения вала при данном методе вычисления несколько ниже полученного результата.

ЭТО ИНТЕРЕСНО:  Для чего предназначен резистор

Определение по габаритам

Еще один способ – проведение замеров и вычислений. Многие из тех, кто интересуется, как узнать мощность трехфазного двигателя, предпочитают именно его. Вам понадобятся следующие данные:

  • Диаметр сердечника в сантиметрах (D). Он измеряется по внутренней части статора. Также необходима длина сердечника с учетом отверстий вентиляции.
  • Частота валового вращения (n) и частота сети (f).

Через них вычислите показатель полюсного деления. D умножьте на n и на число Пи – назовем это показание А. 120 умножьте на f – это В. Разделите А на В.

Как видите, чтобы подсчитать значение, достаточно вспомнить школьный курс математики.

Определение по мощности, выдаваемой двигателем

Здесь опять придется вооружиться калькулятором. Узнайте:

  • число оборотов вала в секунду (А);
  • показатель тяглового усилия мотора (В);
  • радиус вала (С) – это можно сделать с помощью штангенциркуля.

Определение мощности электродвигателя в Вт осуществляется по следующей формуле: Ах6.28хВхС.

Для чего необходимо знать мощность двигателя

Из всех технических характеристик электродвигателя (КПД, номинальный рабочий ток, частота вращения и т.д.) самая значимая – мощность. Зная главные данные, вы сможете:

  • Подобрать подходящие по номиналам тепловое реле и автомат.
  • Определить пропускную способность и сечение электрических кабелей для подключения агрегата.
  • Эксплуатировать двигатель согласно его параметрам, не допуская перегрузок.

Мы описали, как замерить мощность электродвигателя разными способами. Используйте тот, который в вашем случае будет оптимальным. Применяя любой из методов, вы подберете агрегат, который будет лучшим образом отвечать вашим требованиям. Но самый эффективный вариант, экономящий ваше время и избавляющий вас от необходимости искать информацию и проводить замеры и расчеты – это сохранить технический паспорт в надежном месте и следить за тем, чтобы шильдик с данными не потерялся.

Источник: https://www.szemo.ru/press-tsentr/article/kak-opredelit-moshchnost-elektrodvigatelya-bez-birki/

Как определить основные параметры электродвигателя? — Онлайн-журнал

У всех электродвигателей на корпусе есть табличка, на которой указываются его электрические характеристики. Именно об основных параметрах электродвигателей мы расскажем в этой статье.

Табличка с номинальными данными электродвигателя

Параметры электродвигателя: таблица

Наименование параметра Единица измерения Примечание
Тип
Номинальная мощность Киловатт
Номинальный ток Ампер Для трехфазных электродвигателей зависит от типа соединения обмоток
Номинальное напряжение Вольт
Коэффициент мощности (КПД)
Коэффициент полезного действия (cos ϕ) %
Номинальная скорость вращения Обороты в минуту

Но иногда табличка отсутствует, либо прочесть ее невозможно. При эксплуатации двигатель неоднократно окрашивают, нередко – вместе с табличкой. Поэтому приходится определять его параметры методом измерений.

Параметры электродвигателя №1: мощность

В паспортных данных указывается номинальная активная мощность, потребляемая из сети при номинальной нагрузке на валу. Для производства измерений нужно нагрузить электродвигатель, испытывая его со штатной нагрузкой (в составе устройства, для привода которого он предназначен).

Для измерений можно использовать электросчетчик. Для этого нужно подключить электродвигатель в качестве единственной нагрузки на счетчик на время, засекаемое по секундомеру.

https://www.youtube.com/watch?v=QihRrkIr3Ig

Для удобства расчетов двигатель подключается на время, равное 10 минутам. До подключения и через 10 минут со счетчика снимаются показания. Разность показаний в кВт∙ч, поделенная на 60/10=6, и будет равна мощности электродвигателя в киловаттах.

Некоторые электронные счетчики имеют функцию измерения мгновенной мощности, при этом задача упрощается. Нужно при работающем двигателе зайти в меню измерений счетчика и найти в нем искомое значение.

Параметры электродвигателя №2: потребляемый ток

Для измерения тока, потребляемого электродвигателем, используются токоизмерительные клещи, измеряющие ток в цепи без ее разрыва.

Токоизмерительные клещи

При использовании мультиметра (как пользоваться мультиметром?) или амперметра нужно заранее убедиться в том, что ожидаемое значение измеряемого параметра лежит в диапазоне измерений. Прибор подключается последовательно с электродвигателем или с одной из обмоток трех фаз. И не стоит забывать о пусковом токе, перед запуском прибор нужно надежно закоротить, чтобы он не сгорел.

Можно воспользоваться и электронным счетчиком с функцией измерения токов.

Если потребляемая мощность уже известна, ток можно подсчитать. Для однофазного двигателя:

Для трехфазного:

Величину напряжения тоже рекомендуется измерить, желательно – непосредственно на зажимах электродвигателя.

Если измерения производятся без нагрузки, то получится ток холостого хода. Подсчитать номинальный ток не представляется возможным, так как ток холостого хода не нормируется и составляет 20-40% от номинального. В этом случае для подсчета токов холостого хода трехфазных асинхронных электродвигателей используются данные таблицы.

Мощность двигателя, кВт Ток холостого хода (в процентах от номинального)
При частоте вращения, об/мин
3000 1500 1000 750 600 500
0,12-0,55 60 75 85 90 95
0,75-1,5 50 70 75 80 85 90
1,5-5,5 45 65 70 75 80 85
5,5-11 40 60 65 70 75 80
15-22,5 30 55 60 65 70 75
22,5-55 20 50 55 60 65 70
55-110 20 40 45 50 55 60

Параметры электродвигателя №3: тип соединения обмоток

Это очень важный параметр трехфазного электродвигателя. Все шесть выводов начал и концов обмоток выведены в барно двигателя. Подключить их можно либо в звезду, либо в треугольник.

Схема соединения обмоток

Рядом с символами «треугольник/звезда» на табличке указывается номинальное напряжение – «220/380 В». Это означает, что при включении в сеть трехфазного тока напряжением 380 В обмотки двигателя нужно соединить в звезду. Ошибка в соединении приведет к выходу электродвигателя из строя.

Номинальный ток также указывается через дробь. В описанном случае необходимо значение, указанное в знаменателе.

