Чему равен косинус фи в трехфазной сети

Коэффициент мощности, что это такое?

Чему равен косинус фи в трехфазной сети

Коэффициент мощности (cos φ — косинус фи) — это отношение активной мощности к полной. Чем ближе это значение к единицы, тем лучше, так как при значении cos φ = 1 — реактивная мощность равна нулю следовательно меньшая потребляемая мощность в целом.

cos φ = P/S

Активная мощность (P)

Измеряется в ваттах Вт

Активная (средняя) мощность — это среднее значение мощности за период.. Активная мощность используется только на активные сопротивления, то есть на выполнения полезной работы.

P = I*U*cos φ 

Активное сопротивление

Как известно сопротивление проводника при переменном токе больше чем при постоянном, в следствии явлений поверхностного эффекта, эффекта близости, возникновение вихревых токов и излучение электромагнитной 

энергии в пространство. Именно поэтому сопротивление  проводника в постоянных цепях называют омическим, а в переменного тока называют активным сопротивлением.

Реактивная мощность (Q)

Измеряется в вар (вольт ампер реактивный)

Реактивная мощность является мерой потребления (или выработки реактивного тока). То есть это мощность которая сначала накапливается во внешней электрической цепи (в индуктивности и ёмкости), а потом отдаваемая обратно в сеть на протяжения 1/4 периода.

Реактивная мощность может быть как положительной так и отрицательной.

Появление реактивной мощности связанно с наличием в цепях индуктивной и ёмкостной нагрузки.

Q = I*U*sin φ 

Реактивная мощность в отличии от активной не расходуется на прямые нужды (преобразование электрической энергии в другие виды энергии). Она как бы не несёт полезной нагрузки, но без неё невозможно осуществление полезной работы. В  настоящий момент прилагается много усилий на уменьшение затрачиваемой реактивной мощности, так как это приводит к уменьшению потребления активной мощности.

Полная мощность (S)

Измеряется в вольт-амперах (BA)

Полная мощность (S) — это произведение действующего напряжения и тока на зажимах цепи. То есть полная мощность это вся мощность затраченная в электрической цепи. Полная мощность складывается из геометрической суммы активной и реактивной мощности.

S = I*U

Источник: https://electrikam.com/koefficient-moshhnosti-chto-eto-takoe/

Коэффициент мощности cos φ: определение, назначение, физический смысл

Чему равен косинус фи в трехфазной сети

Коэффициент мощности – это скалярная физическая величина, показывающая насколько рационально потребителями расходуется электрическая энергия. Другими словами, коэффициент мощности описывает электроприемники с точки зрения присутствия в потребляемом токе реактивной составляющей.

В этой статье мы рассмотрим физическую сущность и основные методы определения cos φ.

Математически cos φ

Математически cos φ определяется как отношение активной мощности к полной или равен отношению косинуса этих величин (отсюда и название параметра).

Величина коэффициента мощности может изменяться в интервале 0 — 1 (либо в диапазоне 0 — 100%). Чем ближе его величина к 1, тем лучше, поскольку при величине cos φ = 1 – потребителем реактивная мощность не потребляется (равняется 0), следовательно, меньше потребляемая полная мощность в общем.

Низкий cos φ указывает на то, что на внутреннем сопротивлении потребителя выделяется повышенная реактивная мощность.

Когда токи / напряжения являются идеальными сигналами синусоидальной формы, то коэффициент мощности составляет 1.

В энергетике для коэффициента мощности используются следующие обозначения cos φ либо λ. В случае если для определения коэффициента мощности используется λ, его значение выражают в %.

Геометрически коэффициент мощности можно изобразить, как косинус угла на векторной диаграмме между током, напряжением между током, напряжением. В связи с чем при синусоидальной форме токов и напряжений величина cos φ совпадает с косинусом угла, от которого отстают эти фазы.

Короткое видео о кратким объяснением, что такое коэффициент мощности:

Повышение коэффициента мощности

Значение коэффициента мощности рассчитывают при проектировании сетей. Поскольку низкое его значение является следствием увеличения величины общих потерь электроэнергии. Для его увеличения в сетях используют различные способы коррекции, повышая его значение до 1.

Повышение cos φ преследует 3 основные задачи:

  1. снижение потерь электроэнергии;
  2. рациональное использование цветных металлов на создание электропроводящей аппаратуры;
  3. оптимальное использование установленной мощности трансформаторов, генератор и прочих машин переменного тока.

Технически коррекция реализуется в виде введения различных дополнительных схем на вход устройств.

Эта техника требуется для равномерного использования мощности фазы, устранения перегрузок нулевого провода 3-х-фазной сети, и является обязательной для импульсных источников питания, установленной мощностью 100 Вт и более.

Помимо этого, компенсация позволяет обеспечить отсутствие всплесков потребляемого тока на пике синусоиды, равномерную нагрузку на питающую линию.

Основные способы коррекции cos φ

1. Коррекция реактивной составляющей мощности производится путём включения реактивного элемента, имеющего противоположное действие. К примеру, для компенсации работы асинхронной машины, обладающей высокой индуктивной реактивной составляющей мощности, в параллель включается конденсатор.

2. Корректировка нелинейности электропотребления. При потреблении тока нагрузкой непропорционально основной гармонике напряжения, для повышения коэффициента мощности в схему вводят пассивный (активный) корректор коэффициента мощности.

Наиболее простым примером пассивного корректора cos φ является дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой. Дроссель производит сглаживание импульсного потребления нагрузки и создание низшей, основной гармоники тока.

3. Корректировка естественным способом, не предусматривающая установку дополнительных устройств, предполагает упорядочение технологического процесса, рациональное распределение нагрузок, ведущее к улучшению режима потребления электроэнергии оборудованием, повышению коэффициента мощности.

Подробное видео с объяснением, что такое cosφ :

Источник: https://pue8.ru/elektrotekhnik/803-koeffitsient-moshchnosti-cos.html

Коэффициент мощности двигателя: определение, способы увеличения «косинуса фи»

Чему равен косинус фи в трехфазной сети

Показатель коэффициента мощности двигателя, который обозначается как «косинус фи», обычно стараются сделать как можно больше. Чем меньше будет значение, тем большую силу должен иметь ток, чтобы выделить в цепи нужную мощность. Если при расчетах в чем-то ошибиться, то неизбежно увеличится потребление электроэнергии, а коэффициент полезного действия при этом, наоборот, уменьшится.

Косинус фи — показатель приборов, работающих от электротока. Это параметр, который характеризует искажения формы переменного тока. Если говорить математическим языком, этот показатель можно охарактеризовать как отношение активной мощности к полной. Чем выше это значение, тем эффективнее устройство расходует электроэнергию.

Для объяснения физического значения коэффициента в пример можно взять расчет других связанных с ним параметров для одного из устройств. Допустим:

  1. В сеть переменного тока был включен идеальный конденсатор.
  2. Поскольку переменное напряжение периодически меняет свою полярность, устройство будет то заряжаться, то вновь возвращать сохраненную энергию к источнику.
  3. В итоге будет происходить циркуляция электронов.

В электросетях с постоянным током мощность, как и другие ключевые параметры, остается неизменной в течение некоторого периода. Для таких случаев применимо понятие мощности, представляющей собой произведение двух важных параметров тока — его силы и напряжения.

Однако это нельзя сказать о токе переменном, ведь его параметры постоянно меняются. Именно поэтому нельзя просто определить значение по той формуле коэффициента мощности, которая используется для ее определения в случае с электросетью с постоянным током.

По этой причине было введено такое понятие, как мгновенная мощность.

Мгновенная мощность

Этот показатель имеет непосредственное отношение к выделению энергии и к механической работе: то есть к тем явлениям, которые имеют инерционный характер. Применяется он исключительно для расчетов. В оценке расчетов различных показателей электрических сетей применяются также действующие значения силы тока и напряжения.

Измерительные приборы, знакомые со школьной скамьи — вольт- и амперметр — предназначены для измерения этих значений. Такой показатель, как полная мощность, по сути представляет собой произведение действующих силы тока и напряжения: достаточно их лишь перемножить.

Этот показатель используют при определении требований электросети. Измеряется не в ваттах, для этого существует специальная единица измерения с названием, которое прямо указывает на то, что именно нужно перемножить для определения значения — вольт-ампер.

