В чем различие электрических цепей с изолированной и глухозаземленной нейтралью

Классификация систем заземления: TN-S, NN, TN-C, IT, TN-C-S

В чем различие электрических цепей с изолированной и глухозаземленной нейтралью

До выхода в свет седьмого издания ПУЭ характер связи нейтрали генераторов или трансформаторов с заземляющим устройством системы разделялись так:

  • с глухозаземленной нейтралью;
  • с изолированной нейтралью.

В системах с глухозаземленной нейтралью нейтраль силового трансформатора соединялась с контуром заземления сразу же на трансформаторной подстанции. Иногда в этой цепи устанавливался трансформатор тока, в основном же соединение выполнялось жестким шинопроводом. Такими выполнялись все распределительные системы переменного тока напряжением до 1000 В, за исключением электрооборудования шахт и карьеров.

В системах с изолированной нейтралью такого проводника не предусматривалось. В результате относительно земли на ней присутствовал электрический потенциал. Но и нейтрали в них не предусматривалось: обмотки силового трансформатора соединялись в треугольник. Потребители получали электричество по трем проводникам.

Недостатки систем заземления

Что же привело к введению западных стандартов применительно к конструкции систем заземления? Для этого рассмотрим, как они выполнялись.

В системе с глухозаземленной нейтралью сама нейтраль несла в себе, помимо функции проводника нулевого тока, еще и функцию связи заземляемого оборудования с контуром заземления. Поскольку ток в нейтрали не равен нулю, то на ее концах образовывалась разность потенциалов. Присутствие ее относительно сторонних металлических конструкций на безопасность персонала влияла отрицательно.

Но главной бедой, угрожающей безопасности людей, становился обрыв нейтрали. В этом случае ее потенциал зависел от распределения токов по фазам распределительной сети.

В неблагоприятном случае потенциал нейтрали относительно земли достигал 380 В. При этом металлоконструкции, присоединенные к нейтральному проводнику с целью заземления, оказывались под тем же потенциалом.

Защита на этот режим не реагировала никак, пока в сети не выходил из строя электроприбор из-за превышения напряжения в его фазе.

Еще один недостаток связан с подключением к контуру заземления корпусов малогабаритных приборов. По сути их требовалось присоединить к нейтральному проводнику. Такой способ назывался защитным занулением.

Но в случае обрыва нейтрали корпус автоматически оказывался под опасным для жизни потенциалом.

Поэтому корпуса люминесцентных светильников на предприятиях предпочитали вовсе не заземлять, из-за чего на них постоянно дежурит опасный для жизни потенциал. Но это –меньшее зло.

Новая классификация систем заземления

В седьмое издание ПУЭ добавлена информация из вновь созданного ГОСТ Р 50571.1-2009, по сути своей являющимся копией стандарта Международной электротехнической комиссии (МЭК). Можно было придумать собственный стандарт, но лучше, если в большинстве стран будет царить единообразие. Ведь в Россию не только поставляется западное электрооборудование, но и целые заводы собираются по иностранным проектам. Чем меньше будет конфликтных ситуаций – тем лучше.

Системы заземления

Стандарт касается электроустановок, напряжением до 1000 В. В системах заземления установок выше 1000 В менять нечего.

Первое, на что обращают внимание все, открывающие главу 1.7 ПУЭ – это новые системы обозначения электроустановок в зависимости от режимы работы нейтрали и расположения нулевых проводников.

Первая буква обозначения: «T» или «I» — обозначает соответственно заземленную или изолированную нейтраль электроустановки.

Вторые буквы означают следующее

N Заземляемых частей к нейтрали выполняется при помощи проводников
Т Для связи защищаемого оборудования с землей используется свой собственный контур заземления. При наличии контура заземления нейтрали они независимы друг от друга.

Защитные и рабочие проводники

Проводники, объединенные раньше в одном понятии «ноль» теперь меняют свое назначение и разделяются на два типа.

Нулевые рабочие проводники служат только для передачи электрической энергии. Использование их как защитных запрещено. Они окрашиваются в голубой цвет, обозначаются буквой N. При этом использование голубого цвета для маркировки других проводников тоже запрещается, чтобы избежать путаницы. Нулевые рабочие проводники не подключаются напрямую к корпусам, а устанавливаются на изоляторах.

Нулевые защитные проводники необходимы для связи корпусов или частей защищаемого оборудования с контуром заземления. Цвет их оболочки состоит из перемежающихся желто-зеленых полос, а буквенное обозначение самих проводников – РЕ. Для предотвращения путаницы запрещено теперь использование комбинации из этих цветов, даже каждого в отдельности. Разработан еще один ГОСТ, регламентирующий цветовую маркировку токопроводов, в котором отразились эти изменения.

Если вспомнить, то заземляющие шины в электроустановках до этого окрашивались в черный цвет. Волею случая этот цвет теперь обозначает один из фазных проводников.

Система заземления TN-C: схема

Система с глухозаземленной нейтралью в сетях до 1000 В осталась неизменной. Никто, естественно, не бросился в срочном порядке перекрашивать шины и добавлять дополнительные проводники в уже сформировавшиеся цепи. Требования ПУЭ и стандартов учитываются только в двух случаях:

  • при проектировании и вводе в эксплуатацию новой электроустановки или части ее;
  • при выполнении модернизации электрооборудования.

Все остальное остается прежним. А для этого прежнего в ПУЭ предусмотрено свое название – система TN-С. Разберемся, что это такое.

Буквы «TN» означают, что это – система с глухозаземленной нейтралью, в которой соединение потребителей с контуром заземления и нейтралью осуществляется при помощи проводников. С ними мы разобрались в предыдущем разделе.

А вот буква «С» означает, что функции этих проводников, рабочего и защитного, совмещены в одном, называемом «совмещенном». Носит он буквенное обозначение PEN, а окрашивается либо в голубой цвет с желто-зелеными полосами по краям, либо наоборот.

Ничего не изменилось, только цвет теперь не черный. Все, что было создано еще в советские годы, называется теперь системой заземления TN-C. С ней приходится считаться, потому что к новому виду заземления полностью промышленность перейдет еще не скоро.

Система заземления TN-S: схема

А вид этот новый носит название TN-S. Буква “S» как раз означает, что нулевые защитные и рабочие проводники разделены на все протяжении. Разделение это происходит непосредственно на трансформаторной подстанции. Нулевая шпилька трансформатора подключается к шине РЕ, а к ней перемычкой подключается нулевая шина. К шине РЕ сразу же подключают контур заземления подстанции.

Теперь все кабельные линии, отходящие от созданного таким образом распределительного устройства, становятся трехпроводными (если питают однофазную нагрузку) или пятипроводными при питании трехфазного потребителя.

Теперь появляется возможность удобно подключать заземляющие контакты розеток, корпуса светильников, бойлеров, распределительных щитков к контуру заземления. Для этого выделена персональная жила.