Однофазный асинхронный электродвигатель

Дмитрий Левкин

Основными компонентами любого электродвигателя являются ротор и статор. Ротор — вращающаяся часть электродвигателя, статор — неподвижная часть электродвигателя, с помощью которого создается магнитное поле для вращения ротора.

Основные части однофазного двигателя: ротор и статор

Статор имеет две обмотки, расположенные под углом 90° относительно друг друга. Основная обмотка называется главной (рабочей) и обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.

Двигатель фактически является двухфазным, но так как рабочей является только одна обмотка, электродвигатель называют однофазным.

Ротор обычно представляет из себя короткозамкнутую обмотку, также из-за схожести называемой «беличьей клеткой». Медные или алюминиевые стержни которого с торцов замкнуты кольцами, а пространство между стержнями чаще всего заливается сплавом алюминия. Так же ротор однофазного двигателя может быть выполнен в виде полого немагнитного или полого ферромагнитного цилиндра.

Однофазный двигатель с вспомогательной обмоткой имеет 2 обмотки расположенные перпендикулярно относительно друг друга

Принцип работы однофазного асинхронного двигателя

Для того чтобы лучше понять работу однофазного асинхронного двигателя, давайте рассмотрим его только с одним витком в главной и вспомогательной обмотки.

Проанализируем случай с двумя обмотками имеющими по оному витку

Рассмотрим случай когда в вспомогательной обмотки не течет ток. При включении главной обмотки статора в сеть, переменный ток, проходя по обмотке, создает пульсирующее магнитное поле, неподвижное в пространстве, но изменяющееся от +Фmах до -Фmах.

Пульсирующее магнитное поле

Если поместить ротор, имеющий начальное вращение, в пульсирующее магнитное поле, то он будет продолжать вращаться в том же направлении.

Чтобы понять принцип действия однофазного асинхронного двигателя разложим пульсирующее магнитное поле на два одинаковых круговых поля, имеющих амплитуду равную Фmах/2 и вращающихся в противоположные стороны с одинаковой частотой:

,

  • где nпр – частота вращения магнитного поля в прямом направлении, об/мин,
  • nобр – частота вращения магнитного поля в обратном направлении, об/мин,
  • f1 – частота тока статора, Гц,
  • p – количество пар полюсов,
  • n1 – скорость вращения магнитного потока, об/мин

Разложение пульсирующего магнитного потока на два вращающихся

Рассмотрим случай когда ротор, находящийся в пульсирующем магнитном потоке, имеет начальное вращение. Например, мы вручную раскрутили вал однофазного двигателя, одна обмотка которого подключена к сети переменного тока. В этом случае при определенных условиях двигатель будет продолжать развивать вращающий момент, так как скольжение его ротора относительно прямого и обратного магнитного потока будет неодинаковым.

Будем считать, что прямой магнитный поток Фпр, вращается в направлении вращения ротора, а обратный магнитный поток Фобр — в противоположном направлении. Так как, частота вращения ротора n2 меньше частоты вращения магнитного потока n1, скольжение ротора относительно потока Фпр будет:

,

  • где sпр – скольжение ротора относительно прямого магнитного потока,
  • n2 – частота вращения ротора, об/мин,
  • s – скольжение асинхронного двигателя

Прямой и обратный вращающиеся магнитные потоки вместо пульсирующего магнитного потока

Магнитный поток Фобр вращается встречно ротору, частота вращения ротора n2 относительно этого потока отрицательна, а скольжение ротора относительно Фобр

,

  • где sобр – скольжение ротора относительно обратного магнитного потока

Согласно закону электромагнитной индукции прямой Фпр и обратный Фобр магнитные потоки, создаваемые обмоткой статора, наводят в обмотке ротора ЭДС, которые соответственно создают в короткозамкнутом роторе токи I2пр и I2обр. При этом частота тока в роторе пропорциональна скольжению, следовательно:

,

  • где f2пр – частота тока I2пр наводимого прямым магнитным потоком, Гц

,

  • где f2обр – частота тока I2обр наводимого обратным магнитным потоком, Гц

Таким образом, при вращающемся роторе, электрический ток I2обр, наводимый обратным магнитным полем в обмотке ротора, имеет частоту f2обр, намного превышающую частоту f2пр тока ротора I2пр, наведенного прямым полем.

Пример: для однофазного асинхронного двигателя, работающего от сети с частотой f1 = 50 Гц при n1 = 1500 и n2 = 1440 об/мин,

скольжение ротора относительно прямого магнитного потока sпр = 0,04;
частота тока наводимого прямым магнитным потоком f2пр = 2 Гц;
скольжение ротора относительно обратного магнитного потока sобр = 1,96;
частота тока наводимого обратным магнитным потоком f2обр = 98 Гц

Согласно закону Ампера, в результате взаимодействия электрического тока I2пр с магнитным полем Фпр возникает вращающий момент

,

  • где Mпр – магнитный момент создаваемый прямым магнитным потоком, Н∙м,
  • сM — постоянный коэффициент, определяемый конструкцией двигателя

Электрический ток I2обр, взаимодействуя с магнитным полем Фобр, создает тормозящий момент Мобр, направленный против вращения ротора, то есть встречно моменту Мпр:

,

  • где Mобр – магнитный момент создаваемый обратным магнитным потоком, Н∙м

Результирующий вращающий момент, действующий на ротор однофазного асинхронного двигателя,

,

Справка: В следствие того, что во вращающемся роторе прямым и обратным магнитным полем будет наводиться ток разной частоты, моменты сил действующие на ротор в разных направлениях будут не равны. Поэтому ротор будет продолжать вращаться в пульсирующем магнитном поле в том направлении в котором он имел начальное вращение.

При работе однофазного двигателя в пределах номинальной нагрузки, то есть при небольших значениях скольжения s = sпр, крутящий момент создается в основном за счет момента Мпр. Тормозящее действие момента обратного поля Мобр — незначительно.

Это связано с тем, что частота f2обр много больше частоты f2пр, следовательно, индуктивное сопротивление рассеяния обмотки ротора х2обр = x2sобр току I2обр намного больше его активного сопротивления.

Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Фобр, значительно ослабляя его.

,

  • где r2 — активное сопротивление стержней ротора, Ом,
  • x2обр — реактивное сопротивление стержней ротора, Ом.

Если учесть, что коэффициент мощности невелик, то станет, ясно, почему Мобр в режиме нагрузки двигателя не оказывает значительного тормозящего действия на ротор однофазного двигателя.

Действие пульсирующего поля на неподвижный ротор

При неподвижном роторе (n2 = 0) скольжение sпр = sобр = 1 и Мпр = Мобр, поэтому начальный пусковой момент однофазного асинхронного двигателя Мп = 0. Для создания пускового момента необходимо привести ротор во вращение в ту или иную сторону. Тогда s ≠ 1, нарушается равенство моментов Мпр и Мобр и результирующий электромагнитный момент приобретает некоторое значение .

Пуск однофазного двигателя. Как создать начальное вращение?

Одним из способов создания пускового момента в однофазном асинхронном двигателе, является расположение вспомогательной (пусковой) обмотки B, смещенной в пространстве относительно главной (рабочей) обмотки A на угол 90 электрических градусов.

Чтобы обмотки статора создавали вращающееся магнитное поле токи IA и IB в обмотках должны быть сдвинуты по фазе относительно друг друга.

Для получения фазового сдвига между токами IA и IB в цепь вспомогательной (пусковой) обмотки В включают фазосмещающий элемент, в качестве которого используют активное сопротивление (резистор), индуктивность (дроссель) или емкость (конденсатор) [1].

После того как ротор двигателя разгонится до частоты вращения, близкой к установившейся, пусковую обмотку В отключают. Отключение вспомогательной обмотки происходит либо автоматически с помощью центробежного выключателя, реле времени, токового или дифференциального реле, или же вручную с помощью кнопки.

Таким образом, во время пуска двигатель работает как двухфазный, а по окончании пуска — как однофазный.

С пусковым сопротивлением

Двигатель с расщепленной фазой — однофазный асинхронный двигатель, имеющий на статоре вспомогательную первичную обмотку, смещенную относительно основной, и короткозамкнутый ротор [2].

Однофазный асинхронный двигатель с пусковым сопротивлением — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки отличается повышенным активным сопротивлением.

Для запуска однофазного двигателя можно использовать пусковой резистор, который последовательно подключается к пусковой обмотки. В этом случае можно добиться сдвига фаз в 30° между токами главной и вспомогательной обмотки, которого вполне достаточно для пуска двигателя. В двигателе с пусковым сопротивлением разность фаз объясняется разным комплексным сопротивлением цепей.

Также сдвиг фаз можно создать за счет использования пусковой обмотки с меньшей индуктивностью и более высоким сопротивлением. Для этого пусковая обмотка делается с меньшим количеством витков и с использованием более тонкого провода чем в главной обмотке.

Отечественной промышленностью изготавливается серия однофазных асинхронных электродвигателей с активным сопротивлением в качестве фазосдвигающего элемента серии АОЛБ мощностью от 18 до 600 Вт при синхронной частоте вращения 3000 и 1500 об/мин, предназначенных для включения в сеть напряжением 127, 220 или 380 В, частотой 50 Гц.

С конденсаторным пуском

Двигатель с конденсаторным пуском — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки с конденсатором включается только на время пуска.

Среди фазосдвигающих элементов, только конденсатор позволяет добиться наилучших пусковых свойств однофазного асинхронного электродвигателя.

Двигатели в цепь которых постоянно включен конденсатор используют для работы две фазы и называются — конденсаторными. Принцип действия этих двигателей основан на использовании вращающегося магнитного поля.

Однофазный электродвигатель с экранированными полюсами

Двигатель с экранированными полюсами — двигатель с расщепленной фазой, у которого вспомогательная обмотка короткозамкнута.

Статор однофазного асинхронного двигателя с экранированными полюсами обычно имеет явно выраженные полюса. На явно выраженных полюсах статора намотаны катушки однофазной обмотки возбуждения. Каждый полюс статора разделен на две неравные части аксиальным пазом. Меньшую часть полюса охватывает короткозамкнутый виток. Ротор однофазного двигателя с экранированными полюсами — короткозамкнутый в виде «беличьей» клетки.

Источник: https://engineering-solutions.ru/motorcontrol/induction1ph/

Как определить мощность и обороты электродвигателя без бирки?

При замене сломанного советского электродвигателя на новый, часто оказывается, что на нем нет шильдика. Нам часто задают вопросы: как узнать мощность электродвигателя? Как определить обороты двигателя? В этой статье мы рассмотрим, как определить параметры электродвигателя без бирки — по диаметру вала, размерам, току.

ЭТО ИНТЕРЕСНО:  Какой ток для заряда аккумулятора

Как определить мощность?

Существует несколько способов определения мощности электродвигателя: диаметру вала, по габариту и длине, по току и сопротивлению, замеру счетчиком электроэнергии.

По габаритным размерам

Все электродвигатели отличаются по габаритным размерам. Определить мощность двигателя можно сравнив габаритные размеры с таблицей определения мощности электродвигателя, перейдя по ссылке габаритно-присоединительные размеры электродвигателей АИР.

Какие размеры необходимо замерить:

  • Длина, ширина, высота корпуса
  • Расстояние от центра вала до пола
  • Длина и диаметр вала
  • Крепежные размеры по лапам (фланцу)

По диаметру вала

Определение мощности электродвигателя по диаметру вала — частый запрос для поисковых систем. Но для точного определения этого параметра недостаточно – два двигателя в одном габарите, с одинаковыми валами и частотой вращения могут иметь различную мощность.

Таблица с привязкой диаметров валов к мощности и оборотам для двигателей АИР и 4АМ.

