Для чего применяется нейтральный провод

Ноль и нейтраль в чем разница

Для чего применяется нейтральный провод

Нейтральный (нулевой рабочий) провод — провод, соединяющий между собой нейтрали электроустановок в трёхфазных электрических сетях.

Назначение [ править | править код ]

При соединении обмоток генератора и приёмника электроэнергии по схеме «звезда» фазное напряжение зависит от подключаемой к каждой фазе нагрузки. В случае подключения, например, трёхфазного двигателя, нагрузка будет симметричной, и напряжение между нейтральными точками генератора и двигателя будет равно нулю.

Однако, в случае, если к каждой фазе подключается разная нагрузка, в системе возникнет так называемое напряжение смещения нейтрали, которое вызовет несимметрию напряжений нагрузки. На практике это может привести к тому, что часть потребителей будет иметь пониженное напряжение, а часть повышенное.

Пониженное напряжение приводит к некорректной работе подключённых электроустановок, а повышенное может, кроме этого, привести к повреждению электрооборудования или возникновению пожара.

Соединение нейтральных точек генератора и приёмника электроэнергии нейтральным проводом позволяет снизить напряжение смещения нейтрали практически до нуля и выровнять фазные напряжения на приёмнике электроэнергии. Небольшое напряжение будет обусловлено только сопротивлением нулевого провода.

Обозначение [ править | править код ]

Нулевой рабочий провод обозначается буквой N. Если нулевой рабочий провод одновременно выполняет функцию нулевого защитного провода (в системе заземления TN-C), то он обозначается как PEN. Согласно ПУЭ цвет нулевого рабочего провода должен быть голубым или бело-голубым [1] . Такая же расцветка принята в Европе. В США цвет нулевого рабочего провода может быть серым или белым.

Нейтраль в ЛЭП [ править | править код ]

В линиях электропередач разных классов применяются различные виды нейтралей. Это связано с целевым назначением и различной аппаратурой защиты линии от короткого замыкания и утечек. Нейтраль бывает глухозаземлённая, изолированная и эффективно-заземленная.

Глухозаземлённая нейтраль [ править | править код ]

Применяется в линиях напряжением от 0,4 кВ и до 35 кВ, при небольшой длине ЛЭП и большом количестве точек подключения потребителей. Потребителю приходят 3 фазы и ноль, подключение однофазной нагрузки осуществляется между фазой и нулевым проводом (нейтралью). Нулевой провод генератора также заземлён.

Изолированная нейтраль [ править | править код ]

Применяется в линиях с напряжением свыше 2 кВ до 35 кВ, такие линии имеют среднюю протяжённость и сравнительно небольшое число точек подключения потребителей, которыми обычно являются ТП в жилых районах и мощные машины фабрик и заводов.
В линиях на 50 кВ может применяться как изолированная, так и эффективно-заземлённая нейтраль.

Эффективно заземленная нейтраль [ править | править код ]

Применяется на протяжённых линиях с напряжением от 110 кВ до 220 кВ (п. 1.2.16 ПУЭ) Работа электрических сетей напряжением 110 кВ может предусматриваться как с глухозаземленной, так с эффективно заземленной нейтралью. Электрические сети напряжением 220 кВ и выше должны работать только с глухозаземленной нейтралью.

Передача электрического тока осуществляется по трехфазным сетям, при этом большинство домов имеет однофазные сети. Расщепление трехфазной цепи осуществляется с помощью вводно-распределительных устройств (ВРУ). Простым языком этот процесс можно описать следующим образом.

К электрощитку дома подводится трехфазная цепь, состоящая из трех фазных, одного нулевого и одного заземляющего проводов.

Посредством ВРУ цепь расщепляется – к каждому фазному проводу добавляется один нулевой и один заземляющий, получается однофазная сеть, к которой и подключаются отдельные потребители.