На всякий случай упомянем, что, если заземляющий проводник кабеля подключить не к чему, его нельзя ликвидировать. Со временем может потребоваться его использование, поэтому во всех соединительных коробках РЕ-проводники все равно соединяют, а у розеток или светильников – изолируют.

Есть ситуации, когда заземляющие проводники проложены, а подключать их пока не к чему: нет еще контура заземления или не готова часть электроустановки, через которую планируется подключение.

В этом случае их соединяют в коробках, но не подключают к абонентам. Некоторые бытовые приборы: светильники, компьютеры, телевизоры, стиральные машины – имеют на входе помехоподавляющие фильтры, использующие корпус для связи с контуром заземления.

Опасный потенциал от такого фильтра разбежится по все сети заземления.

Система заземления TN-C-S: схема

Мы уже упоминали реконструируемые электроустановки или части электроустановок, подлежащих модернизации. Их конструкция должна соответствовать новым требованиям ПУЭ. Но для создания системы заземления TN-S реконструировать электроустановку нужно с трансформаторной подстанции. Это потребует серьезных финансовых затрат. Как быть в этом случае?

Для этого используется система заземления TN-C-S, являющаяся комбинацией выше рассмотренных. В части ее, от трансформаторной подстанции, используется TN-C, а на определенном участке защитный и рабочий проводники разделяются, создавая систему TN-S.

Системы заземления TN

Такое разделение устраивают во вводных распределительных устройствах (ВРУ) главных распределительных щитках (ГРЩ) или просто в щитках ввода в здание. Но в этом месте желательно наличие контура повторного заземления, иначе такое разделение не будет безопасным.

Особенное внимание при разделении совмещенного проводника TN-C на защитный и нулевой рабочий обращают на его точку подключения. Проводник PEN при переходе подключается к шине РЕ. Мотивация этого такова.

Между шинами N и РЕ при переходе на систему TN-S устанавливается перемычка. Если подключить PEN к шине N, то при обрыве перемычки ничего видимого не произойдет. Все защитные проводники, подключенные к распределительному устройству, потеряют связь с контуром заземления.

И никто ничего не заметит, пока не произойдет беда.

При подключении PEN-проводника к шине РЕ и обрыве перемычки произойдет тот же эффект, что был описан ранее в случае обрыва нуля. В электроустановке установится аварийный режим, который вряд ли заметят. С одной разницей: соединение корпусов электрооборудования с контуром заземления не исчезнет, и люди не пострадают.

Система заземления IT: схема

Эта система применяется на горных выработках: карьерах, шахтах. Особенности эксплуатации электрооборудования на этих предприятиях таковы, что получить качественного контура заземления там не представляется возможным.

Система заземления IT

Нейтраль трансформатора там все-таки заземляется, но через контрольно-измерительные приборы, выполняющие функцию защиты от утечки. В случае ее возникновения происходит отключение электроустановки.

Система заземления ТТ: схема

Устройство с двумя разделенными друг от друга заземляющими устройствами используется там, где невозможно обеспечить безопасность при помощи TN. Это связано либо с аварийным состоянием нулевых проводников, либо с их большой протяженностью. В основном это касается воздушных линий электропередачи.

Система заземления ТТ

Особенность защиты людей от поражения электрическим током в системе ТТ — обязательное применение устройств защитного отключения (УЗО) с дифференциальным током 30 мА.

Источник: http://electric-tolk.ru/raznovidnosti-sistem-zazemleniya/

Глухозаземленная нейтраль: принцип действия, устройство, схемы — Электрик

В чем различие электрических цепей с изолированной и глухозаземленной нейтралью

В подавляющем большинстве электросетей (до 1 кВ) применяется глухозаземленная нейтраль, поскольку такое исполнение наиболее оптимально для действующих требований электробезопасности.

Учитывая распространенность этой схемы заземления нейтрали, имеет смысл подробно ознакомиться с ее устройством, принципом работы и техническими особенностями, а также основными требованиями ПУЭ к электроустановкам до 1 кВ.

Что такое глухозаземленная нейтраль?

Начнем с определения нейтрали, в электротехнике под этим термином подразумевается точка в месте соединения всех фазных обмоток трансформаторов и генераторов, когда применяется тип подключения «Звезда». Соответственно, при включении «Треугольником» нейтрали быть не может.

Включение обмоток: а) «звездой»; б) «треугольником»

Если нейтраль обмоток генератора или трансформатора заземлить, то такая система получит название глухозаземленной, с ее организацией можно ознакомиться ниже.

Рис. 2. Сеть с глухозаземленной нейтралью

Устройство сетей с голухозаземленной нейтралью

Как видно из рисунка 2, характерной особенностью электросетей TN типа является заземление нейтрали. Заметим, что в данном случае речь идет не о защитном заземлении, а о рабочем соединении между нейтралью и заземляющим контуром.

Согласно действующим нормам, максимальное сопротивление такого соединения — 4-е Ома (для сетей 0,4 кВ).

При этом нулевой провод, идущий от глухозаземленной средней точки, должен сохранять свою целостность, то есть, не коммутироваться и не оборудоваться защитными устройствами, например, предохранителями или автоматическими выключателями.

В ВЛ до 1-го кВ, используемых в системах с глухозаземленной нейтралью, нулевые провода прокладываются на опорах, как и фазные. В местах, где делается отвод от ЛЭП, а также через каждые 200,0 метров магистрали, положено повторно заземлять нулевые линии.

Пример устройства сети TN-C-S

Если от трансформаторных подстанций отводятся кабели к потребителю, то при использовании схемы с глухозаземленной нейтралью, длина такой магистрали не может превышать 200,0 метров. На вводных РУ также следует подключать шину РЕ к контуру заземления, что касается нулевого провода, то необходимость в его подключении к «земле» зависит от схемы исполнения.

Технические особенности

В данной системе, где используется общая средняя точка, помимо межфазного присутствует и фазное напряжение. Последнее образуется между рабочим нулем и линейными проводами. Наглядно отличие первого от второго продемонстрировано ниже.

Разница между фазным и линейным напряжением

Разность потенциалов UF1, UF2 и UF3 принято называть фазными, а величины UL1, UL2 и UL3 – линейными или межфазными. Характерно, что UL превышает UF примерно в 1,72 раза.

  • В идеально сбалансированной сети трехфазного электрического тока должны выполняться поддерживаться следующие соотношения:
  • UF1= UF2=UF3;
  • UL1=UL2=UL3.

На практике добиться такого результата невозможно по ряду причин, например из-за неравномерной нагрузки, токов утечки, плохой изоляции фазных проводников и т.д. Когда нейтраль заземлена, дисбаланс линейных и фазных характеристик энергосистемы существенно снижается, то есть, рабочий ноль позволяет выравнивать потенциалы.

Обрыв нулевого провода считается серьезной аварией, которая с большой вероятностью приведет к нарушению симметрии нагрузки, более известной под термином «перекос фаз».

В таких случаях в сетях однофазных потребителей произойдет резкое увеличение амплитуды электрического тока, что с большой вероятностью выведет из строя оборудование, рассчитанное на напряжение 220 В.

Получить более подробную информацию о перекосе фаз и способах защиты от него, можно на страницах нашего сайта.

Принцип действия сетей с глухозаземленной нейтралью

Теперь рассмотрим подробно, с какой целью заземляется нейтраль и как подобная реализация обеспечивает должный уровень электробезопасности, для этого перечислим обстоятельства, которые могут привести к поражению электротоком:

  • Непосредственное прикосновение к токоведущим элементам. В данном случае никакое заземление не поможет. Необходимо ограничивать доступ к таким участкам и быть внимательным при приближении к ним.
  • Образование зон с шаговым напряжением в результате аварий на ВЛ или других видах электрохозяйства.
  • Повреждения внутренней изоляции может привести к «пробою» на корпус электроустановки, то есть, на нем появляется опасное для жизни напряжение.
  • В результате нарушения электроизоляции токоведущих линий под напряжением могут оказаться кабельные каналы, короба и другие металлические конструкции, используемые при трассировке.

В идеале между нейтралью и землей разность потенциалов должна стремиться к нулю.

Подключение к заземляющему контуру на вводе потребителя существенно способствует выполнению этого условия, в тех случаях, когда ТП находится на значительном удалении.

При правильной организации заземления такая особенность может спасти человеческую жизнь, как минимум, в двух последних случаях из указанного выше списка.

ЭТО ИНТЕРЕСНО:  Как определяется сила электрического тока

Чтобы избежать пагубного воздействия электротока необходимо заземлять корпуса электроприборов, а также и других металлических частей электроустановок зданий. Это приведет к тому, что при «пробое» возникнет замыкание фазы на землю. В результате произойдет автоматическое отключение снабжения питанием электроприемников, вызванное срабатыванием устройства защиты от токов КЗ.

Даже если защита не сработает, а кто-либо прикоснется к металлическому элементу, все равно ток будет течь по заземляющему проводнику, поскольку в этой цепи будет меньшее сопротивление.

Движение тока при КЗ на корпус

Говоря о принципе работы защиты заземленной нейтрали нельзя не отметить быстрый выход в аварийный режим, когда один из фазных проводов замыкается на шину PEN. По сути, это КЗ на нейтраль, следствием которого является резкое возрастание тока, приводящее к защитному отключению энергоустановки или проблемного участка цепи.

При определенных условиях можно даже организовать защиту от образования опасных зон с шаговым напряжением. Для этого на пол в потенциально опасном помещении стелют (если необходимо, то замуровывают в бетон) металлическую сеть, подключенную к общему заземляющему контуру.

Отличия глухозаземленной нейтрали от изолированной

Чтобы дать объяснить различие необходимо, кратко рассказать об основных особенностях изолированной нейтрали, пример такого исполнения приведен ниже.

Рис. 6. Электроустановка с изолированной нейтралью

Как видно из рисунка при данном способе нейтраль изолирована от контура заземления (в случае соединения обмоток «треугольником» она вообще отсутствует), поэтому открытые проводящие части (далее по тексту ОПЧ) электроустановок заземляются независимо от сети.

Основное преимущество такой системы заключается в том, что при первом однофазном замыкании можно не производить защитное отключение. Это несомненный плюс для высоковольтных линий, поскольку обеспечивается более высокая надежность электроснабжения.

К сожалению, такой режим заземления не удовлетворяет требования электробезопасности для сетей конечных потребителей.

Низкий уровень электробезопасности основной, но не единственный недостаток изолированной нейтрали, с их полным списком, а также другими особенностями этой схемы электроснабжения, можно ознакомиться на нашем сайте.

Системы TN и её подсистемы

Начнем с аббревиатуры. Первые две буквы характеризуют вариант исполнения заземления для нейтрали и ОПЧ соответственно. Варианты для первой литеры:

  • T (от англ. terra — земля) — обозначает глухозаземленную нейтраль.
  • I (от англ. isolate — изолировать) – указывает, что соединение с «землей» отсутствует.

Варианты вторых литер говорят об исполнении заземления ОПЧ: N или Т, используется глухозаземленная нейтраль или независимый контур, соответственно.

Сейчас практикуется три схемы нейтрали:

  1. Эффективное заземление обозначается, как ТТ. Особенность такой схемы заключается в том, что глухозаземленный вывод (N)считается рабочим проводом, а для защиты используется собственный заземляющий проводник (РЕ).
    Схема заземления ТТ
  2. Изолированная нейтраль (принятое обозначение IT), схема системы была представлена выше на рис. 6.
  3. Вариант TN (глухозаземленное исполнение).

У последнего варианта исполнения есть три подвида:

  • Совмещенный вариант, принятое обозначение TN-С. У данного подвида защитный нуль соединен с нейтральным проводом, что не обеспечивает должного уровня электробезопасности. При обрыве РЕ+N защитное зануление становится бесполезным. Это основная причина, по которой от системы TN-C постепенно отказываются.Схема заземления TN-С
  • Вариант TN-S, нулевой и защитный проводники проложены раздельно. Такая схема наиболее безопасна, но для нее требуется использовать не 4-х, а 5-ти жильный кабель, что повышает стоимость реализации.Схема заземления TN-S
  • Подсистема, совмещающая в себе два предыдущих варианта – TN-C-S. От подстанции до ввода потребителя идет один провод, в РУ он подключается к шинам PE, N и заземляющему контуру. Такая подсистема заземленной нейтрали сейчас наиболее распространена.Схема заземления TN-C-S

Требования ПУЭ

В Правилах нормам и требованиям к глухозаземленной посвящена глава 1.7, приведем наиболее значимые выдержки из нее:

  • Для подключения нейтрали к контуру заземления необходимо использовать специальный проводник.
  • При выборе места под заземляющее устройство следует исходить из минимально допустимого расстояния между ним и нейтралью.
  • Если в качестве заземления используется жб конструкция фундамента, то к его армирующему основанию следует подключаться не менее чем в 2-х точках, это гарантирует наиболее эффективную защиту.
  • Сопротивление заземляющего проводника для трехфазной цепи электрической сети 0,4 кВ имеет ограничение 4-е Ома. В исключительных случаях эта норма может быть пересмотрена исходя из характеристик грунта.
  • В линии глухозаземленной нейтрали запрещено устанавливать предохранители, защитные устройства и другие элементы, способные нарушить целостность проводника.
  • Правилами предписывается обеспечить заземляющему проводнику надежную защиту от механических повреждений.
  • ВЛ должна быть оборудована дублирующими заземлителями, они устанавливаются в начале и конце линии, на отводах, а также через каждые 200 м.
  • Дублирующее заземление должно выполняться и на вводе потребителя и обязательно указываться в схеме щитка ВРУ.
  • При организации бытовых однофазных сетей от ВРУ должна выполняться разводка тремя проводами, один из которых фаза, второй – ноль (N) и третий – защитный (РЕ).
  • Скорость срабатывания защитных автоматов, установленных в однофазных сетях с глухозаземленной нейтралью, не должна быть продолжительней 0,40 сек.

Источник: https://orensbyt.ru/elektrooborudovanie/gluhozazemlennaya-nejtral-printsip-dejstviya-ustrojstvo-shemy.html

Системы заземления TN-S, TN-C, TNC-S, TT, IT

В чем различие электрических цепей с изолированной и глухозаземленной нейтралью

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление.

Основные требования к системам заземления содержатся в пункте 1.7 Правил устройства электроустановок (ПУЭ).

В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия.

Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается.

В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель.

Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство.

Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

Виды систем искусственного заземления

Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.

7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК).

Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» — комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора. При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией.

Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется.

На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников.

Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом.

Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток..

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода.

При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют.

Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S

Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века.

При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость.

Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C.

Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали.

Который при входе в здание разветвляется на «PE» — ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Система заземления TT

При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN.

Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N».

На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений. В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг. При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

2. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков.

Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT.

Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование.

При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

ЭТО ИНТЕРЕСНО:  Что такое кинетическая энергия в физике

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное — жизнь человека.

Смотрите также:

  • Вебинары с ведущими экспертами отрасли
  • Все для расчетов заземления и молниезащиты
  • Полезные материалы: статьи, рекомендации, примеры

Источник: https://zandz.com/ru/biblioteka/sistemy_zazemlenieya_TNS_TNC_TNCS_TT_IT.html

Виды распределительных щитов: краткая характеристика и назначение — ООО «УК Энерготехсервис»

Организация инфраструктуры общественных помещений, зданий промышленного производства, жилых домов сегодня не мыслима без электричества. Перед тем как попасть в наши строения, квартиры, предприятия и т.д.

, электроэнергия проходит через распределительный щит, в котором дислоцируется электричество, устанавливается система защиты для обеспечения безопасности в аварийных случаях, будь то короткое замыкание, или перегрузки в сети, а также ставится прибор учета.

  • Каждый, отдельно взятый распределительный щит, различается по конструктивным особенностям и области его применения и монтируется в металлическом или пластмассовом боксе.

Особенности металлических распределительных щитов

Низковольтная установка, применяющаяся с целью обеспечения электроэнергией всего определенного строения или его части, является главным распределительным щитом. Его присутствие необходимо на любых объектах (предприятиях или жилых домах), трансформаторных подстанциях.

Он находится на специальных объектах, где происходит распределение электроэнергии и защита отходящих электролиний от непредвиденных различных ситуаций, таких как перегрузки или короткое замыкание, автоматического ввода (при необходимости) резерва. На его основе устанавливают блок учета потребления электроэнергии.

Основным назначением ВРУ является прием поступающей электроэнергии, затем ее распределение среди пользователей данной энергией, учет ее использования и защита от аварийных ситуаций.

Данный агрегат представляет собой комплекс аппаратов, которые помещены в металлический шкаф со съемными панелями контрольно – измерительных приборов. Это дает возможность рационально использовать материал. Такие устройства различаются по назначению и делятся на:

  • чисто вводные панели;
  • панели распределительные (разбрасывают по потребительским точкам);
  • комбинированные – устройства, выполняющие все три функции.

АВР предоставляет возможность автоматически переключить с основного ввода питание на резервный источник в том случае, когда в сети падает напряжение. Время переключения оговаривается заранее (интервал от 0,1 до 30 секунд).

  1. Данное устройство, в основном, применяется для питания потребителей первой категории (общественные, производственные и коммунально-бытовые помещения).

Предназначения устройства

АВР выполняют различные функции:

  • защитная миссия, предохраняющая линию от перегрузок и короткого замыкания;
  • постоянный контроль над состоянием напряжения в цепи;
  • сигнализация, требующая остановки конкретного агрегата или его запуска;
  • целенаправленный переход на резервный источник, и при восстановлении напряжения, возвращение на главный.
  • В работе устройства применяются две схемы – с единственной рабочей секцией и одной запасной, и двусторонней, при которой обе рабочие линии могут быть и основными, и запасными.

Пункт распределительный осуществляет прием и распределение электроэнергии. Одной из функций ПР является организация безопасности всевозможным установкам при высоком напряжении от перегрузок, коротких замыканий, оперативных переключений в электрической цепи, а также обеспечивает защиту от поражения электрическим током человеку.

  1. Щит бесперебойной подачи дает возможность обеспечивать питанием различные механизмы вычислительной техники, контролирующих систем и сигнализации, медицинского оборудования.

Коммерческий учет электроэнергии в трехфазных сетях выполняется при помощи щита учета, установленных в жилых зданиях, офисах, промышленных объектов. Щит подлежит пломбированию и замыканию на ключ. Чтобы удобнее было снимать показания счетчика, на не установлено специальное окошко.

Задачей осветительных щитов является эффективно управлять конкретными электрическими цепями, при этом защищать их от всевозможных неполадок. Они управляют установками и приборами освещения различных типов и серий.

  • Со всеми видами распределительных щитов можно познакомиться на сайтах, которые предоставят исчерпывающую информацию о распределительных щитах, и предложит яркие и красочные фотографии изделий

Виды щитов

Чтобы скрупулезно выполнить все предъявляемые правила в использовании распределительных щитов в различных условиях, разработчики предложили клиентам три вида этих изделий:

  • щиты наружного пользования;
  • внутренние конструкции;
  • изделия напольные, применяемые внутри помещений и на улице.
  1. Предоставляемая продукция отличается друг от друга уровнем досягаемости, обслуживанием определенного количества потребителей, подключенных к конкретной сети.

Пластиковые щиты

  • На рынке сегодня предоставлен большой ассортимент данных изделий.
  • Щиты из пластика монтируются как внутри помещений, так и снаружи, а благодаря отменной функциональности, сборка занимает намного меньше времени, а монтаж становится более легким.
  • Особенности
  • Внешнее полотно щита остается гладким, кабель проводится на внутренней стороне.
  • Винты пластиковые, поддаются быстрому закручиванию.
  • Дверка сконструирована таким образом, что возможно установить на ней замок, что является дополнительной защитой.
  • Защищенность клемм от лишних касаний.
  • Задняя сторона щита оснащена разметкой крепежных отверстий, что способствует точности и аккуратности сборки.

Монтаж щита

Установку распределительных щитов предпочтительнее доверить высококвалифицированным электрикам, так как данные устройства предназначены выполнять важные функции: обеспечение срабатывающей защиты, четкое управление потребителями и цепями, а также контроль потребляемой энергии. Прежде всего, необходимо выбрать тип распределительного щита – накладной или встраиваемый.

Накладной щит применяется при наружной электропроводке. Крепление производится дюбель -гвоздями, или саморезами. При таком монтаже многие сетуют на не эстетический внешний вид. Можно с этим не согласиться – сегодняшний рынок предоставляет массу аксессуаров в области электричества и его проводки.

Встраиваемый тип помещен в специальной нише, занимает меньше места, подходит для сооружений со скрытой проводкой. При любом типе, вначале следует к месту подключения подвести соответствующие кабели электропроводки.

Этапы работы

Обратите внимание на высоту установки распределительного щита (чтобы было удобно эксплуатировать), его габариты (для размера ниши), а также материал, из которого сделана стена (это нужно для правильного подбора инструментов). Затем поработаем с проводами – подгоним по длине, снимем лишнюю изоляцию. Установим панель электрического щита, протянем подготовленные провода и выполним разводку.

Не забудьте подключить устройство защиты. При работе обязательно нужно соблюдать технику безопасности. Предпочтение отдайте щитам с прозрачной дверцей, так проще контролировать состояние автоматов.

Фото распределительных щитов

Источник: https://xn----dtbchbawj2amueleii7b6i.xn--p1ai/pribory/vidy-raspredelitelnyh-shhitov-kratkaya-harakteristika-i-naznachenie.html

Глухозаземленная нейтраль: принцип действия, устройство, схемы

В подавляющем большинстве электросетей (до 1 кВ) применяется глухозаземленная нейтраль, поскольку такое исполнение наиболее оптимально для действующих требований электробезопасности. Учитывая распространенность этой схемы заземления нейтрали, имеет смысл подробно ознакомиться с ее устройством, принципом работы и техническими особенностями, а также основными требованиями ПУЭ к электроустановкам до 1 кВ.

Рекомендации Рекомендации по проектированию заземления и защитных мер электробезопасности в силовых электроустановках напряжением до 1 кВ промышленных предприятий

МИНИСТЕРСТВО МОНТАЖНЫХ И СПЕЦИАЛЬНЫХ
СТРОИТЕЛЬНЫХ РАБОТ СССР

НАУЧНО ПРОИЗВОДСТВЕННОЕ
ОБЪЕДИНЕНИЕ «ЭЛЕКТРОМОНТАЖ»

ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ВСЕСОЮЗНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТНЫЙ И ПРОЕКТНО-КОНСТРУКТОРСКИЙ ИНСТИТУТ

ПО КОМПЛЕКСНОЙ ЭЛЕКТРИФИКАЦИИ ПРОМЫШЛЕННЫХ ОБЪЕКТОВ

ТЯЖПРОМЭЛЕКТРОПРОЕКТ

РЕКОМЕНДАЦИИ
ПО ПРОЕКТИРОВАНИЮ ЗАЗЕМЛЕНИЯ И ЗАЩИТНЫХ МЕР ЭЛЕКТРОБЕЗОПАСНОСТИ В СИЛОВЫХ ЭЛЕКТРОУСТАНОВКАХ НАПРЯЖЕНИЕМ ДО 1 кВ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ

МОСКВА 1989

СОГЛАСОВАНО:Начальник техническогоотделаЛ.Б. Годгельф Главный инженер институтаМ.Г. ЗименковНачальник отделапромышленных установокБ.А. ЛесковОтветственный исполнительО.А. Шаблинская

СОДЕРЖАНИЕ

ПРЕДИСЛОВИЕ

При проектировании электротехнической части любого предприятия решаются вопросы выбора защитных мер электробезопасности для обслуживающего персонала от поражения его электрическим током.

Вопрос электробезопасности обслуживания электроустановок имеет первостепенное значение и рассматривается в ПУЭ в отдельных его главах и в специальной главе 1.7. «Заземление и защитные меры электробезопасности».

Защитные меры электробезопасности должны быть выполнены в полном объеме, предусмотренном в ПУЭ.

Настоящие Рекомендации составлены в соответствии с главой 1.7. и другими главами ПУЭ шестого издания и имеют своей целью помочь проектировщикам представить объем работ по защитным мерам электробезопасности при проектировании электротехнической части силового электрооборудования напряжением до 1 кВ промышленных предприятий, что особенно важно для молодых специалистов.

В Рекомендациях рассматриваются вопросы защитных мер электробезопасности для электроустановок до 1 кВ. Защитные меры электробезопасности для электроустановок выше 1 кВ рассмотрены только в той части, где они влияют на выполнение защитных мер электробезопасности электроустановок до 1 кВ.

В Рекомендациях не рассматриваются вопросы защитных мер электробезопасности для электроприемников электроосвещения, а также для молниезащиты зданий и сооружений.

Теоретические вопросы, касающиеся физической суности явлений, связанных с защитными мерами электробезопасности в электроустановках до 1 кВ промышленных предприятий приведены в работе «Заземление и зануление в электроустановках до 1000 В», Свердловское отделение ВНИПИ Тяжпромэлектропроект, С475-2, Свердловск, 1985.

Рабочая документация электротехнической части должна содержать подробное описание защитных мер с помощью которых обеспечивается электробезопасность. Замыкание поврежденной фазы может быть на корпус электрооборудования, непосредственно на землю и на различные металлические части.

1. ОБЩАЯ ЧАСТЬ

1.1. При проектировании электротехнической части промышленного предприятия решаются вопросы защитных мер электробезопасности для обслуживающего персонала, т.е. принимаются меры для защиты людей от поражения электрическим током.

1.2. Для правильного решения, какие конкретно защитные меры электробезопасности должны быть приняты для электроустановок в зданиях и наружных электроустановок промышленного предприятия необходимо:

1.2.1. Определить все помещения здания согласно ПУЭ, главе 1.1 в отношении опасности поражения людей электрическим током, которые классифицируются как:

1) помещения без повышенной опасности;

2) помещения с повышенной опасностью;

3) особо опасные помещения;

4) наличие наружных электроустановок;

5) наличие взрывоопасных зон в помещениях и в наружных электроустановках.

1.2.2. Знать, какие электроустановки и электрические сети (режимы нейтралей и величины токов замыкания на землю) имеются в здании, так как в зависимости от этого определяются конкретные меры электробезопасности, которые надо принимать, а именно:

1) электроустановки до 1 кВ, сеть с изолированной нейтралью;

2) электроустановки до 1 кВ, сеть с глухозаземленной нейтралью;

3) электроустановки выше 1 кВ, сеть с изолированной нейтралью;

4) электроустановки выше 1 кВ, сеть с эффективно заземленной нейтралью.

1.2.3. Для здания, в котором размещено распределительное устройство (РУ) 6-10 кВ, принимающее электроэнергию от ГПП на промышленное предприятие, или расположены трансформаторные подстанции, принимающие непосредственно электроэнергию на промышленное предприятие, выяснить какую электрическую сеть имеет электроустановка выше 1 кВ ГПП от которой подается питание.

Если на ГПП установлены трансформаторы с обмотками на первичной стороне 110 или 220 кВ и сеть с эффективно заземленной нейтралью, то необходимо знать, имеется ли металлическая связь между ГПП и зданием, принимающим от ГПП электроэнергию.

Такая связь может быть:

1) через металлические оболочку и броню питающих кабелей;

2) через металлические трубопроводы различного назначения;

3) через кабельные конструкции по которым проложены питающие кабели.

Через металлические связи будут соединены заземляющие устройства ГПП и здания, принимающего электроэнергию, и может быть вынос высокого потенциала в здание промышленного предприятия на время срабатывания защиты от однофазных КЗ на землю в сети 110 или 220 кВ ГПП.

1.2.4. Вынос потенциала — распространение за пределы электроустановки по естественным или искусственным заземлителям или по заземляющим проводникам напряжения относительно зоны нулевого потенциала, при котором возможное напряжение прикосновения превышает допустимые значения по ГОСТ 12.1.038-82. «Предельно допустимые уровни напряжений прикосновения и токов».

Зона нулевого потенциала — зона земли, расположенная за пределами зоны растекания тока замыкания на землю, в которой электрический потенциал, обусловленный током замыкания на землю условно принят равным нулю.

1.2.5. Если возможен вынос высокого потенциала в здание промышленной установки необходимы меры по его выравниванию снаружи этого здания.

Внутри здания выравнивание потенциалов обеспечивается наличием разветвленной сети заземления и зануления, а также большого числа электрически связанных между собой и с сетью заземления и зануления металлических частей строительного и производственного назначения, трубопроводов и т.д. Чем более насыщено здание оборудованием, тем эффективнее осуществляется выравнивание потенциалов.

Если даже исключен вынос потенциала с заземляющего устройства ГПП с эффективно заземленной нейтралью, но расстояние между заземлителями здания промышленного предприятия и заземлителями ГПП менее 20 м (см. п. 6.1 Рекомендаций) надо предусматривать выравнивание потенциалов (заземлители здания промышленного предприятия подвержены влиянию заземляющего устройства ГПП).

1.3. Возможные защитные меры электробезопасности:

1) заземление;

2) зануление;

3) выравнивание потенциалов;

4) уравнивание потенциалов;

5) защитное отключение;

6) разделяющий трансформатор (защитное разделение сети);

7) двойная или усиленная изоляция:

8) малое напряжение.

1.4. Основными защитными мерами электробезопасности на промышленных предприятиях является заземление или зануление корпусов электрооборудования, выравнивание и уравнивание потенциалов.

1.5. Заземление или зануление корпусов электрооборудования следует выполнять:

1.5.1. В помещениях без повышенной опасности — при напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока.

1.5.2. В помещениях с повышенной опасностью, особо опасных и наружных электроустановках — при напряжении выше 42 В переменного тока и выше 110 В постоянного тока.

1.5.3. Во взрывоопасных зонах в помещениях и в наружных электроустановках — при всех напряжениях переменного и постоянного тока.

1.5.4. В пожароопасных зонах всех классов в помещениях — с учетом классификации помещения в отношении опасности поражения электрическим током по п. 1.2.1. Рекомендаций в котором находится пожароопасная зона.

1.5.5. В пожароопасных зонах наружных электроустановок согласно п. 1.5.2. Рекомендаций.

1.6. Для электроустановок до 1 кВ в сети с изолированной нейтралью, а также для электроустановок выше 1 кВ в сети с изолированной нейтралью в качестве защитной меры электробезопасности принимается защитное заземление, т.е. преднамеренное соединение с землей корпусов электрооборудования, нормально не находящихся под напряжением.

Назначение защитного заземления — создание преднамеренного соединения (заземляющего устройства) с такой величиной сопротивления между корпусом электрооборудования и землей, при котором через тело человека при его прикосновении к корпусу электрооборудования, оказавшемуся под напряжением, будет проходить ток, не угрожающий жизни и здоровью человека (человек присоединяется к соединению параллельно).

1.7. Для электроустановок до 1 кВ в сети с глухозаземленной нейтралью в качестве защитной меры электробезопасности применяется зануление, т.е. преднамеренное соединение корпусов электрооборудования, нормально не находящихся под напряжением, с глухозаземленной нейтралью питающего трансформатора.

Назначение зануления — при замыкании поврежденной фазы на корпус электрооборудования или на нулевой защитный проводник создать ток однофазного КЗ такой величины, который будет автоматически отключаться аппаратом защиты, установленном в голове аварийного участка. Цепь для КЗ: петля фаза электроприемника — нуль трансформатора.

ЭТО ИНТЕРЕСНО:  Что такое кинетическая энергия и потенциальная энергия

1.8. Заземляющее устройство — совокупность конструктивно объединенных (электрически) заземлителей и заземляющих проводников.

1.9. Заземлители — проводники, электрически соединенные между собой, находящиеся непосредственно в соприкосновении с землей (создают электрическое соединение с землей).

1.10. Заземляющий проводник — проводник, соединяющий заземлители с заземляемыми частями электроустановки.

В сетях до 1 кВ с изолированной нейтралью и в сетях выше 1 кВ с изолированной нейтралью — заземляющие проводники.

В сетях до 1 кВ с глухозаземленной нейтралью — нулевые защитные проводники. Нулевой защитный проводник — проводник, соединяющий зануляемые части с глухозаземленной нейтралью трансформатора.

1.11. При монтаже заземляющего устройства должны быть выполнены требования СНиП 3.05.06-85 «Электротехнические устройства», раздел «Заземляющие устройства».

1.12. Изолированная нейтраль трансформатора — нейтраль не присоединенная к заземляющему устройству (обмотка, соединенная в треугольник) или присоединенная к нему через устройства, имеющие большое сопротивление (обмотка, соединенная в звезду).

1.13. Глухозаземленная нейтраль трансформатора — нейтраль присоединенная к заземляющему устройству непосредственно или через малое сопротивление, например, через трансформаторы тока (обмотка, соединенная в звезду или зигзаг).

1.14. При невозможности выполнения заземления или зануления, удовлетворяющих гл. 1.7. ПУЭ, или если это представляет значительные трудности по технологическим причинам, допускается обслуживание электрооборудования с изолирующих площадок.

Изолирующие площадки должны быть выполнены таким образом, чтобы прикосновение к токоведущим частям, а также к корпусам электрооборудования было возможно только с площадки. При этом должна быть исключена возможность одновременного прикосновения к выше указанным частям электрооборудования и металлическим частям зданий, сооружений, оборудования, трубопроводам, не относящихся к электроустановкам.

Применение изолирующих площадок для обслуживания электрооборудования — ПУЭ, п. 1.7.45.

Источник: http://www.gostrf.com/normadata/1/4294847/4294847064.htm

В чём разница между заземлением и занулением? электробезопасность. различие между занулением и заземлением

РазноеРазличие между занулением и заземлением

Даже начинающему электрику известно, что для защиты от удара электрическим током при монтаже электропроводки применяется заземление и зануление. Использование не защищенных таким образом линий электропередач может повлечь за собой серьезные последствия, вплоть до летального исхода.

Разницу заземления и зануления между этими понятиями рассмотрим в нашей статье. Для начала следует четко уяснить, что хотя эти методы служат одной цели, а именно обеспечению безопасности, между ними существует ряд принципиальных различий.

Чтобы внести окончательную ясность в этот вопрос, рассмотрим оба метода более подробно, чем же отличаются заземление от зануления?

Что такое заземление и для чего она нужна?

Под заземлением подразумевают металлическую конструкцию, предназначенную для снижения степени напряжения до неопасных для человека параметров. Важнейшей особенностью монтажа является установка системы в местах, обеспечивающих надежную изоляцию нейтрального провода.

Помимо этого, наличие заземления позволяет существенно увеличивать аварийный ток. Необходимость повышения этого параметра связана с тем, что при повышенном сопротивлении заземляющего контура, несмотря на критическое состояние электроприборов тока замыкания в некоторых случаях недостаточно для срабатывания защитных механизмов при этом опасность получения электротравмы сохраняется.

Принципиально, заземляющий контур является системой из нескольких проводников, обеспечивающих соединение токопроводящих элементов оборудования с грунтом. По назначению эти системы можно разделить на три основных типа:

  1. Рабочий тип разработан для обеспечения работоспособности оборудования, как в обычных условиях, так и в условиях непредвиденных ситуаций;
  2. Защитный тип обеспечивает защиту обслуживающего персонала в случае пробоя токоведущих элементов на корпус;
  3. Грозозащитный тип обеспечивает отвод в землю атмосферных электрических разрядов.

Помимо этого, различают искусственное и естественное заземление и зануление. Разница в том что искусственное представляет собой специально изготовленную металлическую рамку. К естественным, можно отнести металлические конструкции, изготовленные для других целей и используемые в качестве заземления.

Что значит зануление?

Зануление как по назначению, так и по основным принципам существенно отличается от заземления. Принцип представляет собой подключение защитного провода к металлическим составляющим конструкции, которые не проводят электрический ток. Возможно также присоединение к нулю, используемому источником напряжения либо к другому заземленному проводу.

Главной задачей заземления и зануления является обеспечение своевременного срабатывания специального защитного оборудования. Принципом работы является провоцирование короткого замыкания в случае пробоя изоляции и других неисправностей в работе электрооборудования. Вследствие использования этих систем, возможно срабатывание таких защитных механизмов:

  • Автоматический выключатель;
  • Система плавких вставок;
  • Инновационные системы защиты.

В чем разница между занулением и заземлением?

Основное различие состоит в различных методах монтажа. Использование для присоединения нулевого провода обеспечивает эффективное использование этого вида защиты для гарантии безопасности как людей, так и техники. При монтаже зануления следует удостовериться, что возникающего в экстренной ситуации тока хватит для 100% срабатывания защитного оборудования.

В случае же недостаточного тока короткого замыкания возможно появление напряжения на составных частях электроприборов, что приводит не только к выходу из строя оборудования, но и существенно повышает риск поражения персонала электрическим током. Из всего вышеизложенного можно сделать следующий вывод:

При появлении напряжения на рабочей поверхности оборудования заземление обеспечивает оперативный отвод тока в землю по специальному заземляющему контуру, в то время как использование зануления не способствует отводу напряжения от поверхности, однако при правильном монтаже обеспечивает разрыв электрической цепи при помощи различных защитных устройств.

Учитывая принципиальное отличие в методах обеспечения электробезопасности, на электрических схемах они обозначаются по-разному.

В чем разница заземления и зануления теперь понятно, остается прояснить некоторые нюансы.

Как обозначаются заземление и зануление на схемах?

Все электротехническое оборудование с присутствующими элементами заземления и зануления нуждается в специальной маркировке. Маркировку наносят на шину в виде букв РЕ с продольными или поперечными полосами желтого или зеленого цветов. Нейтрали маркируются голубой буквой N, подразумевающей заземление или зануление.

Буквами показывают особенности заземляющего контура:

  • Т – обозначает непосредственный контакт земли и источника питания;
  • I – обозначает полную изоляцию токопроводящих элементов от земли.
  • Вторая буква характеризует расположение токопроводящих элементов относительно земли:
  • Т свидетельствует о необходимом заземлении всех элементов находящихся под напряжением;
  • N характеризует защиту открытых частей посредством глухозаземленной нейтрале с непосредственным подключением источника питания.

Между заземлением и занулением, в чем разница, что целесообразнее использовать в зависимости от конкретного оборудования мы рассмотрели. Независимо от выбранного метода защиты, особое значение имеет точность расчетов и внимательность и аккуратность монтажа.

masterok-remonta.ru

Основные отличия

Как первая, так и вторая система защиты выполняет одну и ту же функцию – защита человека от поражения электричеством при прикосновении к оголенному проводу либо электроприбору, на котором происходит утечка тока. Разница лишь в том, что зануление провоцирует моментальное отключение электроэнергии при опасном контакте человека и провода, а заземление мгновенно отводит опасное напряжение на землю. Это и есть их общее отличие друг от друга, если говорить в двух словах.

Если рассматривать вопрос более подробно, то нужно остановиться на том, какой принцип действия у каждого варианта защиты, на основании чего сразу же будет видна разница альтернативных вариантов.

Заземление работает следующим образом: к корпусу опасных электроприборов и бытовой техники подключается заземляющий провод, который идет на соответствующую шину в распределительном щитке.

Оттуда общий земляной провод выходит к главному заземляющему контуру – металлической конструкции, вкопанной в землю рядом с домом (как показано на фото). Если произойдет пробой тока на корпус прибора либо контакт с оголенной токоведущей жилой, опасность минует человека.

Что касается зануления, оно собой представляет соединение корпуса электроприбора с нейтральным проводом сети – нулем. В результате образуется замкнутый контур, как показано на схеме ниже. При возникновении опасной ситуации произойдет короткое замыкание и автоматические выключатели на вводном щитке моментально отключат электроэнергию.Наглядно увидеть разницу между занулением и заземлением Вы можете на данной схеме:

Надеемся, теперь Вам стало понятно, чем отличаются обе защитные системы и что не менее важно – как они работают. Рекомендуем также просмотреть разницу между ними на наглядном видео примере:

Источник: https://les66.ru/raznoe/razlichie-mezhdu-zanuleniem-i-zazemleniem.html

Изолированная нейтраль. Устройство и работа. Применение

Изолированная нейтраль — в процессе передачи, распределения и потребления электрической энергии применяется симметричная 3-фазная система. Такую симметричность можно достичь, приведя в одинаковое положение линейные и фазные напряжения. Поэтому на всех фазах создается равномерная нагрузка по току, равный фазный сдвиг напряжений и токов.

Но при эксплуатации такой системы часто возникают аварийные режимы, приводящие к различным неисправностям проводников. Вследствие этого возникает нарушение симметричности трехфазной системы. Такие нарушения необходимо быстро устранять. На это оказывает большое влияние быстродействие релейной защиты.

Ее правильное функционирование зависит от нейтралей, которые бывают изолированными или глухозаземленными. Каждая из них имеет свои недостатки и преимущества, и используется в соответствующих условиях работы. От технического состояния релейной защиты зависит ее нормальная эксплуатация.

Устройство

Изолированная нейтраль создает режим, который нашел применение в российских энергосистемах для трансформаторов, а также генераторов. Их нейтральные точки не имеют соединения с контуром заземления. В сетях высокого напряжения (от 6 до 10 кВ) нейтральная точка не обязательна, так как обмотки трансформаторов выполнены по схеме треугольника.

По правилам имеется возможность ограничить режим изолированной нейтрали током емкости. Этот ток возникает при замыкании одной фазы.

Ток замыкания можно компенсировать путем использования дугогасящих реакторов в следующих случаях:

  • Более 30 А, напряжение от 3 до 6 кВ.
  • Больше 20 А, напряжение 10 кВ.
  • Ток более 15 А, напряжение от 15 до 20 кВ.
  • Ток больше 10 А, напряжение от 3 до 20 кВ, с опорами линий передач электроэнергии.
  • Все сети питания на напряжение 35 кВ.
  • В группе «генератор-трансформатор» при нагрузке 5 А и напряжении на генераторе от 6 до 20 кВ.

Допускается производить компенсацию тока замыкания на заземляющий контур путем замены ее на заземление нейтрали специальным резистором. В таком случае порядок действия релейной защиты изменится.

Изолированная нейтраль впервые была заземлена в электрических устройствах с небольшой величиной напряжения.

В отечественных сетях питания изолированная нейтраль применяется в:

  • 2-проводных сетях постоянного тока.
  • 3-фазных сетях переменного тока до 1 кВ.
  • 3-фазных сетях от 6 до 35 киловольт при условии допустимого тока замыкания.
  • Низковольтных сетях, имеющих защитные устройства в виде разделяющих трансформаторов, защитной изоляции, для создания безопасных условий человека.

Принцип действия

Изолированная нейтраль применяется в схемах сетей питания в случаях соединения вторичных обмоток трансформаторов по схеме треугольника, а также при невозможности отключения питания при аварии. Поэтому точка нейтрали отсутствует.

https://www.youtube.com/watch?v=RTH_d0DgBoY

Замыкание фазы на землю не считается коротким при схеме сети с изолированной нейтралью, так как нет соединения между землей и проводниками сети. Но это не значит, что не будет тока утечки при замыкании.

Это объясняется тем, что изоляция кабеля – это не абсолютный диэлектрик, как и другие изоляторы, которые имеют некую минимальную проводимость. Чем больше длина линии, тем выше ток утечки. Представим жилу кабеля обкладкой конденсатора. Второй обкладкой будет земля. Воздух и изоляция будет диэлектриком между токоведущими частями без напряжения, и кабелем. Емкость такого воображаемого конденсатора будет тем выше, чем длиннее линия передач.

Сеть с изолированной нейтралью представляет собой цепь замещения, учитывая удельную электроемкость сети и сопротивление изоляции. Это изображено на рисунке.

Такие компоненты цепи создают ток утечки. При различных условиях в таких сетях 380 вольт ток утечки незначителен, и составляет несколько миллиампер. Несмотря на это, такое замыкание приводит к аварии сети, хотя сеть еще может некоторое время работать.

Нельзя забывать, что в аналогичных сетях при замыкании 1-фазы на землю значительно повышается напряжение между землей и исправными фазами. Это напряжение приближается к величине 380 вольт (линейное напряжение). Этот факт может привести к удару электрическим током электротехнических работников.

Также, изолированная нейтраль при замыкании одной фазы на землю способствует пробиванию изоляции и появлению замыкания на других фазах, то есть, может возникнуть межфазное замыкание с большими токами. Чтобы обеспечить защиту в такой ситуации, необходимы плавкие вставки или автоматические выключатели

Двойное замыкание на землю очень опасно для работников, обслуживающих сети. Поэтому, если в сети имеется однофазное замыкание, то такую сеть считают аварийной, так как условия безопасности резко снижаются. Наличие «земли» повышает опасность удара током при касании к элементам под напряжением. Поэтому замыкания даже одной фазы на землю немедленно должны устраняться.

Незначительная величина тока 1-фазного замыкания при изолированной нейтрали является причиной такого фактора, что такое замыкание невозможно отключить предохранителями и автоматами защиты. Поэтому потребуется вспомогательные релейные электроустановки, которые предупредят об аварийном режиме.

Эта система питания требует значительного числа сигнализаций и защитных устройств, а к работникам, которые обслуживают сети, предъявляются высокие квалификационные требования.

Преимущества

Режим изолированной нейтрали обладает достоинством, которое заключается в отсутствии надобности оперативного отключения первого 1-фазного замыкания на землю. В местах неисправности появляется незначительный ток, при условии небольшой емкости тока на заземление.

Изолированная нейтраль применяется ограниченно, так как имеет несколько серьезных недостатков.

Недостатки

  • Сложное обнаружение неисправностей.
  • Все электроустановки требуется изолировать на линейное напряжение.
  • Если замыкание продолжается длительное время, то существует действительная опасность удара человека электрическим током.
  • При 1-фазных замыканиях не обеспечивается нормальное функционирование релейной защиты, так как величина действительного тока замыкания напрямую зависит от работы сети питания, а именно от числа подключенных веток цепи.
  • Снижается срок службы изоляции из-за постепенного накапливания дефектов вследствие воздействия на нее дуговых перенапряжений в течение длительного времени.
  • Повреждения могут появиться в различных местах из-за пробоя изоляции в других местах, где появляются дуговые перенапряжения. Поэтому многие кабели выходят из строя, так же, как электродвигатели и другие электроустановки.
  • Возможно появление дуговых перенапряжений, дуги незначительного тока в местах 1-фазного замыкания на землю.

В результате можно сказать, что значительное число недостатков превосходит все преимущества этого режима. Но при некоторых условиях такой способ вполне проявляет свою эффективность и не нарушает требований правил электроустановок.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/jelektrobezopasnost/izolirovannaia-neitral/

Понравилась статья? Поделиться с друзьями:
Электро Дело
Как проверить тестером 220 вольт

Закрыть
Для любых предложений по сайту: [email protected]