Активная и реактивная

С появлением в электросети реактивных элементов начинают происходить изменения. Эти элементы могут накапливать энергию и затем возвращать ее. В итоге образуется так называемая реактивная мощность. Впрочем, она не выполняет никакую полезную работу. Разумеется, возвращается энергия уже с некоторыми потерями, поэтому в любой электросети реактивное значение пытаются свести к минимуму.

Активная мощность — это усредненное значение мгновенной за определенный временной отрезок. Она способна выполнять полезную работу. Для определения полной нужно активную и реактивную возвести в квадрат и затем из суммы этих квадратов извлечь квадратный корень.

Активную можно узнать, перемножив силу тока, напряжение и косинус фи. Если он будет равен единице, то активная мощность будет полностью соответствовать полной. Это будет означать, что потерь энергии нет вообще, и любая работа является полезной.

Коэффициент полезного действия в этом случае будет равен 100%. Случается это лишь на активной нагрузке, в сети, где нет реактивных элементов. Следовательно, при реактивной мощности не выполняется работа, однако, происходят потери, которые имеют обратно пропорциональную зависимость от косинуса фи. Чем ближе значение к единице, тем меньше потеря.

Увеличение значения

Косинус фи можно увеличить либо с помощью специальных компенсирующих устройств, либо без них. Первый способ подразумевает упорядочение процесса, которое улучшает энергетический режим. Определить коэффициент помогают специальные электроизмерительные приборы, называемые фазометрами.

Увеличивая значение косинуса фи в электрике, пытаются достичь трех главных целей:

  1. Таким способом хотят сэкономить электроэнергию.
  2. Увеличение косинуса фи способствует также экономии материала, который используется для изготовления проводников. Это тоже является экономией.
  3. Высокое значение показателя говорит о высоком коэффициенте полезного действия.

Показатель косинус фи обязательно нужно принимать во внимание при создании электросетей. Если он будет недостаточно высоким, это неизбежно приведет к огромным потерям энергии.

Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/moschnost/chto-takoe-koefficient-moschnosti-dvigatelya-ili-kosinus-fi.html

Активная и реактивная мощность. За что платим и работа

Активная и реактивная мощность — потребители электрической энергии на то и потребители, чтобы эту энергию потреблять. Потребителя интересует та энергия, потребление которой идет ему на пользу, эту энергию можно назвать полезной, но в электротехнике ее принято называть активной. Это энергия, которая идет на нагрев помещений, готовку пищи, выработку холода, и превращаемая в механическую энергию (работа электродрелей, перфораторов, электронасосов и пр.).

Кроме активной электроэнергии существует еще и реактивная. Это та часть полной энергии, которая не расходуется на полезную работу. Как понятно из вышесказанного, полная мощность – это активная и реактивная мощность в целом.

В понятиях активная и реактивная мощность сталкиваются противоречивые интересы потребителей электрической энергии и ее поставщиков. Потребителю выгодно платить только за потребленную им полезную электроэнергию, поставщику выгодно получать оплату за сумму активной и реактивной электроэнергии. Можно ли совместить эти кажущиеся противоречивыми требования? Да, если свести количество реактивной электроэнергии к нулю. Рассмотрим, возможно ли подобное, и насколько можно приблизиться к идеалу.

Активная мощность

Существуют потребители электроэнергии, у которых полная и активная мощности совпадают. Это потребители, у которых нагрузка представлена активными сопротивлениями (резисторами). Среди бытовых электроприборов примерами подобной нагрузки являются лампы накаливания, электроплиты, жарочные шкафы и духовки, обогреватели, утюги, паяльники и пр.

Указанная у этих приборов в паспорте, одновременно является активная и реактивная мощность . Это тот случай, когда мощность нагрузки можно определить по известной из школьного курса физики формуле, перемножив ток нагрузки на напряжение в сети. Ток измеряется в амперах (А), напряжение в вольтах (В), мощность в ваттах (Вт). Конфорка электрической плиты в сети с напряжением 220 В при токе в 4,5 А потребляет мощность 4,5 х 220 = 990 (Вт).

Реактивная мощность

Иногда, проходя по улице, можно увидеть, что стекла балконов покрыты изнутри блестящей тонкой пленкой. Эта пленка изъята из бракованных электрических конденсаторов, устанавливаемых с определенными целями на питающих мощных потребителей электрической энергии распределительных подстанциях. Конденсатор – типичный потребитель реактивной мощности.

В отличие от потребителей активной мощности, где главным элементом конструкции является некий проводящий электричество материал (вольфрамовый проводник в лампах накаливания, нихромовая спираль в электроплитке и т.п.). В конденсаторе главный элемент – не проводящий электрический ток диэлектрик (тонкая полимерная пленка или пропитанная маслом бумага).

Реактивная емкостная мощность

Красивые блестящие пленки, что вы видели на балконе – это обкладки конденсатора из токопроводящего тонкого материала. Конденсатор замечателен тем, что он может накапливать электрическую энергию, а затем отдавать ее – своеобразный такой аккумулятор. Если включить конденсатор в сеть постоянного тока, он зарядится кратковременным импульсом тока, а затем ток через него протекать не будет.

Вернуть конденсатор в исходное состояние можно, отключив его от источника напряжения и подключив к его обкладкам нагрузку. Некоторое время через нагрузку будет течь электрический ток, и идеальный конденсатор отдает в нагрузку ровно столько электрической энергии, сколько он получил при зарядке.

Подключенная к выводам конденсатора лампочка может на короткое время вспыхнуть, электрический резистор нагреется, а неосторожного человека может «тряхнуть» или даже убить при достаточном напряжении на выводах и запасенном количестве электричества.

Интересная картина получается при подключении конденсатора к источнику переменного электрического напряжения.

Поскольку у источника переменного напряжения постоянно меняются полярность и мгновенное значение напряжения (в домашней электросети по закону, близкому к синусоидальному).

Конденсатор будет непрерывно заряжаться и разряжаться, через него будет непрерывно протекать переменный ток. Но этот ток не будет совпадать по фазе с напряжением источника переменного напряжения, а будет опережать его на 90°, т.е. на четверть периода.

Это приведет к тому, что суммарно половину периода переменного напряжения конденсатор потребляет энергию из сети, а половину периода отдает, при этом суммарная потребляемая активная электрическая мощность равна нулю. Но, поскольку через конденсатор течет значительный ток, который может быть измерен амперметром, принято говорить, что конденсатор – потребитель реактивной электрической мощности

Вычисляется реактивная мощность как произведение тока на напряжение, но единица измерения уже не ватт, а вольт-ампер реактивный (ВАр). Так, через подключенный к сети 220 В частотой 50 Гц электрический конденсатор емкостью 4 мкФ течет ток порядка 0,3 А. Это означает, что конденсатор потребляет 0,3 х 220 = 66 (ВАр) реактивной мощности – сравнимо с мощностью средней лампы накаливания, но конденсатор, в отличие от лампы, при этом не светится и не нагревается.

Реактивная индуктивная мощность

Если в конденсаторе ток опережает напряжение, то существуют ли потребители, где ток отстает от напряжения? Да, и такие потребители, в отличие от емкостных потребителей, называются индуктивными, оставаясь при этом потребителями реактивной энергии. Типичная индуктивная электрическая нагрузка – катушка с определенным количеством витков хорошо проводящего провода, намотанного на замкнутый сердечник из специального магнитного материала.

На практике хорошим приближением чисто индуктивной нагрузки является работающий без нагрузки трансформатор (или стабилизатор напряжения с автотрансформатором). Хорошо сконструированный трансформатор на холостом ходу потребляет очень мало активной мощности, потребляя мощность в основном реактивную.

Реальные потребители электрической энергии и полная электрическая мощность

Из рассмотрения особенностей емкостной и индуктивной нагрузки возникает интересный вопрос – что произойдет, если емкостную и индуктивную нагрузку включить одновременно и параллельно. Ввиду их противоположной реакции на приложенное напряжение, эти две реакции начнут компенсировать друг друга.

Суммарная нагрузка окажется только емкостной или индуктивной, и в некотором идеальном случае удастся добиться полной компенсации. Выглядеть это будет парадоксально – подключенные амперметры зафиксируют значительные (и равные!) токи через конденсатор и катушку индуктивности, и полное отсутствие тока в объединяющих их общей цепи.

ЭТО ИНТЕРЕСНО:  Для чего нужен нулевой провод

Описанная картина несколько нарушается лишь тем, что не существует идеальных конденсаторов и катушек индуктивности, но подобная идеализация помогает понять суть происходящих процессов.

Вернемся к реальным потребителям электрической энергии. В быту мы пользуемся в основном потребителями чисто активной мощности (примеры приведены выше), и смешанной активно-индуктивной. Это электродрели, перфораторы, электродвигатели холодильников, стиральных машин и прочей бытовой техники.

Также к ним относятся электрические трансформаторы источников питания бытовой радиоэлектронной аппаратуры и стабилизаторов напряжения. В случае подобной смешанной нагрузки, помимо активной (полезной) мощности, нагрузка потребляет еще и реактивную мощность, в итоге полная мощность отказывается больше активной мощности.

Полная мощность измеряется в вольт-амперах (ВА), и всегда представляет собой произведение тока в нагрузке на напряжение на нагрузке.

Таинственный «косинус фи»

Отношение активной мощности к полной называется в электротехнике «косинусом фи». Обозначается cos φ. Это отношение называется также и коэффициентом мощности. Нетрудно видеть, что для случая чисто активной нагрузки, где полная мощность совпадает с активной, cos φ = 1. Для случаев чисто емкостной или индуктивной нагрузок, где нулю равна активная мощность, cos φ = 0.

В случае смешанной нагрузки значение коэффициента мощности заключается в пределах от 0 до 1. Для бытовой техники обычно в диапазоне 0,5-0,9. В среднем можно считать его равным 0,7, более точное значение указывается в паспорте электроприбора.

За что платим?

И, наконец, самый интересный вопрос – за какой вид энергии платит потребитель. Исходя из того, что реактивная составляющая суммарной энергии не приносит потребителю никакой пользы, при этом долю периода реактивная энергия потребляется, а долю отдается, платить за реактивную мощность незачем.

Но бес, как известно, кроется в деталях.

Поскольку смешанная нагрузка увеличивает ток в сети, возникают проблемы на электростанциях, где электроэнергия вырабатывается синхронными генераторами, а именно: индуктивная нагрузка «развозбуждает» генератор, и приведение его в прежнее состояние обходится в затраты уже реальной активной мощности на его «довозбуждение».

Таким образом, заставить потребителя платить за потребляемую реактивную индуктивную мощность вполне справедливо. Это побуждает потребителя компенсировать реактивную составляющую своей нагрузки, а, поскольку эта составляющая в основном индуктивная, компенсация заключается в подключении конденсаторов наперед рассчитанной емкости.

Потребитель находит возможность платить меньше

Если потребителем оплачивается отдельно потребляемая активная и реактивная мощность. Он готов идти на дополнительные затраты и устанавливать на своем предприятии батареи конденсаторов, включаемые строго по графику в зависимости от средней статистики потребления электроэнергии по часам суток.

Существует также возможность установки на предприятии специальных устройств (компенсаторов реактивной мощности), подключающих конденсаторы автоматически в зависимости от величины и характера потребляемой в данный момент мощности. Эти компенсаторы позволяют поднять значение коэффициента мощности с 0,6 до 0,97, т.е. практически до единицы.

Принято также, что если соотношение потребленной реактивной энергии и общей не превышает 0,15, то корпоративный потребитель от оплаты за реактивную энергию освобождается

Что же касается индивидуальных потребителей, то, ввиду сравнительно невысокой потребляемой ими мощности, разделять счета на оплату потребляемой электроэнергии на активную и реактивную не принято. Бытовые однофазные счетчики электрической энергии учитывают лишь активную мощность электрической нагрузки, за нее и выставляется счет на оплату. Т.е. в настоящее время даже не существует технической возможности выставить индивидуальному потребителю счет за потребленную реактивную мощность.

Особых стимулов компенсировать индуктивную составляющую нагрузки у потребителя нет, да это и сложно осуществить технически. Постоянно подключенные конденсаторы при отключении индуктивной нагрузки будут бесполезно нагружать подводящую электропроводку.

За электросчетчиком (перед счетчиком тоже, но за то потребитель не платит), что вызовет потребление активной мощности с соответствующим увеличением счета на оплату, а автоматические компенсаторы дороги и вряд ли оправдают затраты на их приобретение.

Другое дело, что производитель иногда устанавливает компенсационные конденсаторы на входе потребителей с индуктивной составляющей нагрузки. Эти конденсаторы, при правильном их подборе, несколько снизят потери энергии в подводящих проводах, при этом несколько повысив напряжение на подключенном электроприборе за счет уменьшения падения напряжения на подводящих проводах.

Но, что самое главное, компенсация реактивной энергии у каждого потребителя, от квартиры до огромного предприятия, снизит токи во всех линиях электропитания, от электростанции до квартирного щитка. За счет реактивной составляющей полного тока, что уменьшит потери энергии в линиях и повысит коэффициент полезного действия электросистем.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/aktivnaia-i-reaktivnaia-moshchnost/

Реле контроля нагрузки, контроля мощности и cos φ

Реле контроля нагрузки позволяют контролировать различные варианты сбоя в работе промышленного оборудования, имеющего своим основным элементов двигатель или насос. Для этого реле контроля подключается в цепь питания электродвигателя, измеряет активную мощность или коэффициент мощности (cos φ) и осуществляет управляющее воздействие при выходе контролируемых значений за предустановленные пороги срабатывания.

Реле контроля мощности и коэффициента мощности cos φ не контролируют параметры цепи питания, как реле контроля фаз. Для вычисления активной мощности или коэффициента мощности необходимо измерить величину напряжения и ток по одной из фаз цепи питания электродвигателя, это может быть однофазная или трехфазная нагрузка. Выводы о работе и состоянии двигателя, делаются на основе контроля за показаниями изменения потребляемой мощности во время работы с помощью реле.

Варианты контроля нагрузки:

  • Реле активной мощности — реле контроля потребляемой активной мощности однофазными и трехфазными нагрузками в сетях переменного тока, позволяют уверенно контролировать как ситуацию перегрузки, так и ситуацию недогрузки. 
  • Реле коэффициента мощности — реле контролирующее фазовое смещение между током и напряжением и анализирует cos-φ, что позволяет уверенно определять только ситуацию недогрузки или перегрузки, при существенном изменении коэффициента мощности в этом случае.
  • Реле контроля тока позволяют уверенно определять только ситуацию перегрузки, во время скачка тока.

Как измерить коэффициент мощности:

Измерить коэффициент мощности можно косвенными методами. 

В однофазной сети косинус фи можно определить по показаниям амперметра, вольтметра и ваттметра по формуле:

cos φ = P / (U х I),где

Р, U, I — показания приборов.

в цепи трехфазного тока

cos φ = Pw / (√3 х Uл х Iл)

где Pw — мощность всей системы, Uл, Iл — линейные напряжение и ток, измеренные вольтметром и амперметром.

В симметричной трехфазной цепи значение косинус фи можно определить из показаний двух ваттметров Pw1 и Pw2 по формуле:

Общая относительная погрешность рассмотренных методов равна сумме относительных погрешностей каждого прибора, поэтому точность косвенных методов невелика.

Численное значение косинус фи зависит от характера нагрузки. Если нагрузкой являются лампы накаливания и нагревательные приборы, то косинус фи = 1, если нагрузка содержит еще и асинхронные электродвигатели, то косинус фи < 1. При изменении нагрузки электродвигателя его косинус фи существенно изменяется (от 0,1 на холостом ходу до 0,86 - 0,87 при номинальной нагрузке), изменяется и косинус фи сетей.

Поэтому на практике в электрических сетях определяют так называемый средневзвешенный коэффициент мощности за какое-то определенное время, допустим, за сутки или месяц. Для этого в конце рассматриваемого периода снимают показания счетчиков активной и реактивной энергии Wa и Wv и определяют средневзвешенное значение коэффициента мощности по формуле:

Это значение средневзвешенного коэффициента мощности желательно иметь в электрических сетях равным 0,92 — 0,95.

Для измерения cos φ (косинуса фи) используют фазометры, позволяющие измерить непосредственно фазовый сдвиг между напряжением и током нагрузки.

Фазометр — электроизмерительный прибор, предназначенный для измерения углов сдвига фаз между двумя изменяющимися периодически электрическими колебаниями.

Электродинамические фазометры в которых неподвижная катушка включена последовательно с нагрузкой, а подвижные катушки — параллельно нагрузке, так, что ток одной из них отстает от напряжения на угол β1. Для этого последовательно с катушкой включена активно-индуктивная нагрузка, а ток другой опережает напряжение на некоторый угол β2, для чего включена активно-емкостная нагрузка, причем β1 + β2 = 90о

Угол отклонения стрелки такого прибора зависит только от значения косинуса фи.

Цифровые фазометры для измерения фазового сдвига между двумя напряжениями.

В цифровых фазометрах прямого преобразования для измерения фазового сдвига его преобразуют в интервал времени и измеряют последним. Исследуемые напряжения подают на два входа прибора, на цифровом отсчетном устройстве прибора снимают показания числа импульсов, поступающих на счетчик прибора за один период исследуемых напряжений, которое соответствует фазовому сдвигу в градусах (или в долях градуса).

Из щитовых приборов, предназначенных для измерения, наиболее простой фазометр типа Д31, который может работать в однофазных сетях переменного тока с частотой 50, 500, 1000, 2400, 8000 Гц. Класс точности 2,5. Пределы измерений косинуса фи от 0,5 емкостного фазового сдвига до 1 и от 1 до 0,5 индуктивного фазового сдвига. Фазометры включают через измерительные трансформаторы тока с вторичным током 5 А и измерительные трансформаторы напряжения с вторичным напряжением 100 В.

Для измерения косинуса фи в трехфазной сети при симметричной нагрузке можно применять щитовые фазометры типа Д301. Класс их точности 1,5. Последовательные цепи включают на ток 5 А непосредственно, а также через трансформатор тока, параллельные цепи включают непосредственно на 127, 220, 380 В, а также через измерительные трансформаторы напряжения.

Диапазоны измерения параметров реле:

Для двигателей небольшой мощности измерение параметров можно проводить напрямую в следующих диапазонах:

  • диапазон измерения тока до 10А, двигатель до ~4.7кВт
  • диапазон измерения тока до 12А, двигатель до ~5.7кВт
  • диапазон измерения тока до 16А, двигатель до ~7,5кВт

для расширения диапазона измерения используются трансформаторы тока.

Источник: http://vserele.ru/article/rele-kontrolya-nagruzki-kontrolya-moshchnosti-cos-f

Коэффициент мощности, формула и примеры

Средняя мощность переменного электрического тока , выражаемая через действующие значения силы тока (I) и напряжение (U) равна:

где — действующее (эффективное) значение силы тока, — амплитуда силы тока, — действующее (эффективное) значение напряжения, — амплитуда напряжения.

Коэффициент мощности используют для характеристики потребителя переменного тока как реактивную составляющую нагрузки. Величина этого коэффициента отражает сдвиг фазы () переменного тока, который течет через нагрузку, по отношению к приложенному к нагрузке напряжению. Из выражения (1) видно, что по величине коэффициент мощности равен косинусу от этого сдвига. Если сила тока отстает от напряжения, то сдвиг фаз считают большим нуля, если обгоняет, то

Практическое значение коэффициента мощности

На практике коэффициент мощности стараются сделать максимально большим. Так как при малом для выделения в цепи необходимой мощности надо пропускать ток большой силы, а это приводит к большим потерям в подводящих проводах (см. закон Джоуля — Ленца).

Коэффициент мощности учитывают при проектировании электрических сетей. Если коэффициент мощности является низким, это приводит к росту части потерь электрической энергии в общей сумме потерь. Для увеличения данного коэффициента применяют компенсирующие устройства.

Ошибки при расчетах коэффициента мощности ведут к повышенному потреблению электрической энергии и уменьшению коэффициента полезного действия оборудования.

Коэффициент мощности измеряют фазометром.

Способы расчета коэффициента мощности

Коэффициент мощности рассчитывают как отношение активной мощности (P) к полной мощности (S)

где — реактивная мощность.

Коэффициент мощности для трехфазного асинхронного двигателя вычисляют при помощи формулы:

Коэффициент мощности можно определить, используя, например треугольник сопротивлений (рис.1а) или треугольник мощностей (рис.1b).

Треугольники на рис. 1(a и b) подобны, так как из стороны пропорциональны.

Единицы измерения

Коэффициент мощности — безразмерная физическая величина.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Источник: http://ru.solverbook.com/spravochnik/koefficienty/koefficient-moshhnosti/

Коэффициент мощности косинус фи — наглядное объяснение простыми словами

Многие из вас наверняка видели на электроинструментах, двигателях, а также люминесцентных лампах, лампах ДРЛ, ДНАТ и других, такие надписи как косинус фи — cos ϕ.

Однако люди далекие от электротехники и позабывшие школьные уроки физики, не совсем понимают, что же означает данный параметр и зачем он вообще нужен.
Давайте рассмотрим и объясним этот косинус, как можно более простыми словами, исключая всякие непонятные научные определения, типа электромагнитная индукция. В двух словах про него конечно не расскажешь, а вот в трех можно попробовать.

Когда ток отстает от напряжения

Предположим перед вами есть 2 проводника. Один из этих проводников имеет потенциал. Не суть важно какой именно — отрицательный (минус) или положительный (плюс).

У другого провода вообще нет никакого потенциала. Соответственно между этими двумя проводниками будет разность потенциалов, т.к. у одного он есть, а у другого его нет.

Эту разность потенциалов как раз таки и принято называть напряжением.

Если вы соедините кончики двух проводов не непосредственно между собой, а через лампочку накаливания, то через ее вольфрамовую нить начнет протекать ток. От одного провода к другому.
На первый взгляд может показаться, что лампочка загорается моментально. Однако это не так. Ток проходя через нить накала, будет нарастать от своего нулевого значения до номинального, какое-то определенное время.

В какой-то момент он его достигает и держится на этом уровне постоянно. То же самое будет, если подключить не одну, а две, три лампочки и т.д.

А что случится, если вместе с лампой последовательно включить катушку, намотанную из множества витков проволоки?

Изменится ли как-то процесс нарастания тока? Конечно, да.

Данная катушка индуктивности, заметно затормозит время увеличения тока от нуля до максимума. Фактически получится, что максимальное напряжение (разность потенциалов) на лампе уже есть, а вот ток поспевать за ним не будет.

Его нарастание слишком медленное. Из-за чего это происходит и кто виноват? Виноваты витки катушки, которые оказывают влияние друг на друга и тормозят ток.

Если у вас напряжение постоянное, например как в аккумуляторах или в батарейках, ток относительно медленно, но все-таки успеет дорасти до своего номинального значения.

А далее, ток будет вместе с напряжением идти, что называется «нога в ногу».

А вот если взять напряжение из розетки, с переменной синусоидой, то здесь оно не постоянно и будет меняться. Сначала U какое-то время положительная величина, а потом — отрицательная, причем одинаковое по амплитуде. На рисунке это изображается в виде волны.

Эти постоянные колебания не дают нашему току, проходящему сквозь катушку, достигнуть своего установившегося значения и догнать таки напряжение. Только он будет подбираться к этой величине, а напряжение уже начинает падать.

Поэтому в этом случае и говорят, что ток отстает от напряжения.

Причем, чем больше в катушке намотано витков, тем большим будет это самое запаздывание.

Как же это все связано с косинусом фи — cos ϕ?

Что такое коэффициент мощности

А связано это таким образом, что данное отставание тока измеряется углом поворота. Полный цикл синусоиды или волны, который она проходит от нуля до нуля, вместив в себя максимальное и минимальное значение, измеряется в градусах. И один такой цикл равен 360 градусов.

А вот угол отставания тока от напряжения, как раз таки и обозначается греческой буквой фи. Значение косинуса этого угла опаздывания и есть тот самый cos ϕ.

Таким образом, чем больше ток отстает от напряжения, тем большим будет этот угол. Соответственно косинус фи будет уменьшаться.

По научному, ток сдвинутый от напряжения называется фазовым сдвигом. При этом почему-то многие уверены, что синусоида всегда идеальна. Хотя это далеко не так.

В качестве примера можно взять импульсные блоки питания.

Не идеальность синусоиды выражается коэфф. нелинейных искажений — КНИ. Если сложить две эти величины — cos ϕ и КНИ, то вы получите коэффициент мощности.

Однако, чтобы все не усложнять, чаще всего под понятием коэфф. мощности имеют в виду только лишь один косинус фи.

ЭТО ИНТЕРЕСНО:  Какой кабель на 7 квт

На практике, данный коэффициент мощности рассчитывают не при помощи угла сдвига фаз, а отношением активной мощности к полной.

Активная и реактивная мощность

Существует такое понятие как треугольник мощностей. Сам косинус — это тригонометрическая функция, которая и появилась при изучении свойств прямоугольных треугольников.

Она здорово помогает производить определенные вычисления с ними. Например, наглядно показывает отношение длин прилежащего катета (P-активная мощность) к гипотенузе (S-полная мощность).

То есть, зная угол сдвига, можно узнать, сколько активной мощности содержится в полной. Чем меньше этот угол, тем меньше реактивной составляющей находится в сети, и наоборот.
Только не путайте cos ϕ с КПД. Это разные понятия. Реактивная составляющая не расходуется, а «возвращается» на подстанцию в сеть, т.е. фактически потери ее нет. Только небольшая ее часть может тратиться на нагрев проводов.

В КПД все более четко — полезная мощность используется на нагрев — охлаждение — механическую работу, остальное уходит безвозвратно. Эта разница и показывается в КПД.

Более подробно, с графиками, рисунками и простыми словами, без особых научных формулировок обо всем этом говорится в ролике ниже.

Низкий коэффициент мощности и его последствия

Рассмотренное запаздывание тока относительно напряжения — это не хорошее явление. Как оно может сказаться на ваших лампочках или проводке?

  • во-первых, это повышенное потребление электроэнергии

Часть энергии будет просто «болтаться» в катушке, при этом не принося никакой пользы. Правда не пугайтесь, ваш бытовой счетчик реактивную энергию не считает и платить вы за нее не будете.

Например, если вы включите в розетку инструмент или светильник с полной мощностью 100Ва, на блоке питания которого будет указано cos ϕ=0,5. То прибор учета накрутит вам только на половину от этой величины, то есть 50Вт.

Зато по проводам питания будет проходить вся нагрузка, разогревая их бесполезной работой.

  • величина тока в проводке увеличится

Вот известное наглядное видео, демонстрирующее последствия этого для проводки.

  • для эл.станций и трансформаторов оно вредно перегрузкой

Казалось бы, выбрось катушку и вся проблема исчезнет. Однако делать этого нельзя.

В большинстве светильников, лампы работают не отдельно, а в паре с источниками питания. И в этих самых источниках, как раз таки присутствуют разнообразные катушки.

Катушки просто необходимы как функциональная часть всей схемы и избавиться от них не получится. Например в тех же дроссельных лампах ДРЛ, ДНАТ, люминесцентных и т.п.

Поэтому характеристика коэфф. мощности, здесь больше относится к блоку питания, нежели к самой лампе. Данный cos ϕ может принимать значение от ноля до единицы.

Ноль означает, что полезная работа не совершается. Единица — вся энергия идет на совершение полезной работы.

Чем выше коэффициент мощности, тем ниже потери электроэнергии. Вот таблица косинуса фи для различных потребителей:

Как измерить коэффициент мощности

Если вы не знаете точный коэфф. мощности своего прибора, или его нет на бирке, можно ли измерить косинус фи в домашних условиях, не прибегая к различным формулам и вычислениям? Конечно можно.

Для этого достаточно приобрести широко распространенный инструмент — цифровой ваттметр в розетку.

Подключая любое оборудование через него, можно легко без замеров и сложных вычислений, узнать фактический cos ϕ.

Зачастую, фактические данные могут быть даже точнее, чем написанные на шильдике, которые рассчитаны для идеальных условий.

Если он слишком низкий, что делать, чтобы привести его значение как можно ближе к единице? Можно это дело определенным образом компенсировать. Например, с помощью конденсаторов.

Однако это тема совсем другой статьи.

Источник: https://svetosmotr.ru/koeffitsient-moshhnosti-kosinus-fi-naglyadnoe-obyasnenie/

Что такое коэффициент мощности

При проектировании электрических сетей для расчета различных значимых показателей используют коэффициенты. В частности, электрику необходимо знать, что такое коэффициент мощности (косинус фи), с опорой на какие параметры определяют его значение, и в чем его физический смысл.

Фазометр – прибор для определения коэффициента

Что такое коэффициент мощности (косинус фи)

Что такое коэффициент мощности? В электротехнике косинус фи – это параметр, характеризующий потребителя электротока в роли реактивного компонента сетевой нагрузки. Этот показатель, равный косинусу от сдвига фазы относительно прикладываемого напряжения, используется только применительно к переменному току. В случае отставания его от напряжения значение сдвига считается положительным, в обратной ситуации – отрицательным.

Формула коэффициента мощности

Отношение, выражающее коэффициент, считается по следующей формуле:

cos φ f = P/UI,

где Р – усредненная мощность переменного тока, U и I – эффективные показатели, соответственно, напряжения и силы электротока.

Практическое значение

Что такое измерение сопротивления изоляции и почему это важно

В электроэнергетике при проектировании сетей cos коэффициент фи стремятся повысить как можно больше.

Соотношение cos угла fi подразумевает, что в случае его малого показателя для обеспечения нужной мощности цепи потребуется использовать электрический ток очень большой силы.

Существует корреляция между применением высокого тока и потерями энергии в подводящих кабелях: если показания электросчетчика заметно выше ожидаемых, всегда проверяют правильность расчетов угла фи.

Показатель может быть выяснен с помощью специального прибора – фазометра. При недостаточности коэффициента в дело идут усилители и другие установки, призванные скомпенсировать энергетические потери. Если угол фи рассчитан неправильно, будут иметь место снижение эффективности работы электрооборудования и рост энергопотребления.

Сдвиг фаз между напряжением и током

Что такое электрическое сопротивление

Фазовый сдвиг – показатель, описывающий разность исходных фаз двух параметров, имеющих свойство меняться во времени с одинаковыми скоростями и периодами. Именно сдвиг между силой и напряжением определяет, сколько будет значение угла фи.

В радиотехнической промышленности используются цепочки для получения асинхронного хода. Одна RC-цепь создает 60-градусный сдвиг, для получения 180-градусного для трехфазной структуры организуют последовательное соединение трех цепочек.

При трансформации электродвижущей силы во вторичных обмотках прибора для всех вариаций тока ее значение идентично по фазе таковому для первичной обмотки. Если обмотки трансформатора включить в противофазе, значение напряжения получает обратный знак. Если напряжение идет по синусоиде, происходит сдвиг на 180 градусов.

В простом случае (к примеру, включение электрического чайника) фазы двух показателей совпадают, и они в одно и то же время достигают пиковых значений. Тогда при расчете потребительской мощности применять угол фи не требуется.

Когда к переменному току подключен электродвигатель с составной нагрузкой, содержащей активный и индуктивный компоненты (двигатель стиральной машинки и т.д.), напряжение сразу подается на обмотки, а ток отстает вследствие действия индуктивности. Таким образом, между ними возникает сдвиг.

Если индуктивный компонент (обмотки) подменен использованием достижений химии в виде емкостного аккумулятора, отстающей величиной, напротив, оказывается напряжение.

Косинус фи не следует путать с другим показателем, рассчитываемым для комплексных нагрузок, – коэффициентом демпфирования. Он широко используется в усилителях мощности и равен частному номинального сопротивлению прибора и выходному – усилка.

Треугольник мощностей

Рассматриваемый коэффициент может быть измерен так же, как частное полезного активного значения мощности к общей (S=I*U). Для иллюстрации влияния фазового сдвига на косинус фи применяется прямоугольный треугольник мощностей.

Катеты, образующие прямо угол, представляют реактивное и активное значение, гипотенуза – общее. Косинус выделенного угла равен частному активной и общей мощностей, то есть он является коэффициентом, демонстрирующим, какой процент от полной мощности требуется для нагрузки, имеющей место в данный момент.

Чем меньший вес имеет реактивный компонент, тем больше полезная мощность.

Важно! Строго говоря, данный параметр полностью соответствует коэффициенту мощности только при идеально синусоидальном движении тока в электросети. Для получения максимально точной цифры требуется анализ искажений нелинейного характера, присущих переменным току и напряжению. В практических подсчетах эти искажения чаще всего игнорируют и полагают показатель cos fi примерно равным требуемому коэффициенту.

Усредненные значения коэффициента мощности

ГОСТы указывают на необходимость корректного указания данной цифры. Для разных типов электроприборов характерные значения находятся в определенных границах:

  • Нагревательные компоненты и лампы накаливания, несмотря на присутствие в составе катушек, рассматриваются как строго активная нагрузка, несущественную индуктивную составляющую в этом случае принято игнорировать. Косинус фи для них берут за единицу.
  • У ударных и обычных дрелей, перфораторов и подобных ручных инструментов, работающих от электричества, индуктивная нагрузка выражена слабо, индикатор примерно равен 0,95-0,97. Обычно эту цифру не указывают в инструкциях из-за очевидного пренебрежимо малого значения индукции.
  • Сварочные трансформаторы, высокомощные двигатели, люминесцентные лампочки несут существенную индуктивную нагрузку. Цифра может иметь значения в диапазоне 0,5-0,85. Ее надо правильно определить и учитывать при эксплуатации, к примеру, при выборе сечения кабелей питания (они не должны перегреваться).