Что такое фаза и ноль

Попробуем разобраться, что такое ноль в электричестве и чем он отличается от фазы и земли. Фазные проводники используются для подачи электроэнергии. В трехфазной сети три токоподающих провода и один нулевой (нейтральный). Передаваемый ток сдвигается по фазе на 120 градусов, поэтому в цепи достаточно одного нуля. Фазовый проводник имеет напряжение 220 В, пара «фаза-фаза» – 380 В. Ноль не имеет напряжения.

Источник: https://crast.ru/instrumenty/nol-i-nejtral-v-chem-raznica

Вопрос5. Какой режим работы трехфазной цепи называют несимметричным?

Для чего применяется нейтральный провод

Ответ5.При несимметричной нагрузке комплексысопротивлений фаз нагрузки неравны Zа≠Zb≠Zc,

Вопрос6. Для чего используется нейтральный провод?

Ответ6.Нейтральный провод используется длявыравнивания фазных напряжений наклеммах нагрузки . ŮA=Ůа ; ŮВ =Ůb;ŮC =Ůc.В этом случае, падения напряжения нанагрузке остаются равными фазнымнапряжениям генератора. В случае, есливнутреннее сопротивление генераторапренебрежимо мало ( равно нулю ), напряженияна нагрузке остаются равными фазнымнапряжениям генератора, постоянными ине зависят от величины нагрузки. (Токбудет изменяться, а напряжение нанагрузке не изменится).

Вопрос7. Какими уравнениями описывается электрическое состояние цепи при несимметричной нагрузке?

Ответ7. При несимметричной нагрузке фаз иотсутствии нейтрального провода фазные комплексы напряжения на нагрузке ,,связаны с соответствующими комплексаминапряжений источника ŮA,ŮВ, ŮСуравнениями Кирхгофа :

;;;

где-комплексноенапряжение между нейтральными точкаминагрузки и источника (сети).

называютнапряжением смещения нейтрали.

Напряжениесмещения нейтрали рассчитывается методом 2-х узлов:

где : Ė– комплексные ЭДС, ġ- комплексыпроводимости фаз нагрузки.

Токи фаз нагрузки находят по закону Ома:

İa=Ůa/Za = (ŮA -)/Za;

İb=Ůb/Zb = (ŮB -)/Zb;

İa=Ůc/Zc = (ŮC -)/Zc.

Вопрос8. Как построить совмещенные векторные диаграммы напряжений и токов для исследованных режимов трехфазной цепи?

Ответ8.

Построениевекторных диаграмм начинаем с векторовлинейных напряжений, задаваемых сетьюи от условий опыта не зависящих. Эторавносторонний треугольник образованныйвекторами линейных напряжений. Длинавектора соответствует линейномунапряжению, а углы между векторамисоответствуют сдвигу фаз между вектораминапряжений.

Построениевекторной диаграммы для случая равномернойнагрузки.(симметричный режим).

1.Выбираем комплексную плоскость (+1,j).Реальную ось +1 направляем вертикальновверх, мнимую- вдоль оси -Х. ( поворотна угол +90°).

2.Выбираем масштаб напряжений, например1см→20В. Вектор Ua (в масштабе) откладываем вдоль реальнойоси +1.Конец вектора обозначаем малойбуквой а.

3.ВектораUUc(в масштабе) рисуем под углами +120° и–120° соответственно. Концы векторовобозначаем малыми буквами bи cсоответственно.

4.Точку, соответствующую, началу координат,обозначим малой буквой n.Это точка нейтрали приемника.

5.Строим вектора линейных напряжений.Для этого соединяем концы фазныхвекторов. Получим вектора Uab=UAB,Ubc=UBC,Ucа=UCА.Отметим, что линейные напряженияприемника равны линейным напряжениямгенератора.

ТочкаNна векторной диаграмме, соответствующаянейтральной точке генератора, находитсяв центре треугольника линейных напряжений.В данном случае нейтраль генератора Nсовпадает с нетралью приемника n.В общемслучае точку n,соответствующую нейтральной точкенагрузки, находят методом засечек.Векторы токов откладывают по отношениюк соответствующим векторам фазныхнапряжений с учетом сдвига фаз междуними.

Ниже приведенывекторные диаграммы для различныхрежимов работы.

Режим1.Равномернаянагрузка без нейтрального провода ( Рис 8.1.1).

Режим2. Обрывфазы А(Рис 8.1.2):

Приобрыве фазы А и одинаковой нагрузкедвух других фаз, нейтральная точкаприемника nпереместится на середину линейногонапряжения ŮBC.СопротивленияZbи Zc окажутсясоединенными последовательно ивключенными на линейное напряжениеŮBC.Падениенапряжения между точками А и nувеличится, а фазные напряжения Ůbи Ůc станут равными половине линейного ŮBC.

Рис 8.1.2 обрыв фазы

Режим3. Короткое замыкание фазы А(Рис 8.1.3).

Призамыкании фазы А и одинаковой нагрузкедвух других фаз (то есть при соединенииначала нагрузки фазы А с нулевой точкойнагрузки) точка nперемещается в точку А. Фазное напряжениеŮа становится равным нулю, ток İa увеличивается,а фазные напряжения Ůbи Ůcстановятся равными линейным.

Рис 8.1.3 короткоезамыкание

Режим4. Неравномернаянагрузка без нейтрального провода(Рис 8.1.4).

Сопротивления, Zа≠Zb≠Zc,фазныенапряжения приемника Ůа≠Ůb≠Ůc,междуточками Nи nпоявляется напряжение смещения нейтрали.

4.1Вначале строимтреугольник линейных напряжений.

4.2.Методом засечек( циркулем или линейкой)из каждой вершины откладываемсоответствующие вектора фазных напряженийприемника. Точка пересечения дуг дастточку нейтрали приемника n.Точку нейтрали генератора Nоставляем на прежнем месте.

4.3Соединяем точку nи N. Это векторнапряжения смещения нейтрали UnN ( в масштабе).

4.4Строим вектора фазных токов нагрузки.В случае, если нагрузкой являютсялампочки, которые можно представитькак активные сопротивления , то сдвигафаз между фазным напряжением и фазнымтоком нагрузки не будет. Поэтому векторатоков откладываем ( в масштабе) вдольсоответствующих векторов фазныхнапряжений.

***)В общемслучае надо определить сдвиги фаз междутоком и соответствующим фазнымнапряжением по закону Ома в комплекснойформе и строить вектор тока с помощьютранспортира.

Рис 8.1.4 Неравномернаянагрузка

Режим5. Неравномернаянагрузка с нейтральным проводом(Рис8.1.5).

Приналичии нейтрального провода фазныенапряжения приемника становятся равнымифазным напряжениям источника ŮA=Ůа ; ŮВ =Ůb;ŮC =Ůc :

Источник: https://studfile.net/preview/6179866/page:7/

Чем отличается ноль от нуль?

Для чего применяется нейтральный провод

Сегодня огромное множество статей посвящено электрике и практически ни одно пособие, будь то электронное издание или статья, изложенная на бумаге, не обходит стороной всем известный проводник, имеющий аббревиатуру N (нулевой проводник). В одних статьях пишут «ноль», в других «нуль». Поэтому возникает вопрос, как правильно называть понятный и, в то же время, загадочный проводник N, ноль или нуль?

Прежде чем ответить на поставленный вопрос, предлагаю окунутся в этимологию, т.е в науку, которая правильно толкует слова.

Ноль происходит от латинского слова “NULLUS”- никакой, пустой, несуществующий. В русском языке, ноль позаимствовали  с немецкого языка,”NULL”.  Привезли в Россию “NULL” ученые,  во времена Петра I. До петровских времен вычислениями занимались с помощью римских цифр.

Нуль в словаре русских синонимов

На голом месте плешь, ничто, шантрапа, десятая спица, отставной козы барабанщик, не велика птица, последняя спица в колеснице, мелкая сошка, нуль без палочки, мелкота, зеро, ниль, маленький человек, ноль без палочки, никто, пятая спица в колеснице, шиш, ноль, нулевой цикл, козявка, шушваль, ничтожность, пигмей, червяк, мелочь, червь, шваль, шушера, шишка на ровном месте, песчинка, пустое место, миздрюшка, нолик, нулевка, ординар, ничтожество, пешка, тля, прыщ на ровном месте, мелюзга, мыльный пузырь, некомпетентный, стрюцкий, нулик.

Что такое ноль и нуль?

Из Справочника по Русскому языку 1. Существуют две формы: ноль и нуль. В терминологическом значении (особенно в косвенных падежах) обычно используется вторая, например: равняется нулю, температура держится на нуле. В устойчивых выражениях встречаются обе формы: а) ноль целых, ноль внимания, в двенадцать ноль-ноль; б) абсолютный нуль, круглый нуль, обратиться в нуль, свести к нулю.

Производное прилагательное обычно образуется от формы нуль, например: нулевой меридиан, нулевой пробег.

Если ноль или нуль означает пусто,  зачем он тогда нужен?

Мы не считаем графин в доме  бесполезной емкостью,  сосуд, который можно было бы выбросить. Согласитесь, на все есть свое время. Графин может какое то время оставаться пустым,  затем,  в каких-то случаях, мы захотим использовать его для наполнения жидкостью.

Как используется нулевой проводник?

Для однофазной цепи ноль – это просто название проводника, не находящегося под высоким потенциалом,относительно земли.

Нулевой проводник

Схема звезда, в которой присутствует нулевой проводник

Переменные токи каждой фазы в трех одинаковых нагрузках сдвинуты по фазе ровно на одну треть и в идеале компенсируют друг друга, поэтому нагрузка в такой схеме обычно называется трехфазной, сосредоточенной  нагрузкой.  При  такой нагрузке  векторная сумма  токов в  средней  точке  равна нулю.

Нулевой провод, подключённый  к  средней точке,  практически не нужен, т. к. ток через него не течёт. Незначительный ток появляется только тогда, когда  нагрузки  на  каждой  фазе не полностью одинаковые и не полностью компенсируют друг друга.  И действительно,  на  практике  многие  виды  трёхфазных четырёхжильных кабелей имеют нулевую жилу вдвое меньшего сечения. Нет смысла тратить дефицитную медь на проводник, по которому ток практически не течёт.

Нулевой проводник

Ноль и нуль в электрике пустым не бывает

Нулевой проводник бывает не таким уж и пустым. Однажды в статье  я описал одну нехорошую тенденцию, которая нередко происходит  с тех времен, как в обиход вошли импульсные источники питания: DVD видео, телевизоры, компьютеры и т.п.. Эту тенденцию называют —  отгорание нуля.

Итак, подведем итог: Ноль или нуль используется исходя от того какие строятся предложения, но смысл двух слов имеет один корень от латинского слова «NULLUS»: никакой, пустой, не существующий. Но в электрике нулевой проводник не считается бесполезным. Как раз  без него, никак не обойтись. Ноль и нуль — это своего рода синонимы, происходящие от немецкого слова null.

статью: «Модульно-штыревое заземление«

Источник: http://electric-tolk.ru/chem-otlichaetsya-nol-ot-nul/

Компьютеры и трехфазная электрическая сеть

вдруг на экране дисплея начало дрожать изображение, сбилась программа, дисплей мигнул и компьютер стал снова загружаться или (самый тяжелый случай) экран компьютера погас и запахло паленой изоляцией. В таких случаях легко выясняется, что причина кроется в плохой силовой электрической сети. Вы обращаетесь за консультацией, и обычно вам советуют купить источник бесперебойного питания (ИБП) или сетевой фильтр. Но иногда и это не помогает.

Решая задачу электропитания вычислительной системы, состоящей из некоторого числа однофазных потребителей (компьютеров, разветвителей и др.), часто не учитывают того, что система в целом подключена к трехфазной электрической сети.

Электрическая сеть. История

Сначала небольшой исторический экскурс. Начинались электрические сети просто: был генератор и от него тянулись два провода, к которым желающие могли подключить электрическую лампочку, мотор и тому подобные устройства.

Многие, зная, что к их розетке подходят два силовых провода, думают, что, с точки зрения подключения нагрузки, с тех пор ничего не изменилось.

На самом деле в 1891 году произошло событие, усложнившее эту простую схему. Русский ученый Доливо-Добро вольский изобрел трехпроводную трехфазную сеть. Пре имущества трехфазной сети для энергетиков настолько велики, что даже в обозримом будущем специалисты не видят ей альтернативы.

Классическая трехпроводная трехфазная сеть создавалась для подключения трехфазных нагрузок (в основном электродвигателей) и идеально подходит для них. В случае трехфазной нагрузки токи, потребляемые в каждой из фаз, одинаковы. Поэтому все три фазных напряжения также одинаковы.

В случае если в трехфазную сеть включены однофазные нагрузки (электрические лампы, компьютеры и т. д.), сопротивления нагрузки в разных фазах могут оказаться не одинаковыми. Фазные напряжения в классической трех фазной сети также станут разными.

Например, если две фазы мало нагружены, а третья сильно нагружена, то напряжение в сильно нагруженной фазе будет намного ниже номинального – 220 В (напряжение может оказаться недостаточным для нормальной работы оборудования), а напряжение в недогруженных фазах будет намного больше номинального (и подключенное к ним оборудование может выйти из строя). Описанное явление электрики называют перекосом фаз.

Для того чтобы выровнять напряжения в трехфазной электрической сети, в схему был введен еще один, так называемый нейтральный провод, или просто «нейтраль» (рис. 1).

По нейтральному проводу течет ток, компенсирующий разность токов в отдельных фазах. Благодаря этому напряжения в разных фазах выравниваются.

Теперь понятно, насколько опасным может быть обрыв нейтрального провода. Этот вид неисправности немедленно приведет к перекосу фаз и повреждению однофазного оборудования.

Значительная часть мощности трехфазной электрической сети потребляется трехфазными нагрузками (электродвигателями, печами и т. д.). Каждая из трехфазных нагрузок одинаково нагружает все три фазы сети.

В случае если основную часть мощности сети потребляют однофазные нагрузки, например в офисном здании, электрики стараются распределить нагрузку по фазам более или менее равномерно. На рис. 2 приведена типичная осциллограмма токов в трехфазной электрической сети, нагруженной лампами или электродвигателями.

Токи в линейных проводах отличаются не более, чем на 25%. Поэтому ток в нейтральном проводе невелик. Он составляет не более 20% от среднего тока в линейных проводах.

В расчете на эту типичную картину нейтральный провод обычно делают тоньше остальных проводов трехфазной электрической сети. Например в трехфазном силовом ка беле, рассчитанном на мощность сети около 70 кВА, линейные провода имеют сечение 35 кв. мм, а нейтральный провод – 16 кв. мм. Это позволяет сэкономить много дорогой меди и обычно не представляет опасности, так как ток, протекающий через нейтральный провод, невелик.

ЭТО ИНТЕРЕСНО:  Что такое нейтраль электрической сети

С появлением компьютеров, имеющих беcтрансформаторные импульсные блоки питания, положение сильно ухудшилось. Чем же опасны для сети эти блоки питания?

Линейные и нелинейные нагрузки

Если мы подключим к источнику синусоидального переменного напряжения (например, к сети или к ИБП с синусоидальным выходным напряжением) сопротивление, емкость, индуктивность или любое сочетание этих нагрузок, зависимость тока в цепи от времени тоже будет иметь форму синусоиды (рис. 3). Такие нагрузки (потребители электроэнергии) называются линейными.

Если к источнику синусоидального напряжения подключить компьютер, то зависимость тока, потребляемого компьютером, от времени будет иметь вид, показанный на рис. 4.

На рисунке хорошо видно, что компьютер потребляет ток только в моменты, когда напряжение близко к своему максимуму, и не потребляет ток при низком напряжении.

Нагрузки, у которых при синусоидальном питающем напряжении форма кривой потребляемого тока заметно отличается от синусоидальной, называют нелинейными. К ним относятся и компьютеры.

Такую форму тока можно получить, если искусственно соединить несколько синусоид, имеющих кратные частоты, – гармоник. Гармоники нумеруют по мере роста их частот. Первая гармоника имеет частоту 50 Гц, вторая – 100 Гц, третья – 150 Гц и так далее.

Разложенный на гармоники сигнал обычно представляют в виде спектра – графика, где по верти кали показана амплитуда гармоники (обычно в процентах от действующего значения всего сигнала), а по горизонтали ее номер, причем первую гармонику обычно не показывают. На рис.

5 показан такой график для потребляемого компьютером тока.

Как видно из этого графика, гармоники имеют только нечетные номера. Кроме того, по мере роста частоты (номера гармоники) их интенсивность падает. Наибольшую интенсивность имеет третья гармоника.

Гармоники и трехфазная сеть

Чем плохо наличие гармоник?

Оказывается, что великолепный механизм компенсации дисбаланса токов, на котором построена четырех проводная трехфазная электрическая сеть, очень плохо работает с несинусоидальными токами. На рис. 6 показана осциллограмма для несинусоидальных токов в трехфазной электрической сети.

Действующие значения токов в каждой из фаз одинаковы. Несмотря на это, ток в нейтральном проводе не равен нулю, как можно было бы ожидать. Его амплитуда примерно равна амплитуде токов в линейных проводах, а действующее значение существенно превышает действующее значение токов в линейных проводах.

Вспомним теперь, что нейтральный провод может иметь намного меньшее сечение, чем линейные провода. Если трехфазная сеть нагружена «компьютерными» потребителями хотя бы на 50%, то налицо опасная перегрузка нейтрального провода.

Опасно также то, что этой пере грузки никто не заметит. На нее не реагирует ни один прибор защиты. Ведь на нейтральном проводе не устанавливают измерительных приборов.

Нейтральный провод по правилам техники безопасности запрещено защищать плавкими или автоматическими предохранителями.

Перечислим наиболее очевидные следствия перегрузки нейтрали.

  • Повышенное тепловыделение в нейтральном проводе и его обрыв, возможен даже пожар.
  • Искажение формы кривой напряжения. Искажение формы напряжения в силовой сети чаще вызывается не перегрузкой линейного провода, как многие ошибочно думают, а пере грузкой более тонкого нейтрального провода. Характерным признаком искажений является плоская вершина синусоиды напряжения. Характерное следствие – искажение изображения на мониторах.
  • Большое падение напряжения на нейтральном проводе. При значительных токах в нейтральном проводе малого сечения падение напряжения на нейтрали может быть довольно велико. Его амплитуда при этом может достигать десятков вольт.

Посмотрим на характерную схему подключения компьютеров в здании (рис. 7). Мало какие предприятия готовы вкладывать большие деньги в организацию хорошего заземления. Заземление в большинстве случаев сводится просто к подключению «земли» (то есть третьего провода «компьютерной» розетки) к нейтрали в силовом щите.

На рисунке показан наиболее часто встречающийся в жизни случай, когда предприятие занимает несколько этажей здания и на каждом этаже есть от дельный щиток со своей «землей». Для простоты ограничимся двумя этажа ми (двумя силовыми щитками), каждый со своей «землей».

Видно, что токи, протекающие по нейтрали, создают разность потенциалов между «землями» этажей (щитков). Если компьютеры соединены в локальную сеть, то эта помеха приложена фактически между сетевыми платами компьютеров, расположенных на разных этажах. В результате происходят не только сбои при передаче ин формации, но и выход из строя компьютеров или их узлов.

Как бороться с этим неприятным явлением? Естественно, вам может прийти в голову «оригинальная» мысль – надо провести «землю» по всему зданию от щитка на первом этаже. Но по правилам электробезопасности в каждом силовом щитке нейтральный провод положено заземлять (соединять с корпусом щитка). Поэтому придется применять общие методы борьбы с перегрузкой нейтрального провода.

Методы борьбы с перегрузкой нейтрали

Самый простой путь – применение понижающего разделительного трансформатора. На рис. 8 показан трансформатор, вход которого подключен к линейному напряжению (380 В). На выходе трансформатор имеет напряжение 220 В. Как следует из рисунка, ток в нейтраль не идет, так как входная обмотка трансформатора не имеет с ней контакта. Поэтому при использовании нейтральных проводов в качестве заземления помеха между «землями» не возникает.

Помимо всего прочего, это частично решит проблему равномерного распределения нагрузки по фазам, так как оборудование, подключенное к трансформатору, нагружает не одну фазу, а две, причем одинаково.

Еще лучше, если этот трансформатор выполняет функции стабилизатора напряжения или источника бесперебойного питания (ИБП). Наиболее радикальным способом решения проблемы является применение ИБП с трехфазным входом и с двойным преобразованием энергии (online). Так как практически все такие ИБП имеют на входе как минимум шести импульсный выпрямитель, то они выпрямляют не фазное, а линейное напряжение и, как видно из рисунка, нейтраль вовсе не нагружается (рис. 9).

Трехфазный ИБП не только разгружает нейтральный провод. Он также уменьшает искажения формы кривой тока за счет ликвидации всех гармоник, кратных 3. Исчезает не только наиболее мощная третья гармоника, но и девятая и пятнадцатая гармоники (рис. 10).

Кроме того, применение трехфазного ИБП автоматически решает вопрос равномерного распределения нагрузки по фазам. Некоторые трехфазные ИБП средней мощности имеют однофазный выход. Но даже ИБП с трехфазным входом и однофазным выходом позволяет разгрузить нейтраль, как показано на рис. 11.

Мощные трехфазные ИБП, как правило, позволяют применять на своем входе 12-ти импульсный выпрямитель, который еще более снижает уровень от даваемых в сеть гармоник, ликвидируя пятую гармонику, и понижают требуемую мощность дизельгенератора, питающего ИБП, если он есть в системе бесперебойного питания.

Перечислим основные преимущества применения трехфазных ИБП с двойным преобразованием энергии.

  1. Разгрузка нейтрали и равномерное распределение мощности по фазам.
  2. Высшая степень защиты оборудования и возможность повышения надежности путем горячего резервирования.
  3. Стабилизация напряжения (хороший ИБП стабилизирует напряжение с погрешностью около 1%).
  4. Фильтрация гармонических искажений и шумов (системы с двойным преобразованием являются практически идеальными сетевыми фильтрами).
  5. Фильтрация коротких высоковольтных импульсов (они могут возникать из-за коротких замыканий, ударов молнии рядом с линией электропередачи и т. п.) и относительно более длинных импульсов, связанных с включением или отключением мощных нагрузок, питающихся от этой же подстанции.
  6. Снижение необходимой мощности дизель-генератора для работы в системе.

Источник: http://nrgsystem.ru/information/kompyutery-i-trexfaznaya-elektricheskaya-set/

Фаза и ноль. Работа и измерения. Особенности

У неопытных электриков или хозяев дома появляется вопрос: что же такое фаза и ноль? Раньше они не вникали в то, как устроена электропроводка. А теперь понадобилось отремонтировать розетку, заменить лампочку, и хочется все это сделать самому.

Электросеть разделена на два типа: постоянного и переменного тока. Электрический ток является движением электронов в каком-либо направлении. При постоянном токе электроны двигаются в одну сторону, имеют полярность. При переменном токе электроны меняют свою полярность с определенной частотой.

В первую очередь домашнему умельцу нужно соблюдать электробезопасность, а потом уже думать об устранении неисправности. Некоторые пренебрежительно относятся к опасности попасть под действие тока.

Все части под напряжением должны быть защищены изоляцией, клеммы розеток углублены в корпус таким образом, чтобы не было доступа и нельзя было случайно коснуться рукой. Даже конструкция вилки сделана так, что невозможно попасть под напряжение электрического тока, держась рукой за вилку. Мы уже привыкли к электричеству, и не замечаем опасности при проведении работ по ремонту электрических устройств. Поэтому, лучше освежить в памяти правила безопасности и быть внимательными.

Принцип действия

Сеть электрического переменного тока разделена на фазу и ноль (рабочую и пустую). Нулевая фаза предназначена для образования постоянной электросети при включении устройств, а также для создания заземления. На фазе находится рабочее напряжение.

Для работы электроустройства не важно, где находится фаза, а где ноль. При установке электрических проводов и включении ее в сеть дома нужно учитывать, где фаза и ноль. Проводка прокладывается кабелем с двумя или тремя жилами. В кабеле с двумя жилами находится фаза и ноль, а в кабеле с 3-мя жилами третий провод отводится для заземления. Перед работой нужно точно определить расположение выводов проводов.

Электрический ток заходит от подстанции с трансформатором, преобразующим высокое напряжение до 380 вольт. Низкая сторона трансформатора соединена в звезду. Три вывода соединены в нулевой точке, а оставшиеся выводятся на клеммы фаз

Узел в нулевой точке подключается к заземляющему контуру подстанции. Ноль расщепляется на рабочий и защитный. Новые строящиеся дома оснащаются проводкой по такой схеме. На входе дома в щите располагается три фазы и два провода расщепленного ноля.

В старых зданиях остается схема проводки старого типа без расщепленного ноля, там вместо пяти проводов идут 4 жилы. Электрический ток от трансформатора проходит по воздуху или под землей к входному щиту, образует систему из трех фаз (питающая сеть 380) на 220. Производится разводка по щитам подъездов. В квартиру поступает кабель с 1-й фазой на 220 В и защитный провод.

Защитный провод не всегда есть в наличии, если старая проводка не переделана. В квартире нулем называется провод, который соединен с заземляющим контуром на подстанции, применяется для образования нагрузки фазы, которая подключена к противоположному выводу на трансформаторе. Защитный ноль из схемы удален, он служит для устранения неисправностей и аварий для отвода тока при повреждениях.

В такой цепи нагрузки распределены равномерно, так как на этажах сделана разводка и выведены щиты к линиям на 220В в распредщите подъезда. Напряжение, подходящее к дому, выполнено звездой. При выключенных в квартире всех устройств и отсутствии нагрузки в розетках, в линии питания тока не будет.

Это является простой рабочей схемой электроснабжения, которая использовалась много лет. Но в любой сети могут возникнуть неисправности, которые связаны с плохими контактами соединений, либо обрывом проводов.

Обрыв провода

Проводник может легко оторваться, или его могут забыть подключить. Это происходит довольно часто, так же, как и могут отгореть провода при некачественном контактном соединении и большой нагрузке.

Если в квартире нет соединения потребителя с щитком напряжения, то устройство не будет работать. Какой именно провод разорван, не имеет значения. То же самое получается при обрыве провода одной из фаз, которая питает дом или подъезд.

Квартиры, питающиеся от этой линии, не будут иметь возможность получать электричество.

В двух остальных цепях все устройства будут работать в нормальном режиме, а ток ноля будет складываться из оставшихся составляющих. Все вышеописанные обрывы проводников связаны с выключением питания от квартиры, бытовые устