Как рассчитать последовательное соединение конденсаторов

Последовательное и параллельное соединение конденсаторов

Как рассчитать последовательное соединение конденсаторов

На практике часто используются тела, обладающие малыми (и очень малыми) размерами, которые могут накопить большой заряд, при этом имея небольшой потенциал. Такие объекты называют конденсаторами. Одна из основных характеристик конденсатора – это его емкость.

Имея в резерве набор конденсаторов, обладающих разными параметрами, можно расширить спектр величин емкостей и диапазон рабочих напряжений, если применять их соединения.

Различают три типа соединений конденсаторов: последовательное, параллельное и смешанное (параллельное и последовательное).

Последовательное соединение конденсаторов

Последовательное соединение из конденсаторов изображено на рис. 1

Здесь (рис.1) положительная обкладка одного конденсатора соединяется с отрицательной обкладкой следующего конденсатора. При таком соединении обкладки соседних конденсаторов создают единый проводник. У всех конденсаторов, соединенных последовательно на обкладках имеются равные по величине заряды. Электрическая емкость последовательного соединения конденсаторов вычисляется по формуле:

где – электрическая емкость i-го конденсатора.

Если емкости конденсаторов при последовательном соединении равны , то емкость последовательного их соединения составляет:

где N – количество последовательно соединенных конденсаторов. При этом предельное напряжение (U), которое выдержит подобная батарея конденсаторов составит:

где – предельное напряжение каждого конденсатора соединения. При последовательном соединении конденсаторов следует следить за тем, чтобы ни на один из конденсаторов батареи не падало напряжение, превышающее его максимальное рабочее напряжение.

Параллельное соединение конденсаторов

Параллельное соединение N конденсаторов изображено на рис. 2.

При параллельном соединении конденсаторов соединяют обкладки, обладающие зарядами одного знака (плюс с плюсом; минус с минусом). В результате такого соединения одна обкладка каждого конденсатора имеет одинаковый потенциал, например, , а другая . Разности потенциалов на обкладках всех конденсаторов при их параллельном соединении равны.

При параллельном соединении конденсаторов суммарная емкость соединения рассчитывается как сумма емкостей отдельных конденсаторов:

При параллельном соединении конденсаторов напряжение равно самой наименьшей величине рабочего напряжения конденсатора из состава рассматриваемого соединения.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Источник: http://ru.solverbook.com/spravochnik/fizika/posledovatelnoe-i-parallelnoe-soedinenie-kondensatorov/

Параллельное и последовательное соединение конденсаторов: способы, правила, формулы

Как рассчитать последовательное соединение конденсаторов

Любая электроника в доме может выйти из строя. Однако сразу бежать в сервис не стоит – простейшие приборы может продиагностировать и починить даже начинающий радиолюбитель. К примеру, сгоревший конденсатор виден невооружённым глазом.

Но как быть, если под рукой нет детали подходящего номинала? Конечно, соединить 2 и более в цепь.

Сегодня поговорим о таких понятиях, как параллельное и последовательное соединение конденсаторов, разберемся, как его выполнить, узнаем о способах соединения, правилах его выполнения.

Нет конденсатора нужного номинала: что делать

Очень часто начинающие домашние мастера, обнаружив поломку прибора, стараются самостоятельно обнаружить причину. Увидев сгоревшую деталь, они стараются найти подобную, а если это не удаётся, несут прибор в ремонт. На самом деле, не обязательно, чтобы показатели совпадали. Можно использовать конденсаторы меньшего номинала, соединив их в цепь. Главное – сделать это правильно. При этом достигается сразу 3 цели – поломка устранена, приобретён опыт, сэкономлены средства семейного бюджета.

Попробуем разобраться, какие способы соединения существуют и на какие задачи рассчитаны последовательное и параллельное соединение конденсаторов.

Соединение конденсаторов в батарею: способы выполнения

Существует 3 способа соединения, каждый из которых преследует свою определённую цель:

  1. Параллельное – выполняется в случае необходимости увеличить ёмкость, оставив напряжение на прежнем уровне.
  2. Последовательное – обратный эффект. Напряжение увеличивается, ёмкость уменьшается.
  3. Смешанное – увеличивается как ёмкость, так и напряжение.

Теперь рассмотрим каждый из способов более подробно.

Параллельное соединение: схемы, правила

На самом деле всё довольно просто. При параллельном соединении расчёт общей ёмкости можно вычислить путём простейшего сложения всех конденсаторов. Итоговая формула будет выглядеть следующим образом: Собщ= С₁ + С₂ + С₃ + + Сn. При этом напряжение на каждом их элементов будет оставаться неизменным: Vобщ= V₁ = V₂ = V₃ = = Vn.

Соединение при таком подключении будет иметь следующий вид:

Получается, что подобный монтаж подразумевает подключение всех пластин конденсаторов к точкам питания. Такой способ встречается наиболее часто. Но может произойти ситуация, когда важно увеличить напряжение. Разберёмся, каким образом это сделать.

Последовательное соединение: способ, используемый реже

При использовании способа последовательного подключения конденсаторов напряжение в цепи возрастает. Оно складывается из напряжения всех элементов и выглядит так: Vобщ= V₁ + V₂ + V₃ ++ Vn. При этом ёмкость изменяется в обратной пропорции: 1/Собщ= 1/С₁ + 1/С₂ + 1/С₃ + + 1/Сn. Рассмотрим изменения ёмкости и напряжения при последовательном включении на примере.

Дано: 3 конденсатора с напряжением 150 В и ёмкостью 300 мкф. Подключив их последовательно, получим:

  • напряжение: 150 + 150 + 150 = 450 В,
  • ёмкость: 1/300 + 1/300 + 1/300 = 1/С = 299 мкф.

Внешне подобное подключение обкладок (пластин) будет выглядеть так:

Выполняют такое соединение в том случае, если есть опасность пробоя диэлектрика конденсатора при подаче напряжения в цепь. Но ведь существует и ещё один способ монтажа.

Полезно знать! Применяют также последовательное и параллельное соединение резисторов и конденсаторов. Это делается с целью снижения подаваемого на конденсатор напряжения и исключения его пробоя. Однако следует учитывать, что напряжения должно быть достаточно для работы самого прибора.

Смешанное соединение конденсаторов: схема, причины необходимости применения

Такое подключение (его ещё называют последовательно-параллельным) применяют в случае необходимости увеличения, как ёмкости, так и напряжения. Здесь вычисление общих параметров немного сложнее, но не настолько, чтобы нельзя было разобраться начинающему радиолюбителю. Для начала посмотрим, как выглядит такая схема.

Составим алгоритм вычислений.

  • всю схему нужно разбить на отдельные части, высчитать параметры которых просто,
  • высчитываем номиналы,
  • вычисляем общие показатели, как при последовательном включении.

Выглядит подобный алгоритм следующим образом:

Преимущество смешанного включения конденсаторов в цепь по сравнению с последовательным или параллельным

Смешанное соединение конденсаторов решает задачи, которые не под силу параллельным и последовательным схемам. Его можно использовать при подключении электродвигателей либо иного оборудования, его монтаж возможен отдельными участками. Монтаж его намного проще за счёт возможности выполнения отдельными частями.

Интересно знать! Многие радиолюбители считают этот способ более простым и приемлемым, чем два предыдущих. На самом деле, так и есть, если полностью понять алгоритм действий и научиться пользоваться им правильно.

Смешанное, параллельное и последовательное соединение конденсаторов: на что обратить внимание при его выполнении

Соединяя конденсаторы, в особенности электролитические, обратите внимание на строгое соблюдение полярности. Параллельное присоединение подразумевает подключение «минус/минус», а последовательное – «плюс/минус». Все элементы должны быть однотипны –плёночные, керамические, слюдяные либо металлобумажные.

Полезно знать! Выход из строя конденсаторов часто происходит по вине производителя, экономящего на деталях (чаще это приборы китайского производства). Поэтому правильно рассчитанные и собранные в схему элементы будут работать намного дольше. Конечно, при условии отсутствия замыкания в цепи, при котором работа конденсаторов невозможна в принципе.

Калькулятор расчёта ёмкости при последовательном соединении конденсаторов

А что делать, если необходимая ёмкость неизвестна? Не каждому хочется самостоятельно рассчитывать необходимую ёмкость конденсаторов вручную, а у кого-то на это просто нет времени. Для удобства производства подобных действий редакция Seti.

guru предлагает нашему уважаемому читателю воспользоваться онлайн-калькулятором расчёта конденсаторов при последовательном соединении или вычисления ёмкости. В работе он необычайно прост. Пользователю необходимо лишь ввести в поля необходимые данные, после чего нажать кнопку «Рассчитать».

Программы, в которые заложены все алгоритмы и формулы последовательного соединения конденсаторов, а также вычислений необходимой ёмкости, моментально выдаст необходимый результат.

Как рассчитать энергию заряженного конденсатора: выводим окончательную формулу

Первое, что для этого необходимо сделать – рассчитать, с какой силой притягиваются обкладки друг к другу. Это можно сделать по формуле F = q₀ × E, где q₀ является показателем величины заряда, а E – напряжённостью обкладок.

Далее нам необходим показатель напряжённости обкладок, который можно вычислить по формуле E = q / (2ε₀S), где q – заряд, ε₀ – постоянная величина, S – площадь обкладок.

В этом случае получим общую формулу для расчёта силы притяжения двух обкладок: F = q₂ / (2ε₀S).

Итогом наших умозаключений станет вывод выражения энергии заряженного конденсатора, как W = A = Fd. Однако это не окончательная формула, которая нам необходима. Следуем далее: учитывая предыдущую информацию, мы имеем: W = dq₂ / (2ε₀S). При ёмкости конденсатора, выражаемой как C = d / (ε₀S) получаем результат W = q₂ / (2С). Применив формулу q = СU, получим итог: W = CU² /2.

Конечно, для начинающего радиолюбителя все эти расчёты могут показаться сложными и непонятными, но при желании и некоторой усидчивости с ними можно разобраться. Вникнув в смысл, он поразится, насколько просто производятся все эти расчёты.

Для чего нужно знать показатель энергии конденсатора

По сути, расчёт энергии применяется редко, однако есть области, в которых это знать необходимо. К примеру, фотовспышка камеры – здесь вычисление показателя энергии очень важно. Она накапливается за определённое время (несколько секунд), а вот выдаётся мгновенно. Получается, что конденсатор сравним с аккумулятором – разница лишь в ёмкости.

Подводя итог

Порой без соединения конденсаторов не обойтись, ведь не всегда можно подобрать подходящие по номиналам.

Поэтому знание того как это сделать может выручить при поломке бытовой техники или электроники, что позволит значительно сэкономить на оплате труда специалиста по ремонту.

Как наверняка уже понял Уважаемый читатель, сделать это несложно и под силу даже начинающим домашним мастерам. А значит стоит потратить немного своего драгоценного времени и разобраться в алгоритме действий и правилах их выполнения.

Надеемся, что информация, изложенная в сегодняшней статье, была полезна нашим читателям. Возможно, у Вас остались какие-либо вопросы? В этом случае их можно изложить в обсуждении ниже. Редакция Seti.guru с удовольствием на них ответит в максимально короткие сроки.

Если же Вы имеете опыт самостоятельного соединения конденсаторов (неважно, положительный он или отрицательный), убедительная просьба поделиться им с другими читателями. Это поможет начинающим мастерам более полно понять алгоритм действий и избежать ошибок. Пишите, делитесь, спрашивайте.

А напоследок мы предлагаем посмотреть короткий, но довольно информативный видеоролик по сегодняшней теме.

Источник: https://greendom74.ru/otoplenie/parallelnoe-i-posledovatelnoe-soedinenie-kondensatorov-sposobyi-pravila-formulyi

Последовательное соединение конденсаторов: схемы соединения, расчёт ёмкости, формулы

Как рассчитать последовательное соединение конденсаторов

Чтобы накапливать, хранить и передавать энергию, в электронике используется специальный прибор — конденсатор. В этой статье описано, как выполнить подключение конденсатора своими руками и какие формулы для этого нужны.

Понятие о приборе

Говоря простым языком, конденсаторами называют радиоэлектронные приборы, которые используются для накопления электроэнергии, впоследствии передавая ее на цепь. Эти устройства достаточно часто применяют в разных электрических схемах.

Как выглядит конденсатный прибор

Приборы могут очень быстро накапливать энергию и так же стремительно ее передавать. Эти устройства функционируют циклично. Показатель накопленной энергии и циклы определяется техническими параметрами изделия, они зависят от самой модели устройства. Основные технические параметры указаны в маркировке конденсатора. Принцип действия устройства очень похож на индуктивную катушку.

Ниже можно прочесть про последовательное и параллельное соединение конденсаторов с формулами и вычислениями.

Последовательное соединение приборов

Последовательным подключением называется такое, где все элементы устройства включены в виде цепи и соединены с первым и последним конденсатором с помощью пластины.

Схема для последовательного подключения

При таком виде присоединения на все элементы поступает одинаковое количество электричества, так как именно от источника тока энергия поступает на первое и последнее устройство и передается на другие.

Обратите внимание! Поскольку конденсаторы имеют разную емкость, то и напряжение на каждом из них в цепи будет разным.

Чем ниже емкость прибора, тем выше понадобится напряжение, чтобы получить и передать энергию.

Проще говоря, при подсоединении нескольких устройств сразу, при помощи последовательного способа на устройствах небольшой емкости напряжение будет выше, а на устройствах высокой емкости — ниже.

Также существует метод параллельного подключения. Он выглядит проще предыдущего. Общую емкость приборов можно найти суммированием всех величин.

Смешанное соединение конденсаторов

ЭТО ИНТЕРЕСНО:  Какое максимальное напряжение при зарядке аккумулятора

Также эти устройства можно подключать смешанным способом. Такой метод (последовательно-параллельный) используется, если нужно повысить показатель обеих величин. По такой схеме тяжелее работать, но имея опыт в электрике, можно с ней разобраться. Как соединять приборы стало понятно, теперь необходимо правильно произвести вычисления по формулам.

Вам это будет интересно  Напряжение переменного тока

Как можно рассчитать последовательное подключение

При последовательном подключении двух и более конденсаторов их рабочее напряжение складывается. Очень часто такой метод применяется радиолюбителями, когда не хватает дополнительных элементов на вольтаж.

Для правильного расчета необходимо использовать стандартную формулу:

Uобщ.посл = U1 + U2 + + Un,

Где U1, U2 — максимальное напряжение каждого отдельно взятого элемента.

Параллельное соединение электролитических конденсаторов

Какая общая емкость при подключении устройств

Формула для общей емкости выглядит следующим образом:

C = Q / U = (Q1 + Q2 + Q3) / U = C1 + C2 + C3;

т. е. при последовательном подключении конденсаторов суммарная емкость равняется сумме показателей каждого элемента.

Как рассчитать емкость одного устройства

Этот показатель является одним из главных характеристик любого прибора. От этого показателя зависит сфера его использования, правила эксплуатации и предназначение. Указывается ёмкость в фарадах.

В России она указывается символом «Ф», в Европе — «F». На самих электронных устройствах можно увидеть такую символьную кодировку, pF, nF или uF. Это означает, что компонент имеет ёмкость 10-11,10-9 и 10-7 фарад.

Показатель можно рассчитать при помощь замеров мультиметром. В конструкции конденсатора имеются металлические пластины. Их поперечные параметры должны быть чуть больше, чем промежуток между ними.

Расшифровка маркировки

В центр такой пластины будет подключаться оболочка диэлектрика. В процессе работы устройства на выводы оболочки подаётся заряд. В итоге электроны начинают перемещаться, но не могут выходить за диэлектрик, и поэтому в пластинах собирается заряд.

Умение прибора накапливать электрическую энергию и будет его ёмкостью. Если провести аналогию с банкой для жидкости, то емкость — это будет объем.

Чтобы правильно рассчитать ёмкость, нужно воспользоваться формулой:

C= ε (A / d),

где:

  • А — площадь самой маленькой пластины;
  • d — промежуток между пластинами;
  • ε — общая проницаемость диэлектрика.

В заключении необходимо отметить, что рассчитать емкость самостоятельно достаточно легко. В интернете много сервисов, которые помогут с расчетами. Эту величину необходимо знать для того, чтобы правильно присоединить конденсатор в цепь.

Источник: https://rusenergetics.ru/polezno-znat/posledovatelnoe-soedinenie-kondensatorov

Последовательное соединение конденсаторов

Последовательное соединение конденсаторов – батарея, образованная цепочкой конденсаторов. Отсутствует ветвление, выход одного элемента подключается к входу следующего.

Физические процессы при последовательном соединении

При последовательном соединении конденсаторов заряд каждого равноценен. Обусловлено природным принципом равновесия. С источником соединены только крайние обкладки, другие заряжаются путем перераспределения меж ними зарядов. Используя равенство, находим:

q = q1 = q2 = U1 C1 = U2 C2, откуда запишем:

U1/U2 = C2/C1.

Напряжения меж конденсаторами распределяются обратно пропорционально номинальным емкостям. В сумме оба составляют вольтаж питающей сети. При разряде конструкция способна отдать заряд q вне зависимости от того, сколько конденсаторов включено последовательно. Емкость батареи найдем из формулы:

C = q/u = q/(U1 + U2), подставляя выражения, приведенные выше, приводя к общему знаменателю:

1/С = 1/С1 + 1/С2.

Вычисление общей емкости батареи

При последовательном соединении конденсаторов в батарею складываются величины, обратные номинальным емкостям. Приводя последнее выражение к общему знаменателю, переворачивая дроби, получаем:

С = C1C2/(C1 + C2).

Выражение используется для нахождения емкости батареи. Если конденсаторов более двух, формула усложняется. Для нахождения ответа номиналы перемножаются меж собой, выходит числитель дроби. В знаменатель ставят попарные произведения двух номиналов, перебирая комбинации. Практически иногда удобнее вести вычисление через обратные величины. Полученным результатом разделить единицу.

Соединение последовательное конденсаторов

Формула сильно упрощается, если номиналы батареи одинаковы. Требуется просто цифру поделить общим числом элементов, получая результирующее значение. Напряжение распределится равномерно, следовательно, достаточно номинал питающей сети разбить поровну на общее число. При питании аккумулятором 12 вольт, 4-х емкостях, на каждой упадет 3 вольта.

Одно упрощение сделаем для случая, когда номиналы равны, одна емкость включена переменная, чтобы подстраивать результат. Тогда максимальное напряжение каждого элемента удастся приближенно найти, разделив вольтаж источника уменьшенным на единицу количеством. Получится результат с заведомым запасом. Что касается переменной емкости, требования намного жёстче. В идеале рабочее значение перекрывает вольтаж источника.

Необходимость в последовательном соединении

На первый взгляд идея соединения конденсаторов батареей последовательным образом покажется лишенной смысла. Первое преимущество очевидно: падают требования к максимальному напряжению обкладок. Больше рабочий вольтаж, дороже изделие. Подобным образом мир видит радиолюбитель, владеющий рядом низковольтных конденсаторов, желающий применить железо составной частью высоковольтной цепи.

Рассчитывая по приведенным выше формулам действующие напряжения элементом, можно легко решить поставленную задачу. Рассмотрим для пущей наглядности пример:

Пусть установлены аккумулятор напряжением 12 вольт, три емкости номиналами 1, 2 и 4 нФ. Найдем напряжение при последовательном соединении элементов батареей.

Решение:

Для нахождения трех неизвестных потрудитесь составить равное количество уравнения. Известно из курса высшей математики. Результат будет выглядеть следующим образом:

  1. U1 + U2 + U3 = 12;
  2. U1/U2 = 2/1 = 2, откуда запишем: U1 = 2U2;
  3. U2/U3 = 4/2 = 2, откуда видно: U2 = 2U

Не сложно заметить, последние два выражения подставим первому, выразив 12 вольт через вольтаж третьего конденсатора. Получится следующее:

4U3 + 2U3 + U3 = 12, откуда находим, напряжение третьего конденсатора составляет 12/7 = 1,714 вольта, U2 – 3,43 вольта, U1 – 6,86 вольта. Сумма чисел дает 12, каждое меньше напряжения питающего аккумулятора.

Причем тем больше разница, чем меньший номинал у соседей. Из этого правила следует: в последовательном соединении конденсаторы низкой емкости показывают большее рабочее напряжение.

Найдем для определенности номинал составленной батареи, заодно проиллюстрируем формулу, поскольку выше описана чисто словесно:

С = С1С2С3/(С1С2 + С2С3 + С1С3) = 8/(2 + 8 + 4) = 8/14 = 571 пФ.

Результирующий номинал меньше каждого конденсатора, составляющего последовательное соединение. Из правила видно: максимальное влияние на суммарную емкость оказывает меньший. Следовательно, при необходимости подстройки полного номинала батареи должен быть переменный конденсатор. В противном случае поворот винта не окажет большого влияния на конечный результат.

Видим очередной подводный камень: после подстройки распределение напряжений по конденсаторам изменится. Просчитайте крайние случаи, дабы вольтаж не превысил рабочее значение для составляющих батарею элементов.

Программные пакеты исследования электрических цепей

Помимо онлайн- калькуляторов расчета последовательного соединения конденсаторов присутствуют и инструменты помощнее. Большой минус общедоступных средств объясняется нежеланием сайтов проверять программный код, значит, содержат ошибки. Плохо, если одна емкость выйдет из строя, сломленная процессом испытаний неправильно собранной схемы. Не единственный недостаток. Иногда схемы гораздо сложнее, разобраться комплексно невозможно.

В отдельных приборах встречаются фильтры высокой частоты, использующие конденсатор, включенные каскадами. Тогда на схеме помимо замыкания через резистор на землю образуется последовательное соединение емкостей. Обычно не применяют формулу, показанную выше. Принято считать, каждый каскад фильтра существует отдельно, результат прохождения сигнала описывается амплитудно-частотной характеристикой. Графиком, показывающим, как сильно обрежет на выходе спектральную составляющую сигнала.

Желающим провести ориентировочные расчеты рекомендуется ознакомиться с программным пакетом персонального компьютера Electronics Workbench. Конструктив выполнен по английским стандартам, потрудитесь учитывать нюанс: обозначение резисторов на электрической схеме изломанным зигзагом. Номиналы, названия элементов будут изложены на иностранный манер. Не мешает пользоваться оболочкой, предоставляющей оператору гору источников питания различного толка.

И главное – Electronics Workbench позволит задать контрольные точки на каждой, в режиме реального времени посмотреть напряжение, ток, спектр, форму сигнала. Полагается дополнить проект амперметром, вольтметром, прочими аналогичного толка приборами.

При помощи такого программного пакета смоделируете ситуацию, посмотрите, сколько падает напряжения на элементе батареи. Уберегает от громоздких расчетов, намного ускоряя процесс проектирования схемы. Одновременно исключаются ошибки. Легко и просто становится добавлять, удалять конденсаторы с немедленной оценкой результата.

Рабочий пример

Скрин показывает рабочий стол Electronics Workbench 5.12 с собранной электрической схемой последовательного соединения конденсаторов. Каждый емкостью 1 мкФ, одинаковые элементы взяты для целей демонстрации. Чтобы каждый мог без труда проверить правильность.

Последовательная батарея конденсаторов

Обратим вначале внимание на источник. Переменное напряжение частотой 60 Гц. В стране разработчика действует иной стандарт, нежели российские. Рекомендуется правой кнопкой мыши щелкнуть источник, посетить свойства, выставить:

  1. Частоту (frequency) 50 Гц вместо 60 Гц.
  2. Действующее значение напряжения (voltage) 220 вольт вместо 120.
  3. Фазу (phase – имитация реактивности) взять согласно своим нуждам.

Для буквоедов будет полезно полистать свойства элементов цепи. У источника вольны задать допустимое отклонение напряжения (voltage tolerance) в процентах. Достаточно добавить один резистор размером 1 кОм, цепь становится фильтром верхних частот. Рекомендуется не упрощать действия. Поставить правильно знак заземления, убедиться: схема полностью тривиальна. В противном случае результаты заставят надолго поломать голову.

Построение графиков

Проиллюстрированный скрином фильтр верхних частот обнаруживает подъем амплитудно-частотной характеристики в районе 1 кГц. При нахождении полосы пропускания необходимо учесть: вертикальная шкала логарифмическая. Посему срез на уровне 70% максимума не соответствует семи десятым высоты пологой части пика. Заядлым любителям будет интересна фазочастотная характеристика, в окне расположенная снизу.

Тот и другой график строятся из меню Analysis раздел AC Frequency. А еще тут Fourier. Доступно посмотреть спектр выходного сигнала. В нашем случае не будет ничего интересного, поскольку собрали унылый пассивный фильтр, колебание на входе гармоническое. Гораздо интереснее наблюдать спектр импульсного сигнала.

График отклика

Раздел Transient показывает отклик на подачу фронта питающего напряжения. На графике фактически представлен процесс заряда батареи, откуда найдем постоянную времени по уровню 0,7 максимума. Тонкости понятны желающим собрать сглаживающий фильтр амплитудного детектора. Как видно из графика, значение составляет 250 мкс. Параметр определяется из окна следующим образом:

  1. Считается, за три постоянные времени цепи заряд конденсаторов, разряд производится приблизительно на 95%.
  2. Легко заметить, точка находится в районе 800 мкс.
  3. Следует разделить значение на три, получится постоянная времени батареи последовательно соединенных конденсаторов.

По-другому постоянная времени вычисляется произведением сопротивления на общую емкость батареи. Пользуясь приведенными выше формулами, вычислим: С = 1 мкФ / 4 = 250 нФ. Осталось умножить значение на 1000 Ом, получится 250 мкс. Программный пакет Electronics Workbench 5.12 при умелом использовании высвобождает уйму свободного времени.

Версия ПО

Раздобыть программный пакет расчета электрики

В интернете бытует мнение: автором Electronics Workbench выступает дочерняя компания корпорации National Instruments, разрабатывающая программное обеспечение. Неправда. Из окна авторских прав упомянутого приложения видно: разработка выполнена отделом Interactive Image Technologies.

Вышеозначенное подразделение обрело самостоятельность в 1995 году. Отдел направленно занимался рекламными и обучающими материалами. Electronics Workbench разработан для целей обучения студентов Канады. Потом программный продукт распространился всемирно, с некоторых пор именуется Multisim.

Обновленный программный продукт продают официальные дилеры, перечень представлен официальным сайтом компании National Instruments: russia.ni.com/contact. На момент исследования счастливчиками, получившими право купить ПО не выезжая за город, назовем жителей Москвы, Санкт-Петербурга. Удачи решившимся связаться с официальными представителями, в Multisim добавлены новые фишки:

  1. Более 36000 схемных элементов.
  2. Возможность разработки печатных плат на основе собранной электрической схемы.
  3. Продвинутые опции анализа вместо убогости, демонстрируемой скринам, версии 20-летней давности.

Источник: https://vashtehnik.ru/enciklopediya/posledovatelnoe-soedinenie-kondensatorov.html

Схема последовательного соединения

Когда применяется схема последовательного соединения конденсаторов, заряд каждой детали эквивалентен. С источником соединены только внешние пластины, другие – заряжаются перераспределением электрозарядов между ними. Все конденсаторы сохраняют аналогичное количество заряда на своих обкладках. Это объясняется тем, что на каждый последующий элемент поступает заряд от соседнего. Вследствие этого справедливо уравнение:

q = q1 = q2 = q3 =

Известно, что при последовательном соединении резисторных элементов их сопротивления суммируются, но емкость конденсатора, включенного в такую электроцепь, рассчитывается по-другому.

Падение напряжения на отдельном конденсаторном элементе зависит от его емкости. Если в последовательной электроцепи имеется три конденсаторных элемента, составляется выражение для напряжения Uна основании закона Кирхгофа:

U = U1 + U2 + U3,

при этом U= q/C, U1 = q/C1, U2 = q/C2, U3 = q/C3.

Подставляя значения для напряжений в обе части уравнения, получается:

q/C = q/C1 + q/C2 + q/C3.

Так как электрозаряд q – величина одинаковая, на нее можно поделить все части полученного выражения.

Результирующая формула для емкостей конденсаторов:

1/С = 1/С1 + 1/С2 + 1/С3.

Важно! Если конденсаторы подключаются в последовательную электроцепь, показатель, обратный результирующей емкости, равен совокупности обратных значений единичных емкостей.

Особенности последовательного соединения

Пример. Три конденсаторных элемента подключены в последовательную цепь и обладают емкостями: С1 = 0,05 мкф, С2 = 0,2 мкФ, С3 = 0,4 мкФ. Рассчитать общую емкостную величину:

  1. 1/С = 1/0,05 + 1/0,2 + 1/0,4 = 27,5;
  2. С = 1/27,5 = 0,036 мкФ.
ЭТО ИНТЕРЕСНО:  Зачем нужен конденсатор для пуска двигателя

Важно! Когда конденсаторные элементы включены в последовательную электроцепь, общее емкостное значение не превышает наименьшей емкости отдельного элемента.

Если цепь состоит всего из двух компонентов, формула переписывается в таком виде:

С = (С1 х С2)/(С1 + С2).

В случае создания цепи из двух конденсаторов с идентичным емкостным значением:

С = (С х С)/(2 х С) = С/2.

Последовательно включенные конденсаторы имеют реактивное сопротивление, зависящее от частоты протекающего тока. На каждом конденсаторе напряжение падает из-за наличия этого сопротивления, поэтому на основе такой схемы создается емкостной делитель напряжения.

Емкостной делитель напряжения

Формула для емкостного делителя напряжения:

U1 = U x C/C1, U2 = U x C/C2, где:

  • U – напряжение питания схемы;
  • U1, U2 – падение напряжения на каждом элементе;
  • С – итоговая емкость схемы;
  • С1, С2 – емкостные показатели единичных элементов.

Вычисление падений напряжения на конденсаторах

К примеру, имеются сеть переменного тока 12 В и две альтернативных электроцепи подсоединения последовательных конденсаторных элементов:

  • первая – для подключения одного конденсатора С1 = 0,1 мкФ, другого С2 = 0,5 мкФ;
  • вторая – С1 = С2 = 400 нФ.

Первый вариант

  1. Итоговая емкость электросхемы С = (С1 х С2)/(С1 + С2) = 0,1 х 0,5/(0,1 + 0,5) = 0,083 мкФ;
  2. Падение напряжения на одном конденсаторе: U1 = U x C/C1 = 12 x 0,083/0,1 = 9,9 В
  3. На втором конденсаторе: U2 = U x C/C2 = 12 х 0,083/0,5 = 1,992 В.

Второй вариант

  1. Результирующая емкость С = 400 х 400/(400 + 400) = 200 нФ;
  2. Падение напряжения U1 = U2 = 12 x 200/400 = 6 В.

Согласно расчетам, можно сделать выводы, что если подключаются конденсаторы равных емкостей, вольтаж делится поровну на обоих элементах, а когда емкостные значения различаются, то на конденсаторе с меньшей емкостной величиной напряжение увеличивается, и наоборот.

Параллельное и комбинированное соединение

Последовательное и параллельное соединение аккумуляторов

Параллельное соединение конденсаторов представляется иным уравнением. Для определения общего емкостного значения надо просто найти совокупность всех величин по отдельности:

С = С1 + С2 + С3 +

Напряжение к каждому элементу будет прикладываться идентичное. Следовательно, для усиления емкости надо соединить несколько деталей параллельно.

Если соединения смешанные, последовательно-параллельные, то для таких контуров применяют эквивалентные, или упрощенные, электросхемы. Каждую область цепи рассчитывают отдельно, а затем, представляя их вычисленными емкостями, объединяют в простую цепь.

Варианты получения эквивалентных схем

Особенности замены конденсаторов

К примеру, в наличии сеть переменного тока 12 В и две альтернативных группы последовательных конденсаторных элементов.

Конденсаторы подсоединяются в последовательный контур для увеличения напряжения, под которым они остаются работоспособными, но их общая емкость падает в соответствии с формулой для ее расчета.

Часто применяется смешанное соединение конденсаторов, чтобы создать нужную емкостную величину и увеличить напряжение, которое детали способны выдержать.

Можно привести вариант, как соединить несколько компонентов, чтобы выйти на нужные параметры. Если требуется конденсаторный элемент 80 мкФ при напряжении 50 В, но есть только конденсаторы 40 мкФ на 25 В, необходимо образовать следующую комбинацию:

  1. Два конденсатора 40 мкФ/25 В подсоединить последовательно, что позволит иметь в общей сложности 20 мкФ /50 В;
  2. Теперь вступает в действие параллельное включение конденсаторов. Пара конденсаторных групп, включенных последовательно, созданных на первом этапе, соединяются параллельно, получится 40 мкФ / 50 В;
  3. Две собранные в итоге группы соединить параллельно, в результате получим 80 мкФ/50 В.

Важно! Для того чтобы усилить конденсаторы по напряжению, возможно их объединить в последовательную электросхему. Увеличение общей емкостной величины достигается параллельным подключением.

Что необходимо учитывать при создании последовательной цепи:

  1. При соединениях конденсаторов оптимальный вариант – брать элементы с мало различающимися или с одинаковыми параметрами, вследствие большой разницы в напряжениях разряда;
  2. Для баланса токов утечки на каждый конденсаторный элемент (в параллель) включается уравнительное сопротивление.

Получение неполярного конденсатора

Включение в последовательную цепь всегда должно происходить с соблюдением «плюса» и «минуса» конденсаторов. Если их соединить одноименными полюсами, то такое сочетание уже теряет поляризованность. При этом емкость созданной группы будет равна половине от емкостного значения одной из деталей. Такие конденсаторы возможно применять в качестве пусковых на электромоторах.

Маркировка танталовых smd конденсаторов

Источник: https://elquanta.ru/teoriya/posledovatelnoe-soedinenie-kondensatorov.html

Расчет параллельно / последовательно соединенных резисторов, конденсаторов и дросселей — Соединение конденсаторов

Вычисление емкости и напряжения при параллельном и последовательном соединении конденсаторов. (10+)

Расчет параллельно / последовательно соединенных резисторов, конденсаторов и дросселей — Соединение конденсаторов

Оглавление :: ПоискТехника безопасности :: Помощь

Для конденсаторов параллельное или последовательное соединение (включение) применяется обычно когда нет конденсатора подходящей емкости, когда надо точно подогнать емкость и когда нужен конденсатор на большее напряжение чем имеющиеся. Точный подбор подбор емкости осуществляется присоединением и подбором небольшого конденсатора параллельно большому. Для повышения напряжения используется последовательное соединение конденсаторов.

Ознакомьтесь также с расчетом резисторно — конденсатороного (RC) делителя напряжения.

Конденсаторы

Вашему вниманию подборка материалов:Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Соединяем последовательно

[Емкость последовательно соединенных конденсаторов, нФ] = 1 / (1 / [Емкость первого конденсатора, нФ] + 1 / [Емкость второго конденсатора, нФ])

Эта формула может быть легко получена исходя из того, что ток, прошедший через конденсатор в течение периода времени, заряжает его до напряжения, обратнопропорционального его емкости. Если в полученном выражении сократить время, силу тока и напряжение, то получится приведенная формула.

[Напряжение на первом конденсаторе, В] = [Напряжение на соединенных последовательно конденсаторах, В] * [Емкость второго конденсатора, нФ] / ([Емкость второго конденсатора, нФ] + [Емкость первого конденсатора, нФ])

[Напряжение на втором конденсаторе, В] = [Напряжение на соединенных последовательно конденсаторах, В] * [Емкость первого конденсатора, нФ] / ([Емкость второго конденсатора, нФ] + [Емкость первого конденсатора, нФ])

Получается, что из двух конденсаторов на 1000 нФ на 200 В можно сделать один на 500 нФ, 400 В.

Включаем параллельно

[Емкость параллельно соединенных конденсаторов, нФ] = [Емкость первого конденсатора, нФ] + [Емкость второго конденсатора, нФ]

(читать дальше) :: (в начало статьи)

Оглавление :: ПоискТехника безопасности :: Помощь

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Источник: https://gyrator.ru/parallel-serial-capacitor

Электрические конденсаторы: параллельное и последовательное соединение, расчет необходимой емкости c примерами

Электрические конденсаторы широко используются в радиоэлектронной аппаратуре. Они лидируют по количеству применения в блоках аппаратуры и по некоторым критериям уступают лишь резисторам. Конденсаторы присутствуют в любом электронном устройстве и их потребность в современной электронике постоянно растет. Наряду с имеющейся широкой номенклатурой, продолжаются разработки новых типов, которые имеют улучшенные электрические и эксплуатационные характеристики.

Что такое конденсатор?

Конденсатором называется элемент электрической цепи, который состоит из проводящих электродов, изолированных друг от друга диэлектриком.

Конденсаторы отличают по емкости, а именно по отношению заряда к разности потенциалов, который передается этим зарядом.

В международной системе СИ за единицу емкости принимают емкость конденсатора с возрастанием потенциала на один вольт при сообщении заряда в один кулон. Эта единица называется фарадой. Она слишком велика для применения в практических целях. Поэтому принято использовать более мелкие единицы измерения, такие как пикофарад (пФ), нанофарад (нФ) и микрофарад (мкФ).

Группы по виду диэлектрика

Диэлектрики применяют для изоляции пластин друг от друга. Они изготавливаются из органических и неорганических материалов. Нередко, в качестве диэлектрика, применяют оксидные пленки металлов.

По виду диэлектрика элементы делят на группы:

  • органические;
  • неорганические;
  • газообразные;
  • оксидные.

Элементы с органическим диэлектриком изготавливают путем намотки тонких лент специальной бумаги или пленки. Также применяют комбинированный диэлектрик с фольговыми или металлизированными электродами. Такие элементы могут быть как высоковольтные (свыше 1600 В), так и низковольтные (до 1600 В).

В изделиях с неорганическим диэлектриком используют керамику, слюду, стекло и стеклокерамику, стеклоэмаль. Их обкладки состоят из тонкого слоя металла, который нанесен на диэлектрик путем металлизации. Бывают высоковольтные, низковольтные и помехоподавляющие.

В качестве газообразного диэлектрика используют сжатый газ (фреон, азот, элегаз), воздух или вакуум. По характеру изменения емкости и выполняемой функции такие элементы бывают постоянными и переменными.

Наибольшее распространение получили элементы с вакуумным диэлектриком. Они имеют большие удельные емкости (по сравнению с газообразным диэлектриком) и более высокую электрическую прочность. Элементы с вакуумным диэлектриком обладают стабильностью параметров при температурных изменениях окружающей среды.

Область применения – передающие устройства, работающие на коротких, средних и длинных волнах диапазонов с частотой до 30-80 МГц.

Элементы с оксидным диэлектриком бывают:

  • общего назначения;
  • пусковые;
  • импульсные;
  • неполярные;
  • высокочастотные;
  • помехоподавляющие.

Диэлектриком является оксидный слой, который наносится на анод электрохимическим путем.

Условные обозначения

Элементы обозначаются по сокращенной и полной системе.

При сокращенной системе наносятся буквы и цифры, где буквой обозначается подкласс, цифрой — группа в зависимости от применяемого диэлектрика. Третий элемент указывает регистрационный номер типа изделия.

При полном условном обозначении указываются параметры и характеристики в следующей последовательности:

  • условное обозначение конструктивного исполнения изделия;
  • номинальное напряжение изделия;
  • номинальная емкость изделия;
  • допустимое отклонение емкости;
  • температурная стабильность емкости изделия;
  • номинальная реактивная мощность изделия.

Подбор номинала

Конденсаторы могут соединяться друг с другом различными способами.

На практике нередко возникают ситуации, когда при монтаже схемы или замене неисправного элемента, приходится использовать ограниченное количество радиодеталей. Не всегда удается подобрать элементы нужного номинала.

В этом случае приходится применять последовательное и параллельное соединение конденсаторов.

Последовательно соединение конденсаторов

Последовательное соединение конденсаторов используют, если необходимо получить емкость меньшую емкости элемента. Такие элементы выдерживают более высокие напряжения. При последовательном соединении конденсаторов, обратная величина общей емкости равняется сумме обратных величин отдельных элементов. Для получения требуемой величины нужны определенные конденсаторы, последовательное соединение которых даст необходимую величину.

При последовательном соединении конденсаторов каждый его вывод соединяется с одним выводом другого элемента. Получается некая цепочка из последовательно соединенных конденсаторов, где крайние выводы подключаются к источнику питания.

Емкость общей батареи всегда меньше минимальной емкости элементов, входящих в нее. То есть, половина от емкости каждой из этих емкостей.

При последовательном соединении конденсаторов увеличивается расстояние между обкладками элементов.

Например, при последовательном соединении двух элементов напряжением 200 В можно смело включать в схему напряжением до 1000 В.

Данный метод соединения используется гораздо реже, потому что емкости такой величины и рабочего напряжения можно приобрести в магазинах.

Таким образом, зная принцип общего расчета параллельного и последовательного соединения конденсаторов, всегда можно выйти из затруднительного положения, имея под рукой ограниченное количество номиналов.

Источник: https://elektro.guru/elektrika-v-kvartire/montazh/soedineniya-kondensatorov-pri-posledovatelnom-vklyuchenii.html

Соединение конденсаторов

Конденсаторы, как и резисторы, можно соединять последовательно и параллельно. Рассмотрим соединение конденсаторов: для чего применяются каждая из схем, и их итоговые характеристики.

Смешанное соединение конденсаторов

Пример смешанного соединения конденсаторов

Такие схемы существуют, но в устройствах специального назначения, требующие высокой точности получения величины емкости, а также для их точной настройки.

Источник: http://electric-tolk.ru/sposoby-soedineniya-kondensatorov/

Конденсаторы. Параллельное и последовательное соединение конденсаторов

Если к заряженному проводнику при­ближать другие тела, то на них возникают индуцированные (на проводнике) или свя­занные (на диэлектрике) заряды, причем ближайшими к наводящему заряду Q бу­дут заряды противоположного знака. Эти заряды ослабляют поле, соз­даваемое зарядом Q, т. е. понижают по­тенциал проводника, что приводит к повышению его электро­емкости.

Конденсатор состоит из двух провод­ников (обкладок), разделенных диэлект­риком.

На емкость конденсатора недолжны, оказывать влияния окружающие тела, поэ­тому проводникам придают такую форму, чтобы поле, создаваемое накапливаемыми зарядами, было сосредоточено в узком зазоре между обкладками конденсатора.

Этому условию удовлетворяют: две плоские пластины; два коакси­альных цилиндра; две концентрические сферы. Поэтому в зависимости от формы обкладок конденсаторы делятся на плоские, цилиндрические и сферические.

Так как поле сосредоточено внутри конденсатора, то линии напряженности начинаются на одной обкладке и кончают­ся на другой, поэтому свободные заряды, возникающие на разных обкладках, явля­ются равными по модулю разноименными зарядами. Емкостью конденсатора называется физическая величина, равная отношению заряда, накопленного в кон­денсаторе, к разности потенциалов между его обкладками:

(1)

ЭТО ИНТЕРЕСНО:  Какое сопротивление у термистора

Если расстояние между пластинами конденсатора мало по сравнению с их линейными разме­рами, то краевыми эффектами можно пре­небречь и поле между обкладками считать однородным. При наличии диэлектрика между обкладками разность потенциалов между ними равна

(2)

где ε— диэлектрическая проницаемость.

Емкость плоского конденсатора:

Емкость цилиндрического конденсатора:

,

где l – длина конденсатора, r1, r2 – радиусы внутренней и внешней обкладок.

Емкость сферическогоконденсатора:

Конденсаторы характеризуются про­бивным напряжением — разностью потен­циалов между обкладками конденсатора, при которой происходит пробой — элек­трический разряд через слой диэлектрика в конденсаторе. Пробивное напряжение зависит от формы обкладок, свойств ди­электрика и его толщины.

Для увеличения емкости и варьирова­ния ее возможных значений конденсаторы соединяют в батареи, при этом использу­ется их параллельное и последовательное соединение.

Параллельное соединение конденса­торов

У параллельно соединен­ных конденсаторов разность потенциалов на обкладках конденсаторов одинакова и равна  А- В. Если емкости отдельных конденсаторов C1, C2, ., Сn,то их заряды равны

,

а заряд батареи конденсаторов

Важно! Когда работу писать становится сложно, можно обратиться с вопросом к экспертам. Это поможет сделать работу быстро.

Подробнее

Полная емкость батареи равна сумме емкостей отдельных конденсаторов

Допустимое напряжение определяется допустимым напряжением меньшего конденсатора.

Последовательное соединение кон­денсаторов

У последовательно соединенных конденсаторов заряды всех обкладок равны по модулю, а разность потенциалов на зажимах батареи

где для любого из рассматриваемых кон­денсаторов

С другой стороны,

откуда

т. е. при последовательном соединении конденсаторов суммируются величины, об­ратные емкостям. Таким образом, при последовательном соединении конденсаторов результирующая емкость С всегда меньше наименьшей емкости, используемойв батарее.

Источник: https://nauchniestati.ru/spravka/kondensatory-parallelnoei-i-posledovatelnoe-soedinenie-kondensatorov/

Напряжение при параллельном соединении

На все параллельно соединенные конденсаторы падает одинаковое напряжение. Так происходит, потому что существует всего лишь две точки, между которыми может быть разность потенциалов (напряжение). Другими словами, можно сказать что при параллельном соединении все конденсаторы подключены к одному источнику напряжения.

Падение напряжения при параллельном соединении

Ток при параллельном соединении

Ток конденсатора во время переходного периода зависит от его емкости и изменения напряжения:

  • ic — ток конденсатора
  • C — Емкость конденсатора
  • ΔVC/Δt – Скорость изменения напряжения

При параллельном соединении через каждый конденсатор потечет одельный ток, в зависимости от емкости конденсатора:

Ток при параллельном соединении

Ток при последовательном соединении

Ток (iC), заряжающий последовательную цепь конденсаторов, будет одинаковым для всех конденсаторов, поскольку у него есть только один возможный путь прохождения:

Вследствие того что через все последовательно соединенные конденсаторы течет одинаковый ток, количество накопленого электрического заряда для каждого конденсатора будет одинаковым, независимо от его емкости. Так происходит, потому что электрический заряд, накапливаемый на обкладке любого конденсатора, должен прийти с обкладки примыкающего конденсатора.

Таким образом, последовательно соединенные конденсаторы имеют одинаковый электрический заряд:

Посмотрим на последовательную цепь из трех конденсаторов на рисунке выше. Правая обкладка первого конденсатора С1 соединяется с левой второго конденсатора С2, у которого правая обкладка соединяется с левой третьего конденсатора С3. Это означает, что в режиме постоянного тока конденсатор С2 электрически изолирован от общей цепи.

В итогое эффективная площадь обкладок уменьшается до площади обкладок самого маленького конденсатора. Это объясняется тем, что как только обкладки наименшей площади заполнятся электрическим зарядом, данный конденсатор перестанет пропускать ток. В результате ток прекратиться во всей цепи, и процесс зарядки остальных конденсаторов также прекратится.

При последовательном соединении общее расстояние между обкладками увеличивается до суммы расстояний между обкладками всех конденсаторов.

Таким образом, последовательная цепь формирует один большой конденсатор с площадью обкладок элемента с наименьшей емкостью, и расстоянием между обкладками, равному сумме всех расстояний в цепи.

Площадь и расстояние между обкладками при последовательном соединении

Падение напряжения и общая емкость при последовательном соединении

На каждый отдельный конденсатор в последовательной цепи падает разное напряжение. Поскольку емкость обратно пропрциональна напряжению (С = Q/V), то чем меньше емкость конденсатора, тем большее напряжение на него упадет.

Применим закон Кирхгофа для напряжения в последовательной цепи из трех конденсаторов:

Падение напряжения при последовательном соединении

Емкость конденсатора прямо пропорциональна его заряду и обратно пропорциональна его напряжению — C = Q/V. Как уже упоминалось выше, последовательно соединенные конденсаторы имеют одинаковый электрический заряд — Qобщ = Q1 = Q2 = Q3.

Следовательно:

Разделив все выражение на Qобщ мы получим уравнение для общей емкости при последовательном соединении:

Из данного уравнения можно легко вывести формулу общей емкости для любого частного случая последовательного соединения.

Например, общая емкость для трех конденсаторов:

Общая емкость для двух конденсаторов:

Зачем все это нужно?

Вполне справедливым может оказаться вопрос, для чего надо соединять конденсаторы последовательно, если общая емкость будет меньше? Скорее всего, первым что приходит в голову — это чтобы получить новый эквивалентный конденсатор с меньшей емкостью. Но в производстве микросхем вряд ли будут делать подобное, поскольку, во -первых, обычно нужно экономить место на печатной плате, а во-вторых, нет смысла тратить деньги на два компонента или больше, если можно купить один с требуемой емкостью.

Но если в параллельном или последовательном соединении конденсаторов еще есть хоть какая-то логика, то кому вообще нужно смешанное?

Дело в том, что емкостью, то есть способностью накапливать электрический заряд, обладает любое тело в природе, даже человеческое. Если мы говорим о электрической цепи, то все ее элементы на практике обладают емкостью, и их можно представить как конденсаторы. Часто такую емкость еще называют паразитической, потому как она создает разного рода помехи.

Например, у нас есть какая-то электронная цепь с множеством различных компонентов, которая принимает сигнал, обрабатывает его определенным образом и выдает на выход результат.

Известно, что время задержки сигнала, в основном, зависит от паразитической емкости электронных компонентов схемы. Поскольку должно пройти время зарядки паразитической емкости, прежде чем она начнет пропускать сигнал.

Если мы хотим узнать время задержки, нужно посчитать общую емкость всех компонентов, конвертировав их в цепь из конденсаторов.

Источник: http://hightolow.ru/capacitor3.php

Как правильно соединять конденсаторы

Чтобы узнать, как подключить конденсатор правильно, нужно разобраться, к какому именно типу он относится. Данных электронных приборов существует огромное множество. Все конденсаторы подразделяются на две группы:

  • полярные (электролитические) – подключая их, необходимо учитывать, где у детали плюсовой, а где минусовой контакт;
  • неполярные (все остальные) – эти конденсаторы способны работать от переменного тока, у них не бывает положительных и отрицательных клемм.

Затем нужно учесть конструкцию электронного компонента. С этой точки зрения конденсаторы могут быть:

  • Выводными. Подключаются к плате с помощью тонких медных ножек, покрытых (лужёных) для защиты слоем припоя.
  • Для поверхностного монтажа (SMD). В основном применяются в компактной электронике. Очень миниатюрны, часто в поперечнике не превышают 1 мм.

Также важно принять во внимание рабочее напряжение конденсатора. Это особенно принципиально для электролитических приборов данного типа, ведь при превышении их номинального вольтажа они, вероятнее всего, взорвутся, разбрызгивая во все стороны кипящий электролит.

Важно! На крышке электролитического конденсатора имеются две насечки. Эти слабые места служат для мгновенной разгерметизации изделия в случае избыточного внутреннего давления. При ремонте и наладке оборудования следует избегать направленности насечек на лицо или одежду. При внештатной ситуации с их стороны может брызнуть горячий электролит.

Не менее критичен порог максимального напряжения и для прочих видов конденсаторов, особенно имеющих мелкие габариты и не способных длительно выдерживать перегрузки.

Последний, но не наименее важный фактор, который следует учесть при соединении конденсаторов, – это их ёмкость. Она измеряется в микрофарадах (в честь Майкла Фарадея). Это их главная характеристика, поэтому конденсаторы часто называют электрическими ёмкостями. В некоторых электронных устройствах этот параметр может существенно отклоняться как в меньшую, так и в большую сторону. В других – недопустимо погрешность и на 1 %.

Ток при последовательном соединении конденсаторов

Электрический ток бывает двух видов: постоянным и переменным. Для работы ёмкостей это имеет большое значение.

Конденсатор и постоянный ток

Маркировка танталовых smd конденсаторов

Постоянный ток через конденсатор не проходит вообще. Справедливо это и для линейки из последовательно соединённых ёмкостей. Объясняется такой эффект опять же конструкцией самого электронного прибора. Конденсатор имеет две металлические обкладки. В простых электролитических приборах они сделаны из алюминиевой фольги.

Между ними расположен тонкий слой диэлектрика (оксид алюминия). Если приложить к обкладкам разность потенциалов (напряжение), то ток потечёт, но только очень короткое время, пока конденсатор полностью ни зарядится. Далее движение носителей заряда прекратится, т.к. они не смогут пройти через диэлектрик.

В этот момент можно сказать, что электрический ток равен нулю, и конденсатор его не пропускает.

Конденсатор и переменный ток

При переменном токе носители заряда периодически меняют своё направление. В случае с бытовой сетью изменение происходит 50 раз в секунду. Поэтому говорят, что частота тока в розетке равна 50 Гц.

Важно! Конденсаторы способны накапливать и длительно удерживать заряд. При работе с ёмкостями, заряженными от сети 220 В, их всегда следует разряжать сопротивлением в 100-1000 ом. Несоблюдение правила однажды приведёт к неприятному удару током.

Конденсатор определённо пропустит переменный ток, но не факт, что весь. Количество носителей заряда, которые смогут пройти через этот электронный прибор, зависит от ёмкости конденсатора, приложенного к нему напряжения и частоты смены направления зарядов. Математически это выражается так:

I = 2pfCU.

Здесь I – это электрический ток с частотой f, проходящий через конденсатор ёмкостью C, если к его обкладкам приложить напряжение U. 2 – просто число, а p = 3.14.

Такая способность конденсаторов ограничивать переменный ток широко применяется в аудиотехнике для построения различных звуковых фильтров. Изменяя ёмкость, можно влиять на частоту сигнала, которую она пропускает.

Падение напряженности и общая емкость

Ёмкость конденсатора – это величина, определяющая количество заряда, который он способен в себе сохранить. Выражение имеет следующий вид:

C = q/U.

Здесь q – заряд, накопленный между обкладками конденсатора, U – напряжение к ним приложенное.

Вышеописанная формула представляет общий случай. На практике при расчете ёмкости конденсатора следует учитывать ряд других переменных:

C = E0ES/d,

где:

  • E0 – электрическая постоянная, равная 8,85*10-12 Ф/м,
  • E – диэлектрическая проницаемость среды, в которой располагаются обкладки конденсатора,
  • S – их площадь пересечения,
  • d – расстояние между обкладками.

Стандартная модель конденсатора имеет следующий вид.

Обкладки чаще всего изготовлены из тонкого листового алюминия и скручены в рулон. Делается это для увеличения их площади, ведь так ёмкость конденсатора становится существенно больше.

От выбора диэлектрика, устанавливаемого производителем между обкладками конденсатора, зависит номинальное и максимальное напряжение прибора. Это, в свою очередь, определяет его сферу применения.

Если к обкладкам приложить чрезмерную разность потенциалов, то напряжённость поля между ними превысит допустимый уровень, и произойдёт пробой диэлектрика. Подобная ситуация особенно пагубно влияет на электролитические конденсаторы и ионисторы.

В случае их пробоя прибор частично или полностью теряет способность накапливать заряд и в дальнейшем становится непригодным для работы.

При последовательном и параллельном включении разных конденсаторов существенно изменяются их характеристики. Данное свойство этих деталей активно используется инженерами-электронщиками и радиолюбителями. Знание принципов подключения позволяет им более продуктивно разрабатывать новые устройства.

Источник: https://amperof.ru/teoriya/posledovatelnoe-soedinenie-kondensatorov.html

Понравилась статья? Поделиться с друзьями:
Электро Дело
Как подключить светодиод к сети 220 вольт

Закрыть
Для любых предложений по сайту: [email protected]