Сварочный трансформатор – прибор, требующий повышенного внимания к показателю cos fi

Низкий коэффициент мощности, его последствия

Из-за низких значений угла фи возможны следующие неприятные явления:

  • возрастание трат на электроэнергию примерно на 20%;
  • необходимость использовать более толстые провода из-за энергопотерь, что ведет к еще большим потерям;
  • выделение тепла влечет за собой потребность в изоляционных материалах, более стойких к воздействию высоких температур.

Способы расчета

Данный параметр можно представить, как отношение мощностей: полезной нагрузочной и общей. В формульном виде это записывается так:

Источник: https://amperof.ru/teoriya/chto-takoe-koefficient-moshhnosti.html

Реактивная мощность и cos фи

Рассмотрим такие понятия, как:реактивная мощность, коэффициент мощности ( cos фи), низкое значение Cos FI и способы его повышения.

Что такое реактивная мощность?

Коэффициент мощности cos фи (φ) определяется как отношение полезной мощности к полной. Математически это определение часто записывают в виде кВт/кВА, где числитель – активная (действительная) мощность, а знаменатель – кажущаяся (активная + реактивная, полная) мощность. И хотя определение выглядит весьма простым, само понятие реактивной мощности весьма зачастую туманно и запутанно даже для людей с неплохой технической подготовкой.

Объяснение понятия реактивной мощности основывается на том, что в системе переменного тока в случае, когда напряжение и ток возрастают и уменьшаются одновременно, передается только активная мощность, а когда между током и напряжением есть сдвиг во времени (сдвиг по фазе), передается как активная, так и реактивная мощность. Однако, при расчете среднего за период значения, присутствует только среднее значение активной мощности, которое приводит к «чистой» передаче энергии из одной точки в другую, тогда как среднее значение реактивной мощности равно нулю, независимо от  структуры и режима работы системы.

В случае реактивной мощности количество энергии, протекающее в одном направлении равно количеству энергии, протекающему в противоположном направлении (иначе говоря, реактивные элементы сети – конденсаторы, индуктивности и др. – обмениваются реактивной энергией). Это означает, что реактивная мощность не производится и не потребляется.

Но, в действительности, мы наблюдаем потери реактивной мощности и внедряем много различного оборудования для ее компенсации, чтобы уменьшить потребление электроэнергии и затраты.

Заблуждения о законе сохранения энергии

Закон сохранения энергии, не подвергаемый сомнению, гласит: «энергия ни откуда не возникает и никуда не исчезает», а мы все еще продолжаем говорить о «сбережении энергии»!! Заблуждения возникают тогда, когда мы рассуждаем о законе сохранения, игнорируя другие законы термодинамики, в частности закон, гласящий, что энтропия («низкосортная» энергия) постоянно увеличивается.

В математическом смысле «полная» энергия не имеет значения для потребителя энергии, следовательно, он должен заботиться об эффективности ее преобразования и сохранения. Точно так же, несмотря на то, что мы можем доказать математически, что потери реактивной мощности не являются реальными потерями и реактивная энергия вообще не тратится, у нас есть целый ряд причин для коррекции реактивной мощности.

Это проще объяснить на основе физических аналогий.

Физические аналогии

Предположим, нам надо заполнить водой резервуар, выливая по одному ведру за раз. Единственный способ сделать это – подняться по лестнице с ведром воды и вылить ведро в емкость. Вылив ведро, мы должны спуститься по лестнице за следующим ведром. За этот цикл (подъем по лестнице и спуск) мы проделали определенную работу, причем энергия, затраченная на подъем, больше энергии, требуемой для спуска.

Если бы мы поднялись по лестнице с пустым ведром и с ним же спустились, то мы не совершили бы никакой работы. Но энергия для подъема и спуска осталась бы такой же. И хотя мы не совершали никакой полезной работы, мы затратили некоторое количество энергии.

Таким образом, энергия, необходимая на подъем и спуск по лестнице с пустыми руками, требует реактивной мощности, но не полезной. А энергия, затраченная на подъем с ведром воды и спуск с пустым ведром, требует как активной мощности, так и реактивной.

Аналогия может быть распространена и на трехфазные системы, если поставить три лестницы к резервуару и заставить трех человек подниматься по ним в такой последовательности, чтобы наполнение резервуара было непрерывным.

Что вызывает низкий коэффициент мощности cos φ (cos фи) в электрической системе?

Перечислим некоторые причины, которые способствуют возникновению в системе низкого коэффициента мощности:

  • индуктивные нагрузки, особенно недогруженные асинхронные двигатели и трансформаторы;
  • индукционные печи и дуговые печи с реакторами;
  • дуговые лампы;
  • токоограничивающие реакторы;
  • повышенное напряжение.

Реактивная мощность, потребляемая  этими нагрузками, увеличивает значение полной мощности в распределительной сети, и такое увеличение реактивной и полной мощности вызывает снижение коэффициента мощности.

Как повысить коэффициент мощности cos φ?

Коэффициент мощности можно повысить путем дополнительного подключения в сеть потребителей реактивной мощности, таких как конденсаторы или асинхронные двигатели.

Также его можно увеличить за счет полного использования по нагрузке асинхронных двигателей и трансформаторов и за счет применения высокоскоростных двигателей. Применение автоматической системы переключения отводов обмоток трансформаторов также способствует повышению коэффициента мощности.

При каких обстоятельствах коррекция коэффициента мощности способна:

а) снизить потребление электроэнергии на предприятии?
Повышение коэффициента мощности cos фи (cos φ) на предприятии за счет внедрения любого из вышеупомянутых способов компенсирует потери и уменьшает токовые нагрузки на оборудование электросети, т.е.

кабели, распределительные коммутационные устройства, трансформаторы, генерирующие установки и т.д.

Это означает, что коррекция коэффициента мощности cos фи там, где она возможна, уменьшит потребление электроэнергии на предприятии и, в свою очередь, снизит стоимость электроэнергии.

Повышение коэффициента мощности cos φ приводит к снижению энергопотребления, когда коррекция реализована на уровне отдельных потребителей (т.е. оборудования) или на уровне распределительного устройства.

Но это не приведет к снижению энергопотребления, если предприятие, получающее энергию из общей сети, вынесет коррекцию на уровень питающего/входного напряжения только для того, чтобы скомпенсировать реактивную энергию, потребляемую из сети.

Если предприятие осуществляет такую коррекцию для своей собственной системы генерации электроэнергии, то в этом случае экономия на стоимости (либо электроэнергии, либо стоимости топлива) будет иметь место за счет снижения потерь в генераторе.

б) сократить только затраты на электроэнергию?
Коррекция коэффициента мощности cos φ (cos фи) приведет только к уменьшению стоимости электроэнергии в случае, если предприятие, получающее энергию из общей сети, вынесет коррекцию на уровень питающего/входного напряжения только для того, чтобы скомпенсировать реактивную энергию, потребляемую из сети.

Как правило, cos фи повышают до значения 0.95-0.98, а дальнейшее его повышение до единицы может привести к увеличению срока окупаемости мероприятий по коррекции.

в) снизить затраты и потребление электроэнергии?
Во всех остальных случаях, кроме вышеописанных исключений, повышение коэффициента мощности в конечном итоге приводит к снижению потребления энергии и, следовательно, к снижению стоимости электроэнергии. Однако окупаемость инвестиций за счет повышения коэффициента мощности зависит от типа предприятия и многих других факторов, таких как тариф на электроэнергию, схемы загрузки оборудования, метода производства и использования мощности и т.д.

Коррекция коэффициента мощности cos фи осуществляется за счет индивидуальной или групповой коррекции.

