Нулевой защитный и нулевой рабочий проводники
Нулевой защитный и нулевой рабочий проводники различаются по назначению, способу подключения и функциональной нагрузки в электрических сетях.
Нулевой рабочий проводник
Нулевой рабочий проводник это проводник сети, подключенный к глухозаземленной нейтрали трансформатора трехфазного или нулевому выводу трансформатора однофазного. По нулевому рабочему проводнику протекает нагрузочный ток. На схеме нулевой рабочий проводник, обозначается буквой «N».
Нулевой защитный проводник
В системах TN-C, TN-S, TN-C-S, где нулевой вывод трансформатора глухозаземлен, нулевой защитный проводник соединяет нулевую точку питающего трансформатора и токопроводящие части электроприемников, которые могут оказаться под напряжением в аварийной ситуации (косвенное прикосновение). Нулевой защитный проводник несет, по названию понятно, защитные функции. Защитный проводник участвует в защите, как самой электросети, так и человека.
Нулевой защитный проводник это один из видов защитных проводников электросети и относится он к электросетям до 1кВ с глухозаземленной нейтралью трансформатора или генератора.
Согласно ПУЭ 1.7.76. подлежат защите от косвенного прикосновения следующие элементы электросети:
- Металлические корпуса светильников, электромашин, трансформаторов;
- Металлические корпуса распределительных щитов, квартирные и этажные щитки;
- Металлические корпуса распределительных устройств, лотков, муфт кабелей и металлические конструкции с электрооборудованием;
- Металлические корпуса переносных и передвижных устройств.
В качестве защитной меры применяется соединение этих устройств с глухозаземленной нейтралью ТП (трансформатора питания) в системах TN или заземление в системах TT и IT.
На схемах нулевой защитный проводник обозначается двумя латинскими буквами «PE». В нормальном режиме работы электросети по нулевому защитному проводнику электрический ток не течет.
На схемах буквами PE обозначаются не только нулевой защитный проводник, но и все защитные проводники сети: заземляющие проводники, защитный проводник в системе уравнивания потенциалов, отдельные жилы в кабелях, отдельно проложенные проводники и шины.
Разделение защитного и рабочего нулей электросети
В электросети с глухозаземленной нейтралью TN, нулевой рабочий проводник N и защитный проводник PN, до определенной точки в электросети объединены в один проводник и обозначается этот проводник буквами PEN.
Источник: https://ehto.ru/montazh-elektriki/zashhita-ehlektriki/uzo/nulevoj-zashhitnyj-i-nulevoj-rabochij-provodniki
Чем отличается ноль от нуль?
Сегодня огромное множество статей посвящено электрике и практически ни одно пособие, будь то электронное издание или статья, изложенная на бумаге, не обходит стороной всем известный проводник, имеющий аббревиатуру N (нулевой проводник). В одних статьях пишут «ноль», в других «нуль». Поэтому возникает вопрос, как правильно называть понятный и, в то же время, загадочный проводник N, ноль или нуль?
Прежде чем ответить на поставленный вопрос, предлагаю окунутся в этимологию, т.е в науку, которая правильно толкует слова.
Ноль происходит от латинского слова “NULLUS”- никакой, пустой, несуществующий. В русском языке, ноль позаимствовали с немецкого языка,”NULL”. Привезли в Россию “NULL” ученые, во времена Петра I. До петровских времен вычислениями занимались с помощью римских цифр.
Нуль в словаре русских синонимов
На голом месте плешь, ничто, шантрапа, десятая спица, отставной козы барабанщик, не велика птица, последняя спица в колеснице, мелкая сошка, нуль без палочки, мелкота, зеро, ниль, маленький человек, ноль без палочки, никто, пятая спица в колеснице, шиш, ноль, нулевой цикл, козявка, шушваль, ничтожность, пигмей, червяк, мелочь, червь, шваль, шушера, шишка на ровном месте, песчинка, пустое место, миздрюшка, нолик, нулевка, ординар, ничтожество, пешка, тля, прыщ на ровном месте, мелюзга, мыльный пузырь, некомпетентный, стрюцкий, нулик.
Что такое ноль и нуль?
Из Справочника по Русскому языку 1. Существуют две формы: ноль и нуль. В терминологическом значении (особенно в косвенных падежах) обычно используется вторая, например: равняется нулю, температура держится на нуле. В устойчивых выражениях встречаются обе формы: а) ноль целых, ноль внимания, в двенадцать ноль-ноль; б) абсолютный нуль, круглый нуль, обратиться в нуль, свести к нулю.
Производное прилагательное обычно образуется от формы нуль, например: нулевой меридиан, нулевой пробег.
Если ноль или нуль означает пусто, зачем он тогда нужен?
Мы не считаем графин в доме бесполезной емкостью, сосуд, который можно было бы выбросить. Согласитесь, на все есть свое время. Графин может какое то время оставаться пустым, затем, в каких-то случаях, мы захотим использовать его для наполнения жидкостью.
Как используется нулевой проводник?
Для однофазной цепи ноль – это просто название проводника, не находящегося под высоким потенциалом,относительно земли.
Нулевой проводник
Схема звезда, в которой присутствует нулевой проводник
Переменные токи каждой фазы в трех одинаковых нагрузках сдвинуты по фазе ровно на одну треть и в идеале компенсируют друг друга, поэтому нагрузка в такой схеме обычно называется трехфазной, сосредоточенной нагрузкой. При такой нагрузке векторная сумма токов в средней точке равна нулю.
Нулевой провод, подключённый к средней точке, практически не нужен, т. к. ток через него не течёт. Незначительный ток появляется только тогда, когда нагрузки на каждой фазе не полностью одинаковые и не полностью компенсируют друг друга. И действительно, на практике многие виды трёхфазных четырёхжильных кабелей имеют нулевую жилу вдвое меньшего сечения. Нет смысла тратить дефицитную медь на проводник, по которому ток практически не течёт.
Нулевой проводник
Ноль и нуль в электрике пустым не бывает
Нулевой проводник бывает не таким уж и пустым. Однажды в статье я описал одну нехорошую тенденцию, которая нередко происходит с тех времен, как в обиход вошли импульсные источники питания: DVD видео, телевизоры, компьютеры и т.п.. Эту тенденцию называют — отгорание нуля.
Итак, подведем итог: Ноль или нуль используется исходя от того какие строятся предложения, но смысл двух слов имеет один корень от латинского слова «NULLUS»: никакой, пустой, не существующий. Но в электрике нулевой проводник не считается бесполезным. Как раз без него, никак не обойтись. Ноль и нуль — это своего рода синонимы, происходящие от немецкого слова null.
статью: «Модульно-штыревое заземление«
Источник: http://electric-tolk.ru/chem-otlichaetsya-nol-ot-nul/
Фаза или ноль на выключатель ?
Принцип работы стандартного, знакомого всем выключателя света довольно прост, при нажатии клавиши он физически разрывает (или соединяет) электрическую цепь, проложенную к люстре, бра или любому другому светильнику.
А так как для работы светильника нужен фазный и нулевой проводники, установить выключатель, фактически, можно в разрыв любого из них, при этом система будет работать, на первый взгляд, одинаково правильно.
Возможно, именно поэтому довольно часто возникает вопрос, что по правилам должен размыкать выключатель фазу или ноль и почему?
На первую часть этого вопроса, а именно, что должен разрывать выключатель фазу или ноль, есть ответ в ПУЭ, правилах устройства электроустановок, основном документе, который регламентирует правила и нормы электромонтажа.
В, последнем, актуальном на сегодняшний день, 7-ом издании ПУЭ, в пункте 6.6.28, указано следующее:
В трех- или двухпроводных однофазных линиях сетей с заземленной нейтралью могут использоваться однополюсные выключатели, которые должны устанавливаться в цепи фазного провода, или двухполюсные, при этом должна исключаться возможность отключения одного нулевого рабочего проводника без отключения фазного.
Как видите правила прямо говорят, что выключатель света устанавливается в разрыв фазного проводника, а не нулевого и только так, а не иначе нужно выполнять монтаж.
Правильная схема подключения одноклавишного выключателя выглядят так:
Почему именно фазу, а не ноль должен разрывать выключатель света ?
На первый взгляд нет никакой разницы обе схемы работают одинаково, ведь и при разрыве нуля выключателем, свет так же погаснет, как и при разрыве фазы.
Чтобы лучше разобраться в этом, давайте, для наглядности, рассмотрим схему подключения выключателя, в которой к нему подведен нулевой проводник (ноль).
Как вы видите, при такой схеме подключения выключателя, на светильнике всегда есть напряжение, это и есть тот главный недостаток, который может вызывать серьезные проблемы и неудобства в работе и обслуживании источников света.
В первую очередь, главная опасность такого способа подключения состоит в том, что вас может «ударить током», например, при замене ламп, когда вы случайно коснётесь токопроводящих контактов.
Кроме того, при нарушении изоляции питающего кабеля или повреждении электрического соединения внутри светильника, фазный проводник может замкнуть на корпус. И тогда, при простом касании люстры или бра, вы сами станете проводником, частью электрической сети, ощутите серьезный электрический разряд, при этом, в определенных условиях, поражение электрическим током может быть даже смертельным.
Это становится особенно актуально потому, что для групп освещения, в том же ПУЭ, разрешено не устанавливать дифференциальную защиту, например, УЗО, поэтому вы узнаете о напряжении на корпусе, лишь когда почувствуете разряд, при этом светильник может быть даже не включен.
Еще одна не такая опасная, но не менее неприятная проблема — это мерцание ламп при выключенном свете. Современные энергоэффективные лампы — энергосберегающие (люминесцентные) или светодиодные, могут реагировать даже на незначительные колебания в электрической сети, даже сверхнизкие токи могут запускать их. Поэтому, даже при выключенном выключателе света может наблюдаться мерцание таких ламп, а это уменьшает как ресурс ламп, так и просто многих раздражает.
Поэтому, чтобы избежать этих и некоторых других проблем, правильно делать так, чтобы выключатель разрывал именно фазу, а не ноль.
К сожалению, чаще всего, люди задаются вопросом фаза или ноль должна быть в выключателе в случае, когда уже столкнулись с неправильной разводкой проводов, имея ноль в выключателе и все вышеописанные проблемы. Что же делать в таком случае?
Как сделать, чтобы выключатель разрывал фазу, а не ноль
Если у вас неправильно выполнена схема подключения выключателя к светильнику, и размыкается ноль, вместо фазы (Жми, чтобы узнать, как самому определить какой из проводов ноль, а какой фаза). То исправить это можно, лишь изменив подключение в распределительной коробке.
Для этого, вам необходимо найти распределительную коробку, которая чаще всего расположена прямо над выключателем света, на расстоянии 10-30см от потолка. Согласно правилам электромонтажа, к ней должен быть обеспечен легкий доступ и нередко вы сможете обнаружить её довольно быстро (но, к сожалению, не всегда).
ВНИМАНИЕ! Все работы по изменению схемы подключения выключателя необходимо проводить только на обесточенной сети. Для этого обязательно отключите автоматический выключатель этой группы в электрощите, после чего, убедитесь в отсутствии напряжения в месте монтажа.
Итак, вот так выглядит схема подключения в распределительной коробке, в которой к выключателю подведен ноль, а фаза идёт напрямую к светильнику.
Чаще всего, схема будет именно такая, вводной питающий кабель будет входить в коробку и затем выходить к следующей распредкоробке, поэтому, обычно, заходит именно четыре кабеля:
1.n – Кабель идущий на выключатель (двухжильный для одноклавишного выключателя)
2.n – Вводной электрический кабель (Стандартный трехжильный: фаза, ноль, заземление)
3.n – Кабель идущий к люстре (Трехжильный: фаза, ноль с выключателя, заземление для одноклавишного выключателя)
4.n – Кабель идущий к следующему выключателю света или розеточным группам (Трехжильный: фаза, ноль, заземление)
Теперь нам нужно поменять эту схему, чтобы выключатель разрывал фазу, а не ноль.
Для этого:
— Провод 1.1 на схеме, идущий на выключатель, подсоединяем к контакту фазных проводов 2.2.+ 4.2
— Провод 1.2 (возвращающийся из выключателя) соединяем с фазным проводом 3.2 который идёт к люстре
— Оставшийся нулевой провод 3.1, идущий к люстре, подключаем к контакту проводников 2.1 + 4.1
Схема замены нулевого проводника в выключателе на фазный, представлена ниже:
Теперь у вас выключатель будет подключен правильно, к нему будет подходить фазный проводник, а не нулевой. Как видите, сделать изменение в схеме подключения, достаточно просто.
Советую прочитать нашу статью, в которой описаны все разрешенные способы соединения проводов в распределительных коробках и выбрать самый удобный для вас при выполнении такого. На мой взгляд, в бытовых условиях, без использования специализированного инструмента и особых навыков, для соединения проводов групп освещения, удобно применять клеммники WAGO.
UPD: Некоторые советуют просто поменять фазу с нолём местами в электрощите и автоматически в выключателях схема изменится на нужную. Я бы не советовал так делать всем, нужно сперва хорошо проанализировать всю схему электропроводки квартиры, а сделать это довольно непросто, лучше такие серьезные вмешательства без должного опыта и знаний не производить.
Если же у вас остались вопросы, на тему фаза или ноль должны подходить к выключателю, обязательно оставляйте их в комментариях. Кроме того, как всегда приветствуется здоровая критика, личный опыт и любые другие полезные мнения.
Источник: https://rozetkaonline.ru/poleznie-stati-o-rozetkah-i-vikluchateliah/item/164-faza-ili-nol-na-vyklyuchatel
Фаза и ноль в электрике — назначение фазного и нулевого провода
Хозяин квартиры или частного дома, решивший проделать любую процедуру, связанную с электричеством, будь то установка розетки или выключателя, подвешивание люстры или настенного светильника, неизменно сталкивается с необходимостью определить, где в месте производства работ находятся фазный и нулевой провод, а также кабель заземления.
Это нужно для того, чтобы правильно подсоединить монтируемый элемент, а также избежать случайного удара током. Если вы имеете определенный опыт работы с электричеством, то такой вопрос не поставит вас в тупик, но для новичка он может оказаться серьезной проблемой.
В этой статье мы разберемся, что такое фаза и ноль в электрике, и расскажем, как найти эти кабели в цепи, отличив их друг от друга.
В чем отличие фазного проводника от нулевого?
Назначение фазного кабеля – подача электрической энергии к нужному месту. Если говорить о трехфазной электросети, то в ней на единственный нулевой провод (нейтральный) приходится три токоподающих.
Это обусловлено тем, что поток электронов в цепи такого типа имеет фазовый сдвиг, равный 120 градусам, и наличия в ней одного нейтрального кабеля вполне достаточно.
Разность потенциалов на фазном проводе составляет 220В, в то время как нулевой, как и заземляющий, не находится под напряжением. На паре фазных проводников значение напряжения составляет 380 В.
Линейные кабели предназначены для соединения нагрузочной фазы с генераторной. Назначение нейтрального провода (рабочего нуля) заключается в соединении нулей нагрузки и генератора. От генератора поток электронов перемещается к нагрузке по линейным проводникам, а его обратное движение происходит по нулевым кабелям.
Нулевой провод, как было сказано выше, не находится под напряжением. Этот проводник выполняет защитную функцию.
Назначение нулевого провода заключается в создании цепочки с низким показателем сопротивления, чтобы в случае короткого замыкания величины тока хватило для немедленного срабатывания устройства аварийного отключения.
Таким образом, за повреждением установки последует ее быстрое отключение от общей сети.
В современной проводке оболочка нейтрального проводника бывает синей или голубой. В старых схемах рабочий нулевой провод (нейтраль) совмещен с защитным. Такой кабель имеет покрытие желто-зеленого цвета.
В зависимости от назначения электропередающей линии она может иметь:
- Глухозаземленный нейтральный кабель.
- Изолированный нулевой провод.
- Эффективно-заземленный ноль.
Первый тип линий все чаще используется при обустройстве современных жилых зданий.
Чтобы такая сеть функционировала правильно, энергия для нее вырабатывается трехфазными генераторами и доставляется также по трем фазным проводникам, находящимся под высоким напряжением. Рабочий ноль, являющийся по счету четвертым проводом, подается от этой же генераторной установки.
Наглядно про разницу между фазой и нолем на видео:
Для чего нужен заземляющий кабель?
Заземление предусмотрено во всех современных электрических бытовых устройствах.
Оно помогает снизить величину тока до уровня, который безопасен для здоровья, перенаправляя большую часть потока электронов в землю и защищая человека, коснувшегося прибора, от электрического поражения.
Также заземляющие устройства являются неотъемлемой частью громоотводов на зданиях – через них мощный электрический заряд из внешней среды уходит в землю, не причиняя вреда людям и животным, не становясь причиной пожара.
На вопрос – как определить провод заземления – можно было бы ответить: по желто-зеленой оболочке, но цветовая маркировка, к сожалению, довольно часто не соблюдается. Бывает и такое, что электромонтер, не обладающий достаточным опытом, путает фазный кабель с нулевым, а то и подключает сразу две фазы.
Чтобы избежать подобных неприятностей, нужно уметь различать проводники не только по цвету оболочки, но и другими способами, гарантирующими правильный результат.
Домашняя электропроводка: находим ноль и фазу
Установить в домашних условиях, где какой провод находится, можно разными способами. Мы разберем только самые распространенные и доступные практически любому человеку: с использованием обычной электрической лампочки, индикаторной отвертки и тестера (мультиметра).
Про цветовую маркировку фазных, нулевых и заземляющих проводов на видео:
Проверка с помощью электролампы
Перед тем, как приступить к такой проверке, нужно собрать с использованием лампочки устройство для проверки. Для этого ее следует вкрутить в подходящий по диаметру патрон, после чего закрепить на клемме провода, сняв изоляцию с их концов стриппером или обычным ножом. Затем проводники лампы нужно поочередно прикладывать к тестируемым жилам. Когда лампа загорится, это будет означать, что вы нашли фазный провод. Если проверяется кабель на две жилы, уже понятно, что вторая будет нулевой.
Проверка индикаторной отверткой
Хорошим помощником в работе, связанной с электрическим монтажом, является индикаторная отвертка. В основе работы этого недорогого инструмента лежит принцип протекания сквозь корпус индикатора емкостного тока. В ее состав входят следующие основные элементы:
- Металлический наконечник, имеющий форму плоской отвертки, который прикладывается к проводам для проверки.
- Неоновая лампочка, загорающаяся при прохождении сквозь нее тока и сигнализирующая таким образом о фазовом потенциале.
- Резистор для ограничения величины электрического тока, который защищает устройство от сгорания под воздействием мощного потока электронов.
- Контактная площадка, позволяющая при прикосновении к ней создать цепь.
Профессиональные электромонтеры используют в своей работе более дорогие светодиодные индикаторы с двумя встроенными элементами питания, но простенькое устройство китайского производства вполне доступно любому человеку и должно иметься у каждого хозяина дома.
Если вы проверяете наличие напряжения на проводе с помощью этого прибора при дневном свете, то придется приглядываться в ходе работы более внимательно, так как свечение сигнальной лампы будет плохо заметно.
При касании жалом отвертки фазного контакта сигнализатор загорается. При этом ни на защитном нуле, ни на заземлении светиться он не должен, в противном случае можно сделать вывод, что в схеме подключения имеются неполадки.
Пользуясь этим индикатором, будьте внимательны, чтобы нечаянно не коснуться рукой провода под напряжением.
Про определение фазы наглядно на видео:
Проверка мультиметром
Для определения фазы с помощью домашнего тестера прибор нужно поставить в режим вольтметра и измерить попарно величину напряжения между контактами. Между фазой и любым другим проводом этот показатель должен составлять 220 В, а прикладывание щупов к заземлению и защитному нулю должно показывать отсутствие напряжения.
Заключение
В этом материале мы подробно ответили на вопрос, что собой представляют фаза и ноль в современной электрике, для чего они нужны, а также разобрались, какими способами можно определить, где в проводке находится фазная жила.
Какой из этих способов предпочтительнее, решать вам, но помните, что вопрос определения фазы, ноля и заземления очень важен.
Неправильные результаты проверки могут стать причиной сгорания приборов при подключении, или, что еще хуже – причиной поражения электрическим током.
Источник: https://yaelectrik.ru/elektroprovodka/faza-i-nol-v-elektrike
Назначение нулевого провода
Определение 1
Нулевой провод в общем случае — это провод, по которому происходит возвращение остаточного тока по замкнутому контуру.
Не смотря на название, нулевой провод может обладать потенциалом в некоторые моменты времени. На схемах нулевой провод обычно обозначают буквой $N$.
Роль нулевого провода
Зачем же нужен нулевой провод в трехфазной цепи? Назначение нулевого провода в трехфазных цепях следующее: нулевой провод используется для выравнивания фазных напряжений.
Определение 2
Фазное напряжение — это напряжение между нулём и фазным проводом.
Если нагрузка на каждом из фазных проводов одинаковая (то есть одинаковая потребляемая мощность у каждого из потребителей фазного тока от фазных проводов 1-3) — то система будет оставаться рабочей даже в случае обрыва нулевого провода, так как в каждый момент времени разница потенциалов между нулевым и любым из фазных проводов будет одинаковой.
Роль нулевого провода при неравномерной нагрузке
Если нагрузка на каждой фазе будет разной — то необходимо обязательно подключать нулевой провод.
- Курсовая работа 410 руб.
- Реферат 220 руб.
- Контрольная работа 210 руб.
В случае его обрыва или внезапного повышения сопротивления на нём, напряжение распределится согласно потребляемым мощностям на каждую из нагрузок трёхфазной цепи и, соответственно, чем меньше потребляемая мощность — тем большее фазное напряжение получит потребитель тока.
Это неприемлемо для многих электроприборов и может вызвать их неисправность и даже пожар, именно для избегания таких неприятностей к каждой розетке подведён нулевой провод.
Роль нулевого провода при соединении звездой
Определение 3
Звезда — это особый способ соединения концов обмоток генератора, при котором все они соединяются в одну точку, называемую нейтралью.
При этом провода на выходе у потребителя также соединяются в аналогичную точку, а провод, соединяющий две нейтрали, называется нулевым. Провода же, соединяющие начало фазы у потребителя и генератора называются линейными.
В случае подключения трёхфазного двигателя нагрузка для всех трёх фазовых проводов будет одинаковая, соответственно, возвращение остаточного тока на генератор возможно по одному из фазовых проводов, на котором фазовое напряжение в данный момент времени равно нулю.
Если же нагрузки на стороне потребителя неодинаковые, остаточный ток после каждой нагрузки будет выходить разным и, соответственно, фазовое напряжение тоже будет разное.
Если говорить упрощённо, в каждый момент времени оно будет равно напряжению между проводом, который в данный момент времени не является несущим фазовый ток, и фазовым проводом — то есть оно будет разным.
Использование же нулевого провода в таком случае поможет предотвратить эти перепады и таким образом исключить возникновение неисправностей в сети.
Рисунок 1. Роль нулевого провода в трехфазной цепи при соединении звездой
На рисунке представлена схема подключения трёхфазной цепи при подключении звездой.
Ток по нейтральному проводу, соединяющему между собой две нейтрали, будет течь только при включении (или выключении) всей системы и старте работы первой из обмоток генератора.
В остальное время он будет возвращаться на генератор по фазовым проводам по очереди.
Фазовое напряжение на рисунке обозначено с помощью букв $U_A$, $U_C, U_B$, ЭДС на обмотках генератора — $E_C, E_A$ и $E_B$, а ток, текущий по фазовым проводам — буквами $I_C, I_A$ и $I_B$.
Сам генератор обозначен буквой $G$, а потребитель буквой $M$. Сопротивления у потребителя обозначены буквами $Z_A, Z_B$ и $Z_C$.
Линейные напряжения — то есть напряжения между фазами — обозначены соответственно $U_CA, U_AB, U_BC$. На рисунке стрелками показаны провода, к которым нужно подключить вольтметр для измерения линейного напряжения.
Маркировка нулевых проводов
Для того чтобы сделать нулевой провод легко отличаемым от остальных, соответственно ГОСТ для них принято использовать кабели бело-голубого или просто голубого цвета.
При совмещении нулевого провода с заземлением используются полосатые жёлто-зелёные кабели с концами проводов, обозначенными синим цветом:
Рисунок 2. Маркировка нулевого провода
Источник: https://spravochnick.ru/fizika/elektricheskie_cepi_-_chto_eto/naznachenie_nulevogo_provoda/
Для чего нужна нулевая шина в щитке, разновидности и особенности применения в доме
С целью безопасности и удобства монтажа линий электропитания, применяются вводы с отличительными значениями, которые объединяются в общие контактные группы. Нулевая шина — контактная колодка, для безопасного подключения одновременно несколько проводников для дальнейшего питания электроустановок.
Требования безопасности ПУЭ
Система электропитания в идеале составляется по схемам, которые рекомендованы правилами устройства электроустановок (ПУЭ). В жилое помещение или на отдельный объект подключается силовой кабель, а уже последующая его разводка внутри здания обеспечивается с помощью распределительного щитка.
Для удобства такой разводки и применяется нулевая шина. Проще говоря, такое устройство представляет собой усиленный проводник в контактной зоне по открытому типу. К нему подключаются нулевые проводники при помощи винтовых соединителей.
Распространенная конструкция шины — брусок прямоугольной формы, произведенный из прочного металла с характерной проводимостью: латунь, сплавы с медью.
Шина нулевая в корпусе щитка: конструктивные особенности
Конструкция нулевой шины:
- Токопроводящая жила из прочного металла.
- Пластиковое основание, которое в дальнейшем при монтаже устройства применяется для крепления на ДИН плоскость.
В свою очередь, устройство имеет отверстия, а также зажимные болты, которые применяются с целью закрепления используемых проводников. Такие отверстия и болтики применяются для безопасной разводки проводов нейтрали. Внешне шины отличительны по длине, способу монтажа и количеству отверстий для установки.
Для упрощения сервисного обслуживания и выполнения качественных работ по соединению токопроводящих жил, применяются медные или латунные металлы.
Такие сплавы продлевают срок эксплуатации устройства, обеспечивают бесперебойную работу всей системы. Есть шины в корпусе и без корпуса, однако токопроводящие элементы любых типов устройств схожи.
Для правильной работы устройства и обеспечения дифференциальной защиты потребуется правильное подключение устройств с разделением проводников NPE в щите. Если щит металлический, дополнительно используется нулевой провод от корпуса с изоляцией.
Целевое назначение: для чего нужна
Основная цель использования такого устройства – удобство дальнейшей разводки по помещению, а также гарантия безопасности в ходе эксплуатации силовых токопроводящих жил.
Область применения — сети с напряжением максимум 400 вольт (постоянного и переменного тока).
Преимущество использования:
- Организация нескольких областей для присоединения нагрузок от общего ввода к проводнику нуля.
- Обустройство заземления видимого типа (устройство с прозрачной крышкой), который поможет прикрыть клеммник.
- Улучшение и оперативное подключение нескольких сетей (один узел допускает ввод до 40-ка проводников с 3-мм сечением).
- Неразрывная электроцепь на месте с заземлением (также до нагрузки).
- Разделение проводников на защитное и рабочее заземление.
Грамотное и профессиональное разделение электропроводки в доме или офисе с множеством электроточек невозможно обеспечить без применения такого простого устройства.
Характеристики
Выбирая необходимые нулевые шины, стоит предъявлять четкие требования к конструкции. Главное — это сечение провода. Руководствуясь четким правилом «сечение провода не превышает сечение в главной заземляющей шины», можно выполнить качественное обеспечение электросети и сэкономить средства на обслуживании в дальнейшем.
Характеристики нулевой шины разнятся, в зависимости от типа ее установки. Разделяют два вида устройств по схеме распределения, отвечающим требованиям ПУЭ:
В первом случае шина с заземлением, которая являет собой заземленную наглухо нейтраль, в которой соединение с защитной землей обеспечивается исключительно в данной точке. Далее по проводникам с изоляцией уже в щиток заводятся только две шины. Такая схема считается наиболее безопасной, поскольку нулевая и заземляющая шина отделены непосредственно на вводе устройства в помещение.
Во втором варианте представлена устаревшая, но популярная схема по типу TN-C. В данном случае заземление не представлено отдельным проводником, а в самом в щитке есть исключительно нулевая шина. Здесь также соединять землю и ноль нельзя. Поэтому здесь понятия «земля» в его привычном представлении нет.
Правила монтажа
В зависимости от выбранного типа устройства, монтаж осуществляется несколькими методами:
- Крепление на DIN-рейку. (через изоляторы либо непосредственно в элетрощиток).
- Монтаж через угловые изоляторы.
- Крепление в электрощитке.
Осуществление монтажа допустимо открытым либо закрытым способом:
- Открытый применяется в том случае, если есть шкаф, куда доступ посторонним будет ограничен. Монтаж осуществляется с видимой клеммной колодкой.
- Закрытый вариант монтажа применяется в том случае, если оборудование подключается к особо важным системам, к примеру, к силовой розетке электроустановок.
После любого варианта монтажа (открытого или закрытого) не должно быть доступа к токоведущим жилам, поскольку в генерирующей установке ноль глухо заземлен, а прикосновение к точке подключения смертельно опасно. При выборе шин стоит обратить внимание на производителя и цену устройства. Так, дешевые китайские шины при эксплуатации или даже в начале монтажа могут просто лопнуть.
Шина нулевая является важнейшим конструкционным элементом сборных шин. Применяется она для подключения проводников заземления и нуля. Этот элемент применяется при обеспечении электросетей как переменного, так и постоянного тока.
Источник: https://elektrika.expert/provodka/shina-nulevaja.html
Фаза ноль земля что это
Передача электрического тока осуществляется по трехфазным сетям, при этом большинство домов имеет однофазные сети. Расщепление трехфазной цепи осуществляется с помощью вводно-распределительных устройств (ВРУ). Простым языком этот процесс можно описать следующим образом.
К электрощитку дома подводится трехфазная цепь, состоящая из трех фазных, одного нулевого и одного заземляющего проводов.
Посредством ВРУ цепь расщепляется – к каждому фазному проводу добавляется один нулевой и один заземляющий, получается однофазная сеть, к которой и подключаются отдельные потребители.
Что такое фаза и ноль
Попробуем разобраться, что такое ноль в электричестве и чем он отличается от фазы и земли. Фазные проводники используются для подачи электроэнергии. В трехфазной сети три токоподающих провода и один нулевой (нейтральный). Передаваемый ток сдвигается по фазе на 120 градусов, поэтому в цепи достаточно одного нуля. Фазовый проводник имеет напряжение 220 В, пара «фаза-фаза» – 380 В. Ноль не имеет напряжения.
Зачем нужно зануление
Человечество активно использует электричество, фаза и ноль – важнейшие понятия, которые нужно знать и различать. Как мы уже выяснили, по фазе электричество подается к потребителю, ноль отводит ток в обратном направлении. Следует различать нулевой рабочий (N) и нулевой защитный (PE) проводники. Первый необходим для выравнивания фазового напряжения, второй используется для защитного зануления.
В зависимости от типа линии электропередач может использоваться изолированный, глухозаземленный и эффективно-заземленный ноль. Большинство ЛЭП, питающих жилой сектор, имеет глухозаземленную нейтраль. При симметричной нагрузке на фазных проводниках рабочий ноль не имеет напряжения. Если нагрузка неравномерна, ток небаланса протекает по нулю, и схема электропитания получает возможность саморегулирования фаз.
Электросети с изолированной нейтралью не имеют нулевого рабочего проводника. В них используется нулевой заземляющий провод. В электросистемах TN рабочий и защитный нулевой проводники объединены на всем протяжении цепи и имеют маркировку PEN.
Объединение рабочего и защитного нуля возможны только до распределительного устройства. От него к конечному потребителю пускается уже два нуля – PE и N.
Объединение нулевых проводников запрещается по технике безопасности, так как в случае короткого замыкания фаза замкнется на нейтраль, и все электроприборы окажутся под фазным напряжением.
Как различить фазу, ноль, землю
Проще всего определить назначение проводников по цветовой маркировке. В соответствие с нормами, фазный проводник может иметь любой цвет, нейтраль – голубую маркировку, земля – желто-зеленого цвета.
К сожалению, при монтаже электрики цветовая маркировка соблюдается далеко не всегда. Нельзя забывать и вероятности того, что недобросовестный или неопытный электрик легко может перепутать фазу и ноль или подключить две фазы.
По этим причинам всегда лучше воспользоваться более точными способами, чем цветовая маркировка.
Определить фазный и нулевой проводники можно с помощью индикаторной отвертки. При соприкосновении отвертки с фазой загорится индикатор, так как по проводнику проходит электроток. Ноль не имеет напряжения, поэтому индикатор загореться не может.
Отличить ноль от земли можно с помощью прозвонки. Сначала определяется и маркируется фаза, затем щупом прозвонки нужно прикоснуться к одному и проводников и клемме заземления в электрощитке. Ноль звониться не будет. При прикосновении к земле раздастся характерный звуковой сигнал.
Источник: https://crast.ru/instrumenty/faza-nol-zemlja-chto-jeto
Нулевой провод, фаза ноль
В первую очередь нужно понять, что же такое фаза, и что ноль, и только после этого – как их найти.
В промышленных масштабах и в быту производится разный ток, это трехфазный переменный и однофазный, соответственно. Трехфазная сеть характерна тем, что переменный ток течет по трем проводам, а возвращается назад – по одному. А однофазная отличается тем, что наша квартирная проводка подключается только к одному из трехфазных проводов, схематически данный процесс изображен на рисунке 1.
Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника.
Важно понимать, что возникновение электрического тока возможно исключительно при наличии замкнутой электрической сети (рисунок 2). Состоит такая сеть из следующих элементов:
- обмотка – Lт,
- трансформатор подстанции – 1,
- соединительная линия – 2,
- электропроводка квартиры – 3.
В данной схеме фаза обозначена как L, ноль – N.
Чтобы в замкнутой сети протекал ток, важно обеспечить подключение к ней хотя бы одного потребителя энергии – Rн, иначе тока не будет, однако напряжение в фазе останется.
Обмотка Lт имеет два конца: один из них имеет контакт с грунтом, то есть, заземлен (Змл) и идет от этой точки заземления, он называется нулевым. Другой конец называется фазовым.
Как определить фазу и ноль
Здесь можно сделать вывод, что напряжение между нулевым и фазовым (220 Вольт) значениями будет равно примерно нулю, этот факт определяется сопротивлением заземления.
Например, по каким-либо причинам может возникнуть ситуация контакта между фазой и металлическим корпусом электроприбора, который является токопроводящим, вследствие чего появится напряжение. Чтобы избежать в такой ситуации поражения электрическим током, необходимо устройство защитного отключения, которое может обеспечить защиту.
В случае, если человек коснется напряженного корпуса этого электроприбора, может возникнуть электрический ток, который будет протекать через тело, причиной тому, наличие электронного контакта между телом и «землей» (рисунок 4).
Степень опасности, которая грозит при этом человеку, зависит от величины сопротивления этого контакта, на это могут влиять следующие факторы: например, влажный или металлический пол, контакт строительной конструкции с естественными заземлителями (батареи, водопроводные трубы) и другие.
И, соответственно, чем меньше сопротивление контакта, тем больше опасность.
В такой ситуации заземление корпуса станет решением проблемы (рисунок 5).
На практике этот способ защиты реализуется следующим образом: необходимо проложить отдельный заземляющий проводник РЕ, который затем заземлить тем или иным способом (рисунок 6).
Существуют различные способы заземления, каждый имеет свои достоинства и недостатки, однако это уже тема для отдельной статьи, не будем останавливать сейчас на этом свое внимание.
Сейчас перейдем к рассмотрению нескольких важных практических вопросов.
Заземление и нулевой провод: как отличить
Зачем нужно заземление и нейтральный провод?
В процессе монтажа электрической сети в квартире или в доме вы неизбежно столкнётесь с вопросом что такое нулевой провод и заземление и в чем их отличие? Ведь без четкого понимания данного вопроса смонтировать электрическую сеть, полностью отвечающую нормам ПУЭ (Правила устройства электроустановок) достаточно сложно. Поэтому в нашей статье мы постараемся разобраться с данным вопросом и приведем основные правила монтажа этих цепей.
Что такое заземление и нейтральный провод
Прежде всего давайте разберемся, что такое нулевой и что такое защитный провод, в чем их отличия и в чем предназначение? Исходя из этого нам проще будет понимать правила их подключения и те требования которые к ним предъявляет ПУЭ.
Что такое нулевой провод
Прежде всего остановимся на нулевом или как его еще называют нейтральном проводе. Согласно п. 1.7.35 ПУЭ он предназначен для питания электроприемников и соединен с глухозаземленной нейтралью трансформатора.
Что такое нулевой провод?
- Если же говорить простым языком и отбросить некоторые не столь важные для нас нюансы, то нулевой провод — это проводник, соединенный с заземленной частью трансформатора или генератора от которого вы получаете питание.
- В однофазной сети, которая используется у нас практически во всех частных домовладениях и квартирах, для работы электроустановок обязательно необходим фазный и нулевой провод. Нулевой провод по сути непосредственно соединен с землей и в идеале имеет нулевой потенциал. То есть напряжения на нем нет.
Обратите внимание! Напряжения на нулевом проводе нет если он соединен с землей.
Если эта связь по какой-либо причине нарушена, то во время работы электроустановки он оказывается под напряжением равном фазному. То есть для однофазной сети равном 220В.
- На схемах нулевой провод обозначается символом «N». Старая советская инструкция рекомендовала применять обозначение «0» и его еще можно встретить на некоторых схемах. А сам провод согласно п.1.1.30 ПУЭ должен быть выполнен проводом синего цвета.
Что такое заземление?
Заземление или защитный проводник согласно п. 1.7.34 ПУЭ предназначен исключительно для целей электробезопасности. В нормальных условиях он не находится под напряжением и выполняет роль проводника только в случаях нарушения изоляции фазного или нулевого проводника. При этом на самой электроустановке он снижает потенциал до безлопастного.
- Если говорить простым языком, то заземление необходимо только на случай поломки. Например, у вас произошел пробой изоляции стиральной машинки. Если она не будет заземлена, то прикосновение к ней равноценно прикосновению к фазному проводу. Если же она будет заземлена, то нечего не произойдет, так как избыточный потенциал через заземление уйдет в землю.
- Заземление может выполняться по разным схемам в зависимости от ваших возможностей и схемы питающей сети. Данный вопрос мы рассмотрим ниже.
- Защитный проводник на схемах принято обозначать символами «PE». Сам же проводник должен быть выполнен из провода желто-зеленого цвета.
- На некоторых схемах вы можете встретить обозначение «PEN». Это обозначает совмещение нулевого и защитного проводов. О нем мы поговорим чуть ниже. Цвет такого провода согласно п.1.1.29 ПУЭ должен быть голубым с желто-зелеными полосами на концах.
Схемы подключения нейтрального провода и заземления
Теперь вы знаете как отличить нулевой провод от заземления и понимаете, что и то, и другое является соединением с землей. Теперь можно рассмотреть возможные схемы подключения нейтрального провода и заземления. Все они четко оговорены в п.1.7.3 ПУЭ. Мы рассмотрим только схемы с глухозаземленной нейтралью которые применяются в наших электрических сетях.
На фото представлена система ТТ
Итак:
- Прежде всего рассмотрим систему ТТ в которой нейтральный провод подключен к заземлению трансформатора, а заземление к независимому источнику. Этот метод применяется очень редко, да и цена монтажа такой системы является наиболее высокой.
- Значительно чаще используются системы типа ТN в которых используются PEN проводники. То есть на всем протяжении или на отдельных участках нулевой и защитный проводники проложены одним проводом, либо подключаются к одной точке заземления.
- Наиболее оптимальной в данном случае в вопросах электробезопасности является система TN-S. В ней нулевой и защитный проводники подключены к единой точке заземления, но на всей протяженности выполнены отдельными проводниками.
- Значительно чаще можно встретить систему TN-C, которую достаточно просто реализовать своими руками. В ней нейтральный провод и заземление выполнены одним проводом по всей длине. Но это наименее безопасный вариант с точки зрения электробезопасности.
- И последним возможным вариантом является система TN-C-S. Как понятно из названия она совмещает в себе две предыдущие системы. То есть на одном участке выполнена совместная прокладка нейтрали и заземления, а на втором участке они разделены.
Правила подключения нейтрального провода и заземления
Зная возможные схемы подключения заземления и нулевого провода можно говорить о правилах и требованиях к их подключению. Ведь они хоть и не значительно, но разняться. Кроме того, мы надеемся, что объясним часто встречающийся вопрос зачем заземлять нулевой провод.
- Прежде всего поговорим о системе ТТ. Согласно п.1.7.59 ПУЭ данная система может применяться только в исключительных случаях, когда не одна из систем TN не может обеспечить должный уровень защиты.
Обратите внимание! При использовании системы ТТ обязательно применение автоматов УЗО. Причём нормы ПУЭ предъявляют к ним отдельные требования по току срабатывания.
- Но и для системы TN все не так просто. Согласно п.1.7.61 ПУЭ на вводе в здание или в электроустановку они должны иметь повторное заземление. Давайте разберемся зачем это необходимо.
- В системе TN как мы уже знаем, нулевой и защитный проводники монтируются одним проводом. В случае обрыва этого совместного провода получается, что нулевой и защитный провод образуют единое целое. Ведь они не соединены с землей.
- Если у нас нет соединения с землей, то как мы уже знаем при включении любого электроприбора или даже лампочки нулевой провод оказывается под фазным напряжением.
- Но для системы TN нулевой и фазный провод частично или полностью объединены. То есть провод заземления тоже оказывается под фазным напряжением. А фазный провод у нас подключен к корпусу нашей стиральной машины, фена, холодильника и другого электрооборудования. Выходит, и на их корпусе появится фазное напряжение. И при прикосновении к ним вы получите удар электрическим током.
Зачем выполнять повторное заземление?
- Именно исходя из этих соображений повторное заземление нулевого провода по ПУЭ для систем TN обязательно. Ведь такое повторное заземление снижает риск подобных случаев. А если оно выполнено у всех электропотребителей, то вероятность подобных случаев становится еще ниже.
- Кроме того, нормы ПУЭ в многоэтажных зданиях требуют присоединения PEN шины к шине уравнивания потенциалов, которая согласно п.1.7.82 ПУЭ должна соединяться со всеми заземленными проводниками в доме.
- Отдельные требования ПУЭ предъявляет к потребителям, которые подключены к электрической сети при помощи воздушной линии. Контур повторного заземления нулевого провода и заземления для таких потребителей должен быть оборудован согласно п.17.101 и 1.7.102 ПУЭ.
- Для таких потребителей нормируется не только сопротивление искусственного заземлителя, но и предъявляются требования к его материалу, а также сечению и толщине. Ведь на воздушных линиях обрыв одного провода значительно более вероятно.
Вывод
Как видите вопрос правильного выполнения заземления и монтажа нулевого провода достаточно многогранен. Мы уделили внимание лишь основным аспектам и попытались разъяснить назначение данных проводников. Более детальную информацию по поводу монтажу заземления, зануления и контуров заземления вы можете получить в следующих статьях на нашем сайте, а также на видео.
Источник: https://elektrik-a.su/kabeli-i-provoda/zazemleniya/zazemlenie-i-nulevoj-provod-482
Как найти фазу и ноль: простые и действенные способы
1 звезда 2 звезды 3 звезды 4 звезды 5 звезд
Если нужно сделать разводку осветительной группы или поменять автомат на линии, важно четко узнать, какой провод фазный. Как найти фазу и ноль быстро и точно? CHIP расскажет о нескольких действенных способах.
Andrey Popov/Adobe Stock
Есть несколько способов точно определить, какой из проводов в розетке или разводке фазный.
Для чего нужно знать, где фаза?
Определение фазного проводника необходимо в таких случаях:
- Монтаж выключателей. Выключатели на свет размыкают исключительно фазу. Если перепутать и посадить на выключатель ноль, тогда патрон всегда будет находиться под напряжением и замена лампочек или ремонт патрона может быть опасной для жизни человека.
- Монтаж автоматов. Обычно автоматы применяются одноконтактные, и на них заходит только фаза. Ноль же остается неразмыкаемым. Поэтому, чтобы не перепутать и не завести ноль на автомат, необходимо четко определить фазный провод.
Находим фазу индикаторной отверткой
Проще всего отыскать фазный проводник индикаторной отверткой. Она есть практически в каждом доме. А если нет, то ее можно купить за 50 — 100 рублей. Возьмите контрольку от Stanley — она точно и быстро сигнализирует о наличие фазы.
Для определения фазы стоит сделать следующее:
- Убедиться, что розетка, удлинитель или автомат находятся под напряжением. В нашем случае мы будем проверять удлинитель.
- В один из контактов вставляем жало отвертки.
- Сверху пальцем дотрагиваемся до металлической «пятки».
- Если светодиод внутри горит (может гореть разными цветами), мы попали на фазу, а если нет — на нулевой проводник.
Каждая индикаторная отвертка должна четко реагировать на фазный проводник. Теоретически светодиод должен загореться, даже если в сети будет напряжение в 50 В, но на практике каждая контролька показывает себя по-разному.
Также обратите внимание на то, что существуют индикаторные отвертки на батарейках. В их случае не нужно зажимать контактную пластину пальцем — просто вставляем жало в контакт, и светодиод должен загореться.
Контактная пластина здесь нужна лишь для проверки работоспособности самой отвертки, и если нажать на нее пальцем, то светодиод будет светиться всегда.
Находим фазу мультиметром
Если у вас еще нет мультиметра, советуем узнать, как выбрать хороший прибор из этой статьи. Для определения фазного проводника мультиметром важно выполнить следующие действия:
- Переводим регулятор в режим измерения переменного напряжения (как показано на картинке). Обратите внимание, что измерение может производиться в диапазоне от 1 до 200 В и от 1 до 750 В. Выбираем второй режим, так как в нашей сети 220 В.
- Один из щупов вставляем в контакт, а второй зажимаем двумя пальцами — на приборе должно отображаться показание напряжения.
- Если отображается до 10 — 15 В, скорее всего вы попали на нулевой провод. Если же напряжение от 100 до 230 В, это фаза.
- Также можно не зажимать пальцами щуп, а прикоснуться им к стене рядом с розеткой или к заземленной металлической поверхности.
Для подобных замеров подойдет даже самый недорогой прибор. Например, DT 830B, которым пользуемся мы сами. Он стоит всего 250 рублей, но точность замеров у него хорошая.
Стоит ли искать фазу лампочкой?
Некоторые электрики предпочитают искать фазу контрольной лампочкой. Для этого они берут обычную лампу накаливания, патрон и два многожильных провода. Провода соединяются с патроном, а лампочка соответственно вкручивается в него. Затем один конец провода прикасается к металлической трубе отопления, а второй вставляется в контакт для поиска фазы. Где лампочка загорелась, там и фаза.
Мы такой способ не рекомендуем, так как он чреват поражением тока – при неосторожном движении можно коснуться оголенного провода. Также были случаи, когда лампа накаливания взрывалась в момент прикосновения к фазе. По этим причинам лучше воздержаться от подобного «народного» метода определения фазы и воспользоваться специализированными приборами.
Источник: https://ichip.ru/sovety/remont/kak-najti-fazu-prostye-i-dejstvennye-sposoby-707802
Польза и вред нулевого провода в электросети
Фазный и нулевой провод — неотъемлемая часть электрической сети любого здания. О том, зачем нужен первый из них, наверное, известно всем. По нему течет ток от трансформаторной подстанции, которая обеспечивает дом электроэнергией. Если случайно дотронуться до такого провода рукой, можно получить ощутимый удар.
Назначение же «нуля» заключается в том, что он обеспечивает в современной системе равномерность фазных напряжений. Дело в том, что электропитание жилых многоэтажных и части промышленных объектов осуществляется при помощи трехфазной сети с напряжением 380 V и глухо заземленной нейтралью.
К домам старой постройки протянуты три фазных провода и один нейтральный (нулевой). В новостройках присутствует и еще один дополнительный проводник — защитный нулевой провод (или заземление). Эти общие линии тянутся вертикально по всем этажам, где уже на этажных щитах происходит разводка по квартирам. К одной фазе могут иметь подключение несколько абонентов.
Но, каковым бы ни было количество потребляемой ими электроэнергии, напряжение в исправной сети всегда остается равным 220 V. Между любой фазой и нулем поддерживается именно такая разность потенциалов. Технически нулевой провод привязан к земле и условно ей равен, что обеспечивает мгновенную регулировку напряжения при любой нагрузке.
Рабочий ноль, как его называют, в обычной ситуации не бьется током и совершенно безопасен. Но так бывает не всегда. Стоит нулевому проводу оборваться или отгореть и ситуация мгновенно меняется. Такое положение вещей становится опасным как для техники, так и для людей. В чем заключается суть процессов, и как избежать неприятностей, сказано ниже.
Обрыв общего и квартирного нулевого провода: причины и последствия
Выход из строя общего нулевого провода спровоцирует резкий скачок напряжения. О причинах долго говорить не стоит. В большинстве случаев будут виноваты:
- старая проводка,
- некачественный монтаж,
- аварийная ситуация на подстанции.
К жильцам дома это никакого отношения не имеет. Но пострадавшей стороной окажутся именно они.
Когда ноль не сможет выполнять свои функции и отводить ток в предназначенную для него нейтральную точку трансформатора, он станет самостоятельно искать место с меньшим сопротивлением, чтобы устремиться к земле. Такова природа тока. Им окажется самая загруженная фаза, в которую подключено на данный момент максимальное количество потребителей.
При отсутствии ноля напряжение в таком проводе станет меньше, что спровоцирует его повышение в другом, том, где нагрузка менее выражена. Конец внештатной ситуации окажется печальным для домовладельцев, чьи квартиры запитаны от «несчастливой» фазы. От практически моментально возникшего в сети высокого напряжения сгорит вся подключенная в розетку бытовая техника, светильники и другие приборы. В этом случае также велика вероятность возникновения пожара.
При обрыве или обгорании квартирного нуля ситуация будет другой. Причины ее вызвавшие:
- ненадежные контакты;
- недостаточное сечение проводника;
- ветхая проводка давно не видавшая ремонта.
На этот раз технике ничего угрожать не будет. Пропадет напряжение в сети, все потребители отключатся.
Неприятность заключается в том, что фаза никуда не денется, причем появиться она теперь может и на соседней клемме розетки, перейдя в нулевой провод. Включенные в сеть приборы станут своеобразным мостиком для этого. Притом, что разводка нулевых квартирных проводов завязана на одной нулевой шине в электрощите, две фазы будут во всех розетках квартиры.
Опасность заключается в том, что при случайном прикосновении к приборам, контактирующим с такой сетью, удар током гарантирован.
Вероятность электротравмы максимальна, если в квартире сделано заземление электроприбора на рабочий нулевой проводник. Использовать землю в качестве фазного или нулевого провода недопустимо.
Меры предосторожности
Обеспечение электробезопасности своего жилья — в первую очередь задача самих хозяев. Предупредить ситуацию легче, чем исправлять ее последствия. Риску обрыва нулевого провода подвержены не только владельцы жилья в многоэтажках, но и люди, проживающие в частном секторе. Защититься от неприятностей можно несколькими способами.
Например, выполнить повторное заземление нулевого провода. Проще всего такие работы провести в своем доме. В новостройках по новым правилам защитный ноль уже включен в электрическую сеть дома, в остальных случаях о возможности подключения стоит проконсультироваться в соответствующей организации. Повторное заземление обеспечит безопасный отвод тока в землю, что пасет и технику и людей.
Хорошим спасением от скачущего напряжения станет установка стабилизатора. Но, такой вариант более приемлем для частного сектора из-за больших габаритов прибора. В небольшой квартире установить удобно его не получится.
В условиях ограниченного пространства подойдет другая защита от обрыва нулевого провода. Речь о модульных устройствах, устанавливаемых в этажном электрощите. Они компактны и надежны в работе. Конечно, выровнять напряжения они не могут, но отключить квартиру или дом от аварийной сети при перепадах напряжения способны максимально четко.
Среди представленных на рынке моделей покупатель найдет как недорогие образцы устройств, работающие только на автоматическое обесточивание, так и более совершенную технику, позволяющую фиксировать значения аварийных величин, а также самостоятельно включать ток после устранения опасности.
Монтаж приспособлений защиты при должном знании электрики можно проводить своими руками. В противном случае, лучше пригласить специалиста.
Высоковольтные провода для машины
Многим автомобилистам приходилось бывать в такой ситуации: с наступлением минусовых температур машина плохо заводится с холодным мотором. Виноваты могут быть высоковольтные провода, отвечающие за подачу искры при зажигании. Эти детали относятся к категории элементов, требующих периодической замены.
Дополнительно старые провода могут терять герметичность изоляции, что провоцирует утечку тока. В них также может повышаться сопротивление из-за изношенности токопроводящего стержня. Все это приводит к очевидным проблемам при запуске авто.
На сегодняшний день наилучшими признаны высоковольтные провода зажигания с нулевым сопротивлением, изоляция и внешние детали которых сделаны из силикона. Такое покрытие остается гибким на морозе, не ломается со временем и способно выдерживать повышенные температуры под капотом. Многие умельцы просто отказываются от покупки нового комплекта в магазине и делают ВВ провода самостоятельно.
У такой самоделки есть свои плюсы и минусы. К первой категории можно отнести:
- легкий старт (машина заводится без проблем в любых условиях);
- минимальный расход топлива (сжигание происходит полностью и одинаково во всех цилиндрах);
- минимум потраченных средств на замену детали (самодельные провода обойдутся дешевле заводских).
С другой стороны недостатки тоже имеются (но не всегда проявляются). К ним можно отнести:
- более частую замену свечей;
- проблемы с работой горячего мотора;
- возможные радиопомехи.
Провода на инжектор имеют очень простое устройство. Для работы понадобится:
- провод в силиконовой оплетке с медной жилой по диаметру и длине соответствующий старым проводам;
- снятые со старого комплекта наконечники, резинки и колпачки;
- обжимник, пассатижи или паяльник;
- инструмент для снятия изоляции;
- силиконовый герметик для заделки пространства между проводом и защитным колпачком;
- немного свободного времени.
Как изготовить высоковольтные провода для авто? Да очень просто. Нарезать провод, зачистить жилу, обжать контакты (некоторые советуют здесь для верности пользоваться паяльником). На клеммы надеть резинки и колпачки изоляторов. При необходимости нанести силикон в месте соединения колпачков с проводом. Дождаться высыхания клея и можно готовую деталь монтировать на авто.
Статья была полезной? Оцени и поделись ей в соц. сетях:
Источник: http://expertelektrik.ru/polza-i-vred-nulevogo-provoda-v-elektroseti.html
Греется ноль в электропроводке: причины и как устранить
Довольно распространенная проблема старой проводки – нагрев нулевых проводов в распределительном щитке. Если вы столкнулись с такой неприятностью необходимо срочно принимать меры, поскольку обрыв нуля представляет серьезную опасность, особенно в трехфазных цепях электрического тока. Из сегодняшней статьи Вы узнаете, почему греется нулевой провод и как устранить эту проблему.
Наиболее вероятные причины нагрева
На тематических форумах периодически возникают споры относительно причин, вызывающих нагрев жил с нулевым потенциалом при нормальном состоянии фазных проводов бытовой сети. Несмотря многочисленные дискуссии по данному вопросу, существует всего три фактора, способные вызвать рассматриваемое негативное воздействие:
- Низкая надежность электрического контакта.
- Влияние высших гармоник.
- Повышенная нагрузка на ноль.
Предлагаем детально рассмотреть каждую из перечисленных выше причин.
Низкая надежность электрического контакта
Указанная причина наиболее характерна для старых проводок из алюминиевых проводов. Недостатки этого материала неоднократно описывались в других публикациях на нашем сайте, но не будет лишним еще раз кратко перечислить их:
- Образование оксидной пленки на проводе, что вызывает рост сопротивления контакта.
- Пластичность материала требует регулярного подтягивания соединений.
- Перегрев алюминиевого провода повышает его хрупкость.
Учитывая, что внимание чаще уделяется электрическим контактам фазных проводов, про нулевую шину часто забывают. В результате со временем увеличивается сопротивление контакта, он нагревается и рано или поздно отгорает. Ради справедливости следует заметить, что данная проблема может наблюдаться и у медных проводов. Пример плохого контакта с нулевой шиной в квартирном щитке продемонстрирован на фото.
Перегрев нулевых проводов из-за плохого контакта
Характерно, что приведенная проблема чаще всего проявляется именно в квартирных щитках, а не электроточках. Это объясняется тем, что на контактные соединения проводов с нулевой шиной приходится более значительная нагрузка, чем на отдельную розетку.
Влияние высших гармоник
С появлением в быту и офисах большого количества электрических приборов, оснащенных импульсными БП возникла проблема с перегревом и, как следствие, разрушением (отгоранием) провода рабочего нуля. Это происходит по причине перегрузки последнего токами высших гармоник. То есть, возникает ситуация, при которой на ноль приходится больший ток, чем на фазные проводники. При этом установка защитных устройств часто производится только на последние.
В старых системах в расчет принималась исключительно линейная нагрузка, в которой присутствует лишь основная гармоника (В Советском Союзе, а впоследствии и на постсоветском пространстве это 50,0 Гц). В соответствии с этим считалось, что нагрузка фазные провода будет всегда выше, чем на рабочий ноль. Из этого следовала невозможность перегрузки нуля больше фазы. Таким образом, защита фаз от перегрева обеспечивала и безопасность нуля.
С появлением большого числа электропотребителей, создающих нелинейные нагрузки, происходит повышение тока, идущего через рабочий ноль. Это может привести к отгоранию последнего в старых энергосистемах. Примеры бытовых электроприборов вызывающих нелинейность:
- Микроволновые, индукционные, а также дуговые электропечи.
- Светодиодные и газоразрядные источники света.
- Все устройства с импульсными БП.
- Инверторные электрические машины и т.д.
Чтобы не допустить обрыва нуля вследствие влияния высших гармоник, в некоторые нормативные документы были внесены изменения. В качестве примера можно привести ГОСТ 30804.4.30 2013, в котором предписывается при расчетах принимать во внимание гармоники, чей порядок от 40-го и выше. В ГОСТе 50571.5.52 2011 рекомендуется выбирать сечение кабеля в зависимости от самой нагруженной токоведущей жилы, при этом должна учитываться и токовая нагрузка рабочего нуля.
К сожалению, рамки текущей статьи не позволяют более полно раскрыть тему высших гармоник, но мы обязательно к ней вернемся в одной из последующих публикаций на нашем сайте.
Повышенная нагрузка на ноль
Иногда можно услышать, что перегрев провода нуля связан с повышенной нагрузкой из-за подключения соседа к шине РЕ с целью воровства электричества. Такой вариант интересен, но не реализуемый.
В одной из наших публикаций, где описывались различные конструкции электросчетчиков, рассматривалась их устойчивость к различным способам воровства электрической энергии.
В частности, там разбирался вариант использования земли в качестве рабочего нуля и объяснялось, почему данный способ не работает на современных устройствах энергоучета.
Как уже упоминалось выше, в нулевом рабочем проводе ток может превысить фазный только в случаях проявления высших гармоник. Подключение соседа к нулю (в Вашем щитке) вызовет перегрев данного провода, если в результате таких действий образуется плохой контакт с общей шиной.
Чем опасен перегрев нулевого провода?
Подобная нештатная ситуация почти гарантированно приведет к обрыву нуля. Чем это грозит, неоднократно упоминалось в других публикациях на нашем сайте. Кратко напомним, о чем в них шла речь, начнем с обрыва нуля в трехфазных сетях.
Обрыв нуля в трехфазной сети
Как видно из приведенного изображения, обрыв нулевого провода приведет к несимметрии фазных напряжений, такую нештатную ситуацию также называют перекосом фаз. В результате аварии в однофазных сетях могут образоваться напряжения близкие по величине к линейному, то есть, приблизиться вплотную к 380 В. Чем это грозит бытовой технике и электронике? В лучшем случае сработает защита БП, в худшем, — устройствам потребуется дорогостоящий ремонт.
Если отгорит ноль в системе однофазных нагрузок, то последствия для бытовой техники будут не столь печальные, как случае электрической сети на 3 фазы. Ниже продемонстрированы наиболее вероятные точки обрыва для бытовой сети.
Вероятные места обрыва нуля в квартире
Из рисунка видно, что обрыв возможен на вводных контактных соединениях автомата защиты. Проблемы с электрическим контактом могут образоваться на шине РЕ (особенно, если разводка выполнена алюминиевым кабелем). Последний вариант – обрыв в розетке. При любом из перечисленных вариантов бытовая техника не будет работать.
Казалось бы, ничего страшного, но любой прибор, оставшийся подключенным к сети, приведет к тому, что нейтральном проводе образуется опасный потенциал. В системе заземления TN-C это может создать прямую угрозу для жизни, поскольку на зануленном корпусе появится фазное напряжение. В более современных системах TN-C-S, подобная ситуация приведет к короткому замыканию и срабатыванию АВ.
Как не допустить критического нагрева нуля?
Поскольку в масштабах квартиры влияние высших гармоник незначительно, то сразу перейдем к проблеме плохих электрических контактов. Если Вы обнаружили в квартирном щитке проблемное место, где греется электрическое соединение, то в первую очередь отключите вводный автомат и убедитесь, что после этого ток не течет. Проверку лучше выполнить, комбинируя пробник напряжения и мультиметр, включенный в режим измерения переменного тока.
Убедившись в отключении питания, ослабьте проблемный контакт (как правило, это винтовой зажим), чтобы извлечь из него провод. Произведите его зачистку, а также зажима. Если разводка щитка выполнена многожильным медным проводом, то его концы необходимо залудить или обжать. После этого можно собрать контакт. Следует учитывать, что «пережатие» провода винтовым соединением также нежелательно, как и слабый зажим.
Прямой контакт меди и алюминия недопустим, поскольку эти материалы образуют гальваническую пару, в результате электрическое сопротивление такого соединения довольно быстро возрастет.
Если монтаж выполнен при помощи тонких проводов, то желательно произвести их замену. Как правильно подобрать сечение в зависимости от тока нагрузки, рассказано на нашем сайте.
Защита от перекоса фаз
Наиболее оптимальный вариант для данного случая — установка реле напряжения.
Реле напряжения
Это устройство обеспечит защиту, как от падения напряжения, так и его чрезмерного увеличения. В качестве альтернативного решения можно предложить установку стабилизатора на всю квартиру. Несмотря на более высокую стоимость преимущества очевидны – «проседание» или перенапряжение не будет вызывать отключение подачи электроэнергии.
Источник: https://www.asutpp.ru/pochemu-greetsya-nulevoy-provod.html