Мощность электродвигателя Р, кВт Диаметр вала, мм Переход к модели
3000 об/мин 1500 об/мин 1000 об/мин 750 об/мин
0,18 11 11 14 АИР56А2, АИР56В4, АИР63А6
0,25 14 19 АИР56В2, АИР63А4, АИР63В6, АИР71В8
0,37 14 19 22 АИР63А2, АИР63В4, АИР71А6, АИР80А8
0,55 19 АИР63В2, АИР71А4, АИР71В6, АИР80В8
0,75 19 22 24 АИР71А2, АИР71В4, АИР80А6, АИР90LA8
1,1 22 АИР71В2, АИР80А4, АИР80В6, АИР90LB8
1,5 22 24 28 АИР80А2, АИР80В4, АИР90L6, АИР100L8
2,2 24 28 32 АИР80В2, АИР90L4, АИР100L6, АИР112МА8
3 24 32 АИР90L2, АИР100S4, АИР112МА6, АИР112МВ8
4 28 28 38 АИР100S2, АИР100L4, АИР112МВ6, АИР132S8
5,5 32 38 АИР100L2, АИР112М4, АИР132S6, АИР132М8
7,5 32 38 48 АИР112M2, АИР132S4, АИР132М6, АИР160S8
11 38 48 АИР132M2, АИР132М4, АИР160S6, АИР160М8
15 42 48 55 АИР160S2, АИР160S4, АИР160М6, АИР180М8
18,5 55 60 АИР160M2, АИР160M4, АИР180М6, АИР200М8
22 48 55 60 АИР180S2, АИР180S4, АИР200М6, АИР200L8
30 65 АИР180M2, АИР180M4, АИР200L6, АИР225М8
37 55 60 65 75 АИР200M2, АИР200M4, АИР225М6, АИР250S8
45 75 75 АИР200L2, АИР200L4, АИР250S6, АИР250M8
55 65 80 АИР225M2, АИР225M4, АИР250M6, АИР280S8
75 65 75 80 АИР250S2, АИР250S4, АИР280S6, АИР280M8
90 90 АИР250М2, АИР250M4, АИР280M6, АИР315S8
110 70 80 90 АИР280S2, АИР280S4, АИР315S6, АИР315M8
132 100 АИР280M2, АИР280M4, АИР315M6, АИР355S8
160 75 90 100 АИР315S2, АИР315S4, АИР355S6
200 АИР315M2, АИР315M4, АИР355M6
250 85 100 АИР355S2, АИР355S4
315 АИР355M2, АИР355M4

По показанию счетчика

Как правило измерение счетчика отображаются в киловаттах (далее кВт). Для точности измерения стоит отключить все электроприборы или воспользоваться портативным счетчиком. Мощность электродвигателя 2,2 кВт, подразумевает что он потребляет 2,2 кВт электроэнергии в час.

Для измерения мощности по показанию счетчика нужно:

  1. Подключить мотор и дать ему поработать в течении 6 минут.
  2. Замеры счетчика умножить на 10 – получаем точную мощность электромотора.

Расчет мощности по току

Для начала нужно подключить двигатель к сети и замерить показатели напряжения. Замеряем потребляемый ток на каждой из обмоток фаз с помощью амперметра или мультиметра. Далее, находим сумму токов трех фаз и умножаем на ранее замеренные показатели напряжения, наглядно в формуле расчета мощности электродвигателя по току.

  • P – мощность электродвигателя;
  • U – напряжение;
  • Ia – ток 1 фазы;
  • Ib – 2 фазы;
  • Ic – 3 фазы.

Определение оборотов вала

Асинхронные трехфазные двигатели по частоте вращения ротора делятся 4 типа: 3000, 1500, 1000 и 750 об. мин. Приводим пример маркировки на основании АИР 180:

Самый простой способ определить количество оборотов трехфазного асинхронного электродвигателя – снять задний кожух и посмотреть обмотку статора.

У двигателя на 3000 об/мин катушка обмотки статора занимает половину окружности — 180 °, то есть начало и конец секции параллельны друг другу и перпендикулярны центру. У электромоторов 1500 оборотов угол равен 120 °, у 1000 – 90 °. Схематический вид катушек изображен на чертеже. Все обмоточные данные двигателей смотрите в таблице.

Узнать частоту вращения с помощью амперметра

Узнать обороты вала двигателя, можно посчитав количество полюсов. Для этого нам понадобится миллиамперметр — подключаем измерительный прибор к обмотке статора. При вращении вала двигателя стрелка амперметра будет отклонятся. Число отклонений стрелки за один оборот – равно количеству полюсов.

Если не получилось узнать мощность и обороты

Если не получилось узнать мощность и обороты электродвигатели или вы не уверены в измерениях – обращайтесь к специалистам «Систем Качества». Наши специалисты помогут подобрать нужный мотор или провести ремонт сломанного электродвигателя АИР.

Источник: https://xn--80aqy.com.ua/poleznoe/kak-uznat-moshhnost-i-oboroty-dvigatelya/

Как определить мощность электродвигателя?

Электрические двигатели сегодня используются в различных технических средствах и оборудовании, потому многих пользователей интересует, как определить мощность и ток электродвигателя? Производители двигателей оснащают свои товары специальными таблицами, устанавливаемыми на корпусах устройств. Эти таблички содержат в себе исчерпывающую информацию о технических характеристиках устройства: марка, номинальный рабочий ток, мощность, частота вращения, КПД, тип двигателя и т.д. Все эти данные содержатся также в технической документации на электродвигатели.

Из всех характеристик двигателей, для пользователей наибольшее значение имеют потребляемый ток и мощность. Эти данные позволяют определить сечение и пропускную способность электрических кабелей, которые необходимо использовать для подключения оборудования, выбрать подходящие по номиналам устройства безопасности – УЗО и автомат.

Несмотря на то, что в большинстве случаев с поиском технических характеристик двигателей не возникает никаких проблем, иногда техническая документация и таблички на устройствах отсутствуют. Подобные проблемы вынуждают пользователей искать другие варианты определения мощности, тока и других параметров работы электродвигателя.

Методика определения мощности электродвигателя

Существуют различные формулы расчета, позволяющие определить точную мощность электродвигателя. Для использования некоторых формул пользователю придется измерить размеры статора двигателя, для других формул – нужно знать величину тока или КПД двигателя.

Многие специалисты используют эти формулы на практике, но существует и гораздо более простая, удобная методика определения мощности двигателя – практические измерения.

С помощью установленного счетчика потребления электрической энергии в бытовой электросети можно узнать мощность любого оборудования.

Для проведения таких измерений нужно будет отключить от питания все бытовые электрические устройства, чтобы ни один прибор не потреблял электрическую энергию и счетчик «не крутился». Освещение также необходимо отключить, так как даже одна включенная лампочка может навредить испытаниям.

Особенности определения мощности зависят от того, какой именно счетчик потребления электроэнергии у вас установлен. Если на вводе электричества на объект установлен счетчик «Меркурий», достаточно просто включить электродвигатель на полной мощности на 3-5 минут. В процессе работы двигателя счетчик будет показывать величину нагрузки, измеряемую в кВт.

Провести такие измерения можно и с помощью стандартного индукционного счетчика потребления, но нужно помнить, что такие устройства ведут учет в Квт/ч. Итак, сначала нужно записать точные показателя счетчика до начала исследования, затем нужно включить двигатель ровно на 10 минут, не допуская никаких погрешностей.

Лучше всего засекать время с помощью секундомера, позволяющего вовремя включить и выключить двигатель. После выключения двигателя нужно снять показания с индукционного счетчика, отнять из показаний записанную перед измерениями величину. Теперь показатели умножаем на 6.

Полученные в ходе этих простых измерений и вычислений результаты будут точно отображать активную мощность двигателя в кВт.

Сложнее определить технические характеристики маломощных двигателей, но и их мощность можно рассчитать, хотя это потребует больших усилий. Легче всего определить мощность двигателя путем подсчета полных оборотов диска за единицу времени. К примеру, на счетчике указано, что 1200 оборотов равняется 1 кВт/ч.

Если в течение одной минуты счетчик сделает 10 оборотов, то в этом случае 10 нужно умножить на 60 (число минут в часе) и получаем 600 оборотов в час. Делим 1200 на 600 и получаем мощность электродвигателя. Важно отметить, что на точность напрямую влияет продолжительность измерений.

Чем дольше измерять показания, тем точнее можно определить мощность двигателя.

Методика определения тока электродвигателя

Для эксплуатации электродвигателя пользователю требуются различные параметры его работы. Второй по важности характеристикой такого устройства является величина потребляемого тока. Методика расчета тока зависит от числа фаз в двигателе и величине потребляемого напряжения.

Проще всего рассчитать величину тока для трехфазных двигателей, подключаемых от электрических сетей напряжением 380 В. Величина потребляемого тока для таких устройств равняется умноженной на 2 мощности.

К примеру, трехфазный двигатель мощностью 2 кВт умножаем на 2 и получаем потребляемый ток двигателя, равный 4 Ампер.

Величина тока электродвигателя в момент времени может зависеть от вида запуска. Зависимость величины тока от вида запуска представлена на графике ниже.

Это точная формула, однако, требующая определенных дополнений. Обязательно нужно учитывать, что результат таких расчетов – это величина потребляемого тока при номинальной нагрузке. Двигатель на холостом ходу будет иметь куда меньшую величину потребляемого тока.

Для расчета тока трехфазного асинхронного двигателя можно также использовать формулу:

Iн = 1000 Pн / √3 * (ηн * Uн * cosφн),

В этой формуле:

  • Pн – номинальная мощность;
  • Uн – номинальное напряжение;
  • Ηн – номинальный КПД;
  • Cosφн – номинальный коэффициент мощности.

Потребляемый ток однофазными двигателями рассчитывается по другой формуле. В этом случае для определения тока пользователю нужно будет разделить мощность двигателя на напряжение в электросети. Уровень напряжения в месте подключения двигателя необходимо измерить перед проведением расчетов, так как уровень напряжения при включенном устройстве в месте ввода будет снижаться.

Таким образом, если мощность мотора равняется 2 кВт или 2000 Вт, а напряжение в сети равняется 220 В, то 2000 следует разделить на 220. Получаем величину в 9 А, которая и принимается за величину потребляемого тока электродвигателем.

Источник: http://podvi.ru/elektrodvigatel/kak-opredelit-moshhnost-i-tok-elektrodvigatelya.html

Двигатель 220 – Однофазные электродвигатели 220в: особенности подключения

Однофазная электросеть предъявляет определенные условия к конструкции электродвигателя. В ней необходимо совместить один из способов получения крутящего момента с техническими возможностями однофазной электрической сети 220 В.

Трехфазная или двухфазная электросеть в принципе обеспечивает перемещение максимума магнитного поля. Но в однофазной сети этого нет. Тем не менее, однофазные движки работают. Далее более детально расскажем о том, почему это происходит.

Что общего в совершенно разных движках

Одной из технических задач, решаемых любым двигателем, является скорость вращения вала при заданном крутящем моменте.

На частоте 50 Гц, основываясь на перемещении максимума магнитного поля при одной паре полюсов ротор, соответственно и вал, могут совершить лишь 3000 об/мин или менее. В таких случаях используются синхронные и асинхронные движки.

У синхронных скорость определяется количеством пар полюсов, так же как и у асинхронных моделей. При необходимости получить более высокие скорости вращения с этими двигателями применяются специальные редукторы.

В коллекторных моделях в отношении скорости вращения существенно больше свободы. Скорость вращения, как и крутящий момент в них зависят от напряженности магнитных полей статора и ротора.

Эти поля можно получить как прямым присоединением движка к однофазной сети 220 В, причем в двух вариантах, так и с использованием выпрямителя.

Таким образом, один и то же коллекторный двигатель, присоединенный к сети 220 В, обеспечит четыре скорости вращения соответственно схемам соединения его обмоток и виду напряжения питания на его клеммах.

Хотя однофазные движки 220 В принципиально разные, их назначение одинаковое. Они применяются главным образом:

  • в бытовых электроприборах;
  • промышленных вентиляторах и кондиционерах небольшой мощности;
  • маломощных насосах;
  • определенной группе станков и т.п.

Это оборудование не требует электрической мощности более десяти киловатт. Помимо общего питающего напряжения, как и все движки с выходным валом, они состоят из статора и ротора. Но в коллекторном двигателе присутствует коллектор, а в некоторых моделях синхронных машин – кольца. А это значит, что в них нет изолированной электрической цепи, как в асинхронном двигателе. А контакт щетки с ламелями или кольцами сопровождается искрением.

По этой причине область применения коллекторных и синхронных движков ограничена условиями окружающей среды. Но для моделей с ротором, выполненным из специальных магнитных материалов, нет ограничений. А их работа отличается от асинхронных движков только более высоким значением скорости вращения синхронно с электромагнитным полем. Поэтому далее рассмотрим лишь однофазные асинхронные двигатели 220 В (ОАД).

Разновидности ОАД

Любой ОАД содержит рабочую обмотку. Она также именуется как основная. Примерно две трети поверхности статора, охватывающей ротор, приходится на основную обмотку. Остальная часть статора – это дополнительная (пусковая, вспомогательная) обмотка. Форма ротора может быть различной и обуславливается специализацией движка. Наиболее распространены модели, в которых ротор имеет вид цилиндрической болванки. В ОАД мощностью побольше – это биметаллическая конструкция.

Так называемая «беличья клетка» из материалов на основе меди, которые обеспечивают минимум потерь. В болванку эту конструкцию превращает заполнение свободного пространства алюминиевым сплавом. Но и сама клетка может изготавливаться из материала на основе алюминия. Другой разновидностью ротора ОАД может быть форма в виде стакана.

Короткозамкнутый роторПолый ротор ОАД

Этот ротор также именуется полым. Он менее инертный, а также менее прочный. По этой причине движки с этим ротором используются для специальных задач и распространены не так широко, как те, у которых ротор-болванка.  Пусковая обмотка создает магнитный поток, направленный под углом к магнитному потоку основной обмотки. Токи в обмотках должны характеризоваться определенным фазовым сдвигом. Его получают последовательным соединением с пусковой обмоткой одного из перечисленных элементов:

  • резистора,
  • дросселя,
  • конденсатора.

Элемент вместе с пусковой обмоткой эмулирует двухфазную электросеть, которая обеспечивает пространственное перемещение максимума магнитного потока между обмотками.

Однако это техническое решение необходимо лишь для того, чтобы ротор начал вращаться в нужном направлении. По мере увеличения скорости вращения задействованная пусковая обмотка все больше уменьшает крутящий момент на вале движка.

По этой причине она тем или иным способом отсоединяется вскоре после разгона ротора до заданной скорости.

Резистор и дроссель могут быть встроены в двигатель, поскольку необходимые сопротивление или индуктивность легко достигаются отличием характеристик провода обмоток или конструкцией пусковой обмотки.

Например, существуют такие разновидности ОАД, в которых в явно выраженных полюсах содержится короткозамкнутый виток. Это так называемые экранированные полюсы. Другой способ – несимметричные полюсы. Они определили наименование этих разновидностей ОАД.

Эффективность движков невысока, но они получаются компактными. Широко применяются в бытовых вентиляторах.

Сдвиги фаз

Из трех элементов, используемых для получения фазового сдвига, самым лучшим является конденсатор. Резистор или дроссель могут обеспечить угол меньше 90 градусов. А конденсатор создает фазовый сдвиг именно в 90 градусов. При этом могут быть три схемы, которые отличаются пусковыми и рабочими характеристиками. При пуске движка необходим конденсатор с емкостью побольше. А в рабочем режиме оптимальный вариант – конденсатор небольшой емкости.

Емкость рабочего конденсатора в микрофарадах определяется примерно как 4/5 мощности движка в киловаттах. Емкость пускового конденсатора в микрофарадах определяется примерно как 2 мощности движка в киловаттах. Чтобы сэкономить на конденсаторах, которые должны быть рассчитаны как минимум на напряжение 330 В, путем переключения их получается как пусковая, так и рабочая емкость. Конденсаторные схемы показаны далее на изображениях:   

ЭТО ИНТЕРЕСНО:  Как устроен соленоид

Схема

  • Чтобы изменить направление вращения ротора в любом из вариантов с пусковым элементом, надо поменять местами концы пусковой обмотки.

Коллекторные движки (КД)

Эти двигатели в принципе только однофазные. Хотя их можно включать и в трехфазную сеть, но только через выпрямительные диоды. КД можно разделить на две группы по способу получения магнитного поля статора:

  • от постоянного магнита; 
  • от электромагнита.

Электромагнитный вариант КД

Прямое присоединение к сети 220 В допустимо лишь для электромагнитных моделей КД. В них ротор является якорем и может соединяться с сетью либо напрямую (параллельное соединение), либо через обмотку статора (последовательное соединение).

Изменение полярности происходит в обеих обмотках. Это определяет сохранение направления вращения ротора. А если магнит постоянный, значит, в якоре направление магнитного потока меняется, а в статоре нет.

Поэтому ротор такого движка будет колебаться, но не вращаться.

  • Если якорь и статор напрямую присоединены к сети 220 В, КД оказывается под угрозой разноса. Этот эффект появляется при пропадании контакта с сетью в обмотке статора.

Последовательное соединение обмоток в КД

Хотя параллельное соединение более эффективно, поскольку при этом величина тока больше, для надежности предпочтительнее последовательное соединение. Направление вращения при этом зависит от того, какими концами соединены между собой, а соответственно и с сетью, обмотки движка. Если при этом движок недостаточно эффективен, его надо присоединить к сети через выпрямительный мост. Если на его выходе будет применен конденсатор, это еще больше увеличит эффективность КД.

КД используются там, где необходима наиболее простая конструкция электрооборудования. Эти движки создают много шума, коллектор и щетки изнашиваются, загрязняют изделие графитовой пылью, уменьшая надежность и долговечность электрооборудования. Электробезопасность при этом также ухудшается. По мере развития высоковольтных транзисторов появляется все больше электрооборудования с асинхронными управляемыми приводами. Но определенная ниша электрооборудования для КД, безусловно, останется.

Источник: https://ice-people.ru/raznoe/dvigatel-220-odnofaznye-elektrodvigateli-220v-osobennosti-podklyucheniya.html

Как подключить асинхронный двигатель на 220 — Авто-мастерская онлайн

Бывают ситуации, когда оборудование, рассчитанное на 380 вольт, необходимо подключить к домашней сети на 220 В. Так как двигатель при этом не запустится, необходимо изменить в нем некоторые детали. Это можно без труда сделать самостоятельно. Даже несмотря на то что КПД несколько снизится, такой подход бывает оправданным.

Трехфазные и однофазные двигатели

Чтобы разобраться, как подключить электродвигатель с 380 на 220 Вольт, узнаем, что значит питание на 380 вольт.

Трехфазные двигатели имеют множество преимуществ по сравнению с бытовыми однофазными. Поэтому их применение в промышленности обширно. И дело заключается не только в мощности, но и в коэффициенте полезного действия.

В них также предусмотрены пусковые обмотки и конденсаторы. Это упрощает конструкцию механизма. К примеру, пусковое защитное реле холодильника отслеживает, сколько врублено обмотки.

А в трехфазном двигателе в этом элементе необходимость отпадает.

Это достигается тремя фазами, во время работы которых внутри статора вращается электромагнитное поле.

Почему 380 В?

Когда поле внутри статора вращается, ротор двигается также. Обороты не совпадают с пятьюдесятью Герцами сети из-за того, что больше обмоток, количество полюсов отличное, а также по разным причинам происходит проскальзывание. Эти показатели применяются для регуляции вращения моторного вала.

Все три фазы имеют значение по 220 В. Однако разница между любыми двумя из них в любое время будет отличным от 220. Так и получится 380 Вольт. То есть двигатель применяет 220 В для работы, при этом имеется сдвиг фаз, составляющий сто двадцать градусов.

Потому как подключить электродвигатель 380 на 220 Вольт напрямую невозможно, приходится использовать ухищрения. Конденсатор считается самым простым способом. Когда емкость проходит фазу, последняя изменяется на девяносто градусов. Хоть до ста двадцати она не доходит, этого достаточно для запуска и работы трехфазного двигателя.

Как подключить электродвигатель с 380 на 220 В

Для реализации задачи необходимо понимать, как устроены обмотки. Обычно корпус защищен кожухом, а под ним расположена разводка. Сняв его, нужно изучить содержимое. Часто здесь можно найти схему соединений. Чтобы подключение электродвигателя к сети 380-220 состоялось, используется коммутация в форме звезды. Концы обмоток находятся в общей точке, которая называется нейтралью. Фазы подаются на противоположную сторону.

«Звезду» придется изменить. Для этого обмотки мотора необходимо соединить в другую форму — в виде треугольника, объединив их на концах друг с другом.

Схема может выглядеть следующим образом:

  • напряжение сети прикладывается к третьей обмотке;
  • тогда на первую обмотку напряжение перейдет через конденсатор при фазовом сдвиге в девяносто градусов;
  • на второй обмотке скажется разница напряжений.

Понятно, что сдвиг фаз получится на девяносто и сорок пять градусов. Из-за этого вращение равномерным не получится. К тому же форма фазы на второй обмотке не будет синусоидальной. Поэтому, после того как подключить трехфазный электродвигатель к 220 вольтам удастся, он не сможет реализовываться без потерь мощности. Иногда вал даже залипает и перестает крутиться.

Рабочая емкость

После набора оборотов емкость пуска уже будет не нужна, так как сопротивление движению станет незначительным. Для разряжения емкости ее укорачивают на сопротивление, через которое ток уже не пройдет.

Для правильного выбора рабочей и пусковой емкости в первую очередь нужно учитывать, что рабочее конденсаторное напряжение должно существенно перекрывать 220 Вольт. Минимум оно должно составлять 400 В.

Также нужно обратить внимание на провода, чтобы токи были предназначены для однофазной сети.

При слишком малой рабочей емкости вал будет залипать, поэтому для него используется начальное ускорение.

Рабочая емкость также зависит от следующих факторов:

  • Чем мощнее мотор, тем больше конденсаторный номинал потребуется. Если значение составляет 250 Вт, то хватит и нескольких десятков мкФ. Однако если мощность будет выше, то и номинал может считаться сотнями. Конденсаторы лучше приобретать пленочные, потому что электрические придется дополнительно доделывать (они предназначены для постоянного, а не переменного тока, и без переделок могут взорваться).
  • Чем больше обороты мотора, тем и номинал необходим выше. Если взять двигатель на 3000 оборотов в минуту и мощностью 2,2 кВт, то батарея ему потребуется от 200 до 250 мкФ. А это огромное значение.

Еще эта емкость зависит и от нагрузки.

Завершающий этап

Известно, что электрический двигатель 380 В в 220 Вольтах будет лучше работать в том случае, если напряжения получатся с равными значениями. Для этого обмотку, подсоединяющуюся к сети, трогать не нужно, но потенциал измеряется на обеих других.

У асинхронного мотора имеется свое реактивное сопротивление. Необходимо определить минимум, при котором он начнет вращение. После этого номинал понемногу увеличивают до тех пор, пока все обмотки не выравняются.

Но когда двигатель раскрутится, может получиться, что равенство нарушится. Это происходтит из-за снижения сопротивления. Поэтому, перед тем как подключить электродвигатель с 380 на 220 Вольт и зафиксировать это, нужно сравнять значения и при работающем агрегате.

Напряжение может быть и выше 220 В. Посмотрите, чтобы обеспечивалась стабильная стыковка контактов, и не было потери мощности или перегрева. Лучше всего коммутация производится на специальных клеммах с закрепленными болтами. После того как подключить электродвигатель с 380 на 220 Вольт получилось с необходимыми параметрами, на агрегат снова надевают кожух, а провода пропускают по бокам через резиновый уплотнитель.

Что еще может случиться и как решить проблемы

Нередко после сборки обнаруживается, что вал вращается не в ту сторону, в которую нужно. Направление необходимо поменять.

Источник: https://autogearspb.ru/uhod-za-avtomobilem/kak-podklyuchit-asinhronnyj-dvigatel-na-220.html

Как узнать мощность электродвигателя?

Чаще всего мощность двигателя обозначена в техническом паспорте к устройству и продублирована на корпусе, где есть специальная наклейка или планка с основными техническими параметрами.

Однако нередко случается, что данные на корпусе являются не читаемыми, а технический паспорт давно утерян.

Как же в таком случае выяснить параметры мощности электромотора?

 

Определение по счетчику:

При отсутствии маркировки на корпусе электромотора можно вычислить его мощность несколькими способами. Самым простым методом является вычисление по счетчику электричества: потребуется отсоединить от этого прибора все прочие устройства, подключить электродвигатель и запустить его под нагрузкой на 5-7 минут. Большинство современных счетчиков выдает показатель нагрузки в киловаттах, и полученный показатель и будет исковым результатом.
 

Вычисление по таблицам:

Другим способом определения мощности мотора является расчет по данным из таблиц. Для этого понадобится измерить диаметр вала, длину мотора без учета выступающей части вала, а также расстояние до оси.

По этим параметрам можно выяснить, к какой серии относится данный мотор, и найти его технические характеристики, в том числе мощность.

В сети можно отыскать технические таблицы по двигателям постоянного и переменного тока, где по найденному значению легко отыскать тип устройства и его мощность.
 

Вычисление по габаритам:

По данному способу необходимо провести следующие действия:

  • Измерить диаметр сердечника в статоре по внутренней части, а также длину с учетом отверстий вентиляции. Значение выражается в сантиметрах.
  • Вычислить частоту сети, к которой подключен электродвигатель, и синхронную частоту валового вращения.
  • Узнать показатель полюсного деления: для этой цели диаметр сердечника умножается на синхронную частоту вращения вала, а найденное значение умножается на 3,14 и делится на частоту сети, умноженное на 120.

Формула вычисления постоянного полюсного значения:

  • Найти число полюсов, перемножив частоту тока на 60 и разделив на частоту валового вращения.
  • Найденное число умножить на 2, после чего обратиться к таблице по определению зависимости константы от числа полюсов и выявить соответствующий показатель.
  • Найденную постоянную величину умножают на квадрат от диаметра сердечника, длину и частоту вращения вала, после чего результат умножается по нижеприведенной формуле:

Найденное значение выражается в кВт.
 

Вычисление мощности, выдаваемой электродвигателем

Для вычисления реального показателя мощности, с которой работает электродвигатель, необходимо найти скорость валового вращения, выражаемую в числе оборотов за секунду, тяговое усилие мотора. Частота вращения умножается последовательно на 6,28, показатель силы и радиус вала, который можно вычислить при помощи штангенциркуля. Найденное значение мощности выражается в ваттах.
 

Определяем потребляемый ток:

Для тех, кому надо знать не только мощность, но и объем потребляемого тока, также есть несколько способов получения таких данных. Для каждого из них важным критерием в процессе определения является количество фаз. Если у вас однофазная сеть, разделите показатель мощности на значение напряжения.

Если двигатель 3-фазный, схема подсчета еще проще: удвойте значение мощности — это и будет показатель в Амперах.

Как вы убедились, узнать мощность двигателя и потребляемый ток, даже если эти данные утеряны, достаточно просто.

Выбирайте самый простой для вас способ решения проблемы и пусть ваша техника всегда работает исправно и имеет высокий КПД!

Источник: https://mirprivoda.ru/articles/kak-uznat-moshchnost-elektrodvigatelya

Как рассчитать нужную мощность электродвигателя

Существует много механизмов, работающих продолжительно с неизменной или мало меняющейся нагрузкой без регулирования скорости, например насосы, компрессоры, вентиляторы и т.п. При выборе электродвигателя АИР или однофазного электродвигателя 220В АИРЕ для такого режима необходимо знать мощность, потребляемую механизмом.

Если эта мощность неизвестна, ее определяют теоретическими расчетами или расчетами по эмпирическим формулам с использованием коэффициентов, полученных из многочисленных опытов.

Для малоизученных механизмов необходимую мощность определяют путем снятия нагрузочных диаграмм самопишущими приборами на имеющихся уже в эксплуатации аналогичных установках либо путем использования нормативов потребления энергии, полученных на основании статистических данных, учитывающих удельный расход электроэнергии при выпуске продукции.

Определение мощности электродвигателя для круглопильного станка

мощность (квт) электродвигателя круглопильного станка определяют по формулам

p = (8 ÷ 10)d;
(м),

где d — диаметр бревна, м.

пример расчета мощности электродвигателя для круглопильного станка

Определить мощность асинхронных электродвигателей аир и аире  для круглопильного станка при распиловке бревен диаметром 0,3 м.

Решение

1. Расчетный диаметрм.

2. Мощность эл. двигателя станка 

Р = (8 ÷ 10)D = 10 x 0.87 = 8.7 кВт

Расчет мощности электромотора для вентилятора

мощность электродвигателя 380 в (трехфазного) и электродвигателя 220 в (однофазного) для вентилятора определяют по формуле

где q — производительность вентилятора, м³/с;
н — давление, па;
η1 — кпд вентилятора определяют по каталогу.
однако при отсутствии данных в среднем можно принимать для осевых вентиляторов η1 = о.5 ÷ 0.85 и для центробежных η1 = 0.4 ÷ 0.7;
η2 — кпд передачи: η2 = 0.92 ÷ 0.94 — для клиноременной; η2 = 0.87 ÷ 0.9 — для плоскоременной.

расчет мощности электродвигателя типа аир или аире для пилорамы

мощность электродвигателя  для пилорамы рассчитывается по формуле

где f — усилие резания, н;
v — средняя скорость пилы, м/с;
η — кпд станка (0,7 ÷ 0,8);
a = 1000.

усилие резания (н)

где κ — коэффициент резания, равный (11 ÷ 20) x 107, в зависимости от породы дерева: для сосны — 11 x 107, ели — 12 x 107, березы — 13 x 107, дуба — 20 x 107;
s — толщина пилы, м;
σh — общая высота пропила, м;
δ — скорость подачи, м/с, обычно принимается 0.003 ÷ 0.008 м/с;
h = 2r, где r — радиус кривошипа, м.

общая высота (м) пропилаσh = 0.75zd

где z — число пил; d — диаметр бревна, м.

расчет мощности электродвигателя для насоса

Формула для определения мощности (кВт) эл. двигателя насоса

где κ — коэффициент запаса (1.1—1.

4);
γ — удельный вес перекачиваемой жидкости, Н/м³, для холодной воды равен 9810;
Q — производительность насоса, м³/с;
Н — напор насоса, м;
ηp — кпд передачи (при непосредственном соединении насоса с двигателем ηp = 1);
ηn — кпд насоса принимают равным: для поршневых насосов — 0.7—0.98; для центробежных насосов с давлением свыше 39 000 Па — 0.6—0.75; с давлением ниже 39 000 Па — 0.3— 0.6 (лучше всего кпд определять по данным каталогов).

При выборе эл. двигателя к центробежному насосу необходимо обращать внимание на частоту вращения двигателя, так как у центробежного насоса мощность, напор, производительность и частота вращения связаны следующими соотношениями:

где M — момент двигателя.

1. Определить мощность двигателя насоса  при следующих данных Q = 50 м³/ч; H = 30 м; ηn = 0.5; nd = 1460 об/мин.
2. Определить мощность двигателя, напор насоса и производительность, если двигатель вращается с частотой 965 об/мин.

Решение

1. Мощность двигателя насоса при nd = 1460 об/мин

кВт,
где 3600 — коэффициент перевода производительности из м³/ч в м³/с.

2. При частоте вращения насоса nd = 965 об/мин мощность двигателя, напор насоса и производительность:

кВт;

м;

м³/ч.

Расчет мощности электродвигателя для транспортера

Мощность (кВт) электродвигателя  для транспортера определяют по формуле

где κ — коэффициент запаса мощности транспортера 1.1 ÷ 1.25;
Q — производительность транспортера, Н/с;
L — расстояние между осями концевых барабанов, м;
H — высота подъема грузов, м;
ηм — коэффициент полезного действия механизма редуктора 0.7 ÷ 0.85;
с = 1.5 ÷ 2 — для скребковых транспортеров;
с = 0.14 ÷ 0.32 — для пластинчатых транспортеров.

Источник: https://xn--e1akbgjbameoe7j.com.ua/kak-rasschitat-nuzhnuju-moshhnost-jelektrodvigatelja-air-i-aire/

Понравилась статья? Поделиться с друзьями:
Электро Дело
Для любых предложений по сайту: [email protected]