Индивидуальная коррекциядостоинстванедостаткиГрупповая коррекциядостоинстванедостатки
увеличение нагрузочной способности распределительной сети удельная стоимость (на квар) конденсаторов малых габаритов выше, чем стоимость больших конденсаторов
возможность аппаратного отключения, не требуется дополнительных  коммутаций экономическая целесообразность обычно до 10 л.с.
лучше стабилизация напряжения затрудненная установка в местах с особыми требованиями  (пожаробезопасные и защищенные исполнения)
простота определения типоразмера конденсатора необходимость в дополнительном оборудовании для обслуживания
конденсаторы, встроенные в оборудование, могут быть перемещены во время реконструкции если номинал конденсатора слишком велик – больше, чем мощность намагничивания двигателя, возможно повредить двигатель и другое подключенное оборудование
увеличение нагрузочной способности системы энергоснабжения необходимость в коммутирующих устройствах для управления величиной емкости
снижение материальных затрат по сравнению с индивидуальной коррекцией необходимость в индивидуальных коммутирующих устройствах
сокращение количества оборудования для обслуживания / простота доступа для контроля отсутствие снижения потерь в кабелях ниже точки коррекции
исключение самовозбуждения асинхронных двигателей из-за высокого значения емкости высокий срок окупаемости
уменьшение удельной цены на квар для устройств больших типоразмеров отсутствие вклада в увеличение срока службы/эффективности оборудования
простота регулирования нагрузки энергосистемы; коэффициент мощности cos φ может быть приближен к единице опережающий коэффициент мощности на предприятиях с собственной генерацией электроэнергии при неправильной коммутации
возможность установки на подстанциях и, следовательно, возможность применения на опасных объектах вероятность непосредственной коммутации емкостной нагрузки при отключении электроэнергии
ЭТО ИНТЕРЕСНО:  Какое сечение провода на 6 квт

Источник: https://khomovelectro.ru/articles/reaktivnaya-moshchnost-i-cos-fi.html

3.2 Выбор числа и мощности трансформаторов цтп с учетом компенсации реактивной мощности. Косинус фи трансформатора

ТрансформаторКосинус фи трансформатора

Многие из вас наверняка видели на электроинструментах, двигателях, а также люминесцентных лампах, лампах ДРЛ, ДНАТ и других, такие надписи как косинус фи — cos ϕ.

Однако люди далекие от электротехники и позабывшие школьные уроки физики, не совсем понимают, что же означает данный параметр и зачем он вообще нужен.

Давайте рассмотрим и объясним этот косинус, как можно более простыми словами, исключая всякие непонятные научные определения, типа электромагнитная индукция. В двух словах про него конечно не расскажешь, а вот в трех можно попробовать.

Как выбрать генераторную установку

Все, что мы опишем ниже, значительно упростит проблему выбора для покупателя. Те технические характеристики электростанций, а также термины, которые указаны в описании конкретного экземпляра, обычному покупателю сложно понять. Но каждая характеристика важна для определенных задач или условий эксплуатации. Поэтому мы предлагаем небольшой ликбез по понятиям и терминам, понимание которых, в конечном итоге поможет Вам осуществить правильный выбор генератора.

Приглашаем посетить наш центр по продаже и обслуживанию бензиновых и дизельных генераторов различной мощности по адресу: г. Санкт-Петербург, ул. Б.Озерная 68А.

Бензиновый или дизельный генератор (по-другому, электростанция — это техническая установка, состоящая в основном из двух частей: двигателя внутреннего сгорания и электрического генератора (альтернатора). Примитивно, работу электростанции можно представить так: работающий двигатель вращает вал, соосно совмещенный с валом (ротором) генератора, который в свою очередь, вырабатывает переменный электрический ток.

ДВИГАТЕЛЬ

Для электростанции двигатель это «все». От надежности и эксплуатационных характеристик двигателя, как правило, зависит срок службы всего агрегата. Например, у агрегатов, на которые установлены бензиновые двигатели известных брендов, гарантированный срок службы составляет от 2500 до 3500 тысяч мото-часов. А это для резервного источника питания достаточный срок.

В дешевых генераторах, в которых установлены малоизвестные двигатели, мото-ресурс на порядок меньше именитых. Дизельные ДВС известных марок обладают еще большим ресурсом, при этом они еще и экономичнее. Но чаще всего, дизельные двигатели более критичны к качеству соляры, к ее сезонности, они хуже запускаются в холодное время.

А самое главное, дизельные двигатели дороже бензиновых (в 2 раза), поэтому генераторы собранные на базе бензиновых двигателей, как правило, в два раза дешевле дизельных аналогичной мощности.

Выбор в пользу генератора с дизельным двигателем имеет смысл в случаях когда:

  • Генератор будет использоваться как основной источник питания, а это предусматривает длительную нагрузку;
  • Если на объекте эксплуатируются другие устройства на дизельном топливе;
  • Если суммарное энергопотребление превышает 15 кВА.

Качественные двигатели известных брендов обладают не только повышенным моторесурсом и надежностью (чугунные, а не алюминевые цилиндры, высококачественная саль и т.п.), но и высоким КПД (например, за счет верхнего расположения клапанов в бензиновых ДВС), увеличенным интервалом между ТО (а это свечи, фильтры, масло и т.д.).

Электрический генератор (альтернатор)

Альтернатор, как упоминалось выше, является устройством, которое вырабатывает переменное напряжение.

Альтернаторы могут быть одно- и трехфазные, синхронные и асинхронные, с разными классами защиты и исполнения.

Однофазные генераторы могут питать только однофазных потребителей, т.е. нагрузки рассчитанные для сети 220 В. Трехфазные генераторы запитывают как однофазных потребителей, так и трехфазных потребителей, рассчитанных на 380 В.

Если к однофазным генераторам подключаются однофазные потребители, то для выбора мощности генератора потребуется сложить мощности всех потребителей с учетом возможных пусковых токов. Это же относится к случаю подключения трехфазных нагрузок к трехфазным генераторам.

Если же к трехфазным генераторам подключаются однофазные нагрузки, то распределять их нужно, чтобы не было перекоса фаз. А для этого нужно, чтобы на каждую фазу из трех, было нагружено не более трети общей мощности трехфазного генератора. Плюс разница между нагрузками по каждой фазе не должна быть больше 30%.

А теперь краткий экскурс по физике 8-9 класса: чтобы вращался ротор двигателя, необходимо чтобы на него действовало вращающееся магнитное поле, вырабатываемое обмотками статора. Из-за надежной и простой конструкции большую популярность получил асинхронный двигатель с короткозамкнутым ротором.

Ротор такого двигателя состоит из медных или алюминиевых токонесущих проводников, причем на обоих торцах ротора проводники накоротко соединены алюминиевыми или медными кольцами. При вращении статора в обмотке ротора создаются вихревые токи. Эти токи, взаимодействуя с вращающимся полем статора заставляют вращаться ротор со скоростью отличной (меньшей) от скорости вращения поля.

Поэтому-то двигатель получил название асинхронного. Чем же отличается синхронный двигатель от асинхронного. Главное отличие в устройстве ротора. Ротором синхронного двигателя является либо постоянный магнит, либо электромагнит. А так как, разные полюсы магнита притягиваются, то вращающееся магнитное поле статора (по сути тот же магнит) и он же один из полюсов притягивает (действует на) другой полюс – ротор-магнит.

Скорости вращения при этом одинаковы, синхронны, поэтому такие двигатели называют синхронными. Одним из минусов асинхронных двигателей является сложная регулировка частотой вращения. Так, если нужно перевести асинхронный двигатель в реверсивное положение, т.е. заставить вращаться в противоположную сторону, надо поменять местами два любых провода, идущих к обмотке статора, иными словами сделать перефазировку.

У синхронных двигателей есть тоже «тонкий» момент: требуется управлять частотой питающего напряжения. При этом, они (синхронные двигатели) в адекватных пределах изменения нагрузки на валу двигателя должны поддерживать постоянную частоту вращения. В случае превышения нагрузки сверх предела, двигатель выходит из синхронного режима, что в свою очередь ведет е его поломке.

Именно синхронные двигатели используются в качестве генераторов постоянного или переменного тока. Они проще в эксплуатации, у них выше КПД, они в принципе, надежнее. В силу высоких показателей КПД, синхронные двигатели даже используются для увеличения cos фи.

Виды нагрузок

Нагрузки могут быть активными и реактивными.

У активных нагрузок вся потребляемая энергия преобразуется в тепло. Например: электроплиты, лампы накаливания, обогреватели, и т. п. Потребляемая от генератора мощность прибора будет равна мощности самого прибора.

Реактивные нагрузки делятся на индуктивные и емкостные. У реактивных нагрузок потребляемая энергия идет не только на выработку тепла, но и на образование электромагнитных полей. Характеристикой реактивных нагрузок является cos фи. Например, если он равен 0,6, то 40% потребляемой энергии уйдет в тепло.

Чтобы рассчитать потребление конкретной реактивной нагрузки надо мощность разделить на cos фи?. Например : если на станке написано 1000 Вт и cos?=0,8 , это значит, что станок будет потреблять от генератора 1250 Вт. При выборе мощности генератора надо учесть и cos фи самого альтернатора. Например, если он равен 0,9, то чтобы запитать станок от генератора потребуется 1390 ВА.

Поэтому, чаще всего в характеристике мощности электростанции фигурирует величина не в ваттах, а вольт-амперах.

Чаще всего, у индуктивных нагрузок есть пусковые токи. Т.е. это токи, кратко временно превышающие номинальный ток. Поэтому, зная род своих потребителей и их технические характеристики, нужно всегда учитывать их при выборе генератора.

Выходная мощность

Чаще всего, производители, используют маркетинговый прием, указываю максимальную выходную мощность генератора. На самом деле, максимальную мощность генератора может развивать в достаточно кратковременный интервал времени. Важнее мощность номинальная, та мощность которая позволяет длительно запитывать адекватные нагрузки. Напомним, чтобы узнать номинальную мощность генератора в ваттах, нужно знать собственный cos фи самого генератора.

Дополнительные характеристики

Ручной или электрический запуск двигателя. Тут все понятно: либо дергаешь ручку-шнурок (кик-стартер), либо нажимаешь на кнопку (поворачиваешь ключ). В последнем случае аккумуляторная батарея должна присутствовать обязательно.

Автоматический запуск запуск двигателя. Генераторы с электрозапуском могут быть доукомплектованы специальным устройством (автоматической панелью), позволяющей запустить генератор без участия человека, если пропало питание объекта от основной сети. Или остановить генератор, если питание объекта от основной сети восстановлено.

По системе охлаждения генераторы могут быть с воздушным охлаждением (обычно резервные источники питания), так и с водяным (как вариант масляным) охлаждением.

Шумность от работы генератора обычно измеряется в децибелах. Как правило, дизельные агрегаты шумнее бензиновых, но и в том, и в другом случае, шумность можно снизить установив на генератор шумозащитный (как правило всепогодный) кожух.

Время работы на одном баке не что иное как время автономной работы на одной заправке. Зная емкость бака и потребляемое топливо в час, можно узнать время автономной работы.

Остались вопросы?

Просто позвоните и наши специалисты помогут подобрать генератор исходя из ваших задач: мощности, фазности, характера подключаемого оборудования и пр.

Источник: http://mmps.ru/info2

Косинус фи в электротехнике — это Коэффициент мощности. Косинус фи асинхронного двигателя

Асинхронный двигатель Косинус фи асинхронного двигателя

При недозагрузке электродвигателя потребляемая им активная мощность уменьшается пропорционально нагрузке. В то же время реактивная мощность изменяется меньше. Поэтому чем меньше нагрузка двигателя, тем с меньшим коэффициентом мощности он работает.

Так, например, асинхронный двигатель в 400 кВт при 1000 оборотах в минуту имеет «косинус фи», равный при полной нагрузке 0,83. При ¾ нагрузки тот же двигатель имеет cos φ = 0,8. При ½ нагрузке cos φ = 0,7 и при ¼ нагрузки cos φ = 0,5.

Двигатели, работающие вхолостую, имеют «косинус фи», равный от 0,1 до 0,3 в зависимости от типа, мощности и скорости вращения.

Неправильный выбор типа электродвигателя

Двигатели быстроходные и большой мощности имеют более высокий «косинус фи», чем тихоходные и маломощные двигатели. Двигатели закрытого типа имеют cos φ ниже, чем двигатели открытого типа. Двигатели, неправильно выбранные по типу, мощности и скорости, понижают cos φ.

Повышение напряжения в сети

В часы малых нагрузок, обеденных перерывов и тому подобного напряжение сети на предприятии увеличивается на несколько вольт. Это ведет к увеличению намагничивающего тока индивидуальных потребителей (реактивной составляющей их полного тока), что в свою очередь вызывает уменьшение cos φ предприятия.

Неправильный ремонт двигателя

При перемотке электродвигателей обмотчики вследствие неправильного подбора проводов иногда не заполняют пазы машины тем количеством проводников, которое было в фабричной обмотке. При работе такого двигателя, вышедшего из ремонта, увеличивается магнитный поток рассеяния, что приводит к уменьшению cos φ двигателя.

При сильном износе подшипников ротор двигателя может задевать при вращении за статор. Вместо того чтобы сменить подшипники, обслуживающий персонал иногда идет по неправильному и вредному пути и подвергает ротор обточке.

Увеличение воздушного зазора между ротором и статором вызывает увеличение намагничивающего тока и уменьшение cos φ двигателя.

Вышеперечисленные последствия низкого cos φ с достаточной убедительностью говорят о том, что необходимо вести борьбу за высокий cos φ. К мерам увеличения cos φ относятся:

  1. Правильный выбор типа, мощности и скорости вновь устанавливаемых двигателей;
  2. Увеличение загрузки двигателей;
  3. Недопущение работы двигателей вхолостую продолжительное время;
  4. Правильный и высококачественный ремонт двигателей;
  5. Применение статических (то есть неподвижных, невращающихся) конденсаторов.

Малый вес конденсаторов, отсутствие вращающихся частей, незначительные потери энергии в них, легкость обслуживания, безопасность и надежность в работе дают возможность широкого применения статических конденсаторов для повышения cos φ двигателей.

Подбирая величину емкости при параллельном соединении и емкости, можно добиться уменьшения угла сдвига фаз между напряжением и общим током при неизменной активной и реактивной мощности, потребляемой ветвью с индуктивностью. Этот угол можно сделать равным нулю. Тогда ток, текущий на общем участке цепи, будет иметь наименьшую величину и совпадать по фазе с напряжением сети.

Это явление называется компенсацией сдвига фаз и широко используется на практике.По экономическим соображениям невыгодно доводить угол φ до нуля, практически целесообразно иметь cos φ = 0,9 – 0,95.

Рассмотрим расчет емкости конденсаторов, которые нужно включить параллельно индуктивной нагрузке, чтобы повысить cos φ до заданной величины.

На рисунке 1, а изображена схема включения индуктивной нагрузки в сеть переменного тока. Для увеличения коэффициента мощности параллельно потребителю включена батарея конденсаторов. Векторная диаграмма начинается с построения вектора напряжения U.

Ток I1 вследствие индуктивного характера нагрузки отстает по фазе от напряжения сети на угол φ1. Необходимо уменьшить угол сдвига фаз между напряжением U и общим током до величины φ.

Иначе говоря, увеличить коэффициент мощности от значения cos φ1 до значения cos φ.

Рисунок 1. Увеличение cos φ при помощи статических конденсаторов:а – схема включения; б – векторная диаграмма

Отрезок ос, представляющий активную слагающую тока I1, равен:

ос = I1 × cos φ1 = оа × cos φ1 .

Пользуясь выражением мощности переменного тока

P = U × I × cos φ ,

отрезок ос выразим так:

Ток на общем участке цепи I равен геометрической сумме тока нагрузки I1 и тока конденсатора IC.

Из треугольника оас и овс имеем:

ас = ос × tg φ1 ;bс = ос × tg φ .

Из диаграммы получаем:

ab = od – ac – bc = ос × tg φ1 – ос × tg φ = oc × (tg φ1 – tg φ) .

Так как и ab = IC , то

Вместе с этим, как было указано выше,

IC = U × ω × C .

Следовательно,

Пример 1. Электрические двигатели шахты потребляют мощность 2000 кВт при напряжении 6 кВ и cos φ1 = 0,6. Требуется найти емкость конденсаторов, которую нужно подключить на шины установки, чтобы увеличить cos φ до 0,9 при f = 50 Гц.

Решение.

cos φ1 = 0,6;     φ1 = 53°10’;     tg φ1 = 1,335;

cos φ = 0,9;     φ = 25°50’;     tg φ = 0,484;

Источник: https://carscomfort.ru/asinhronnyj-dvigatel/kosinus-fi-asinhronnogo-dvigatelya.html

Понравилась статья? Поделиться с друзьями:
Электро Дело
Как подключить розетку духового шкафа

Закрыть
Для любых предложений по сайту: [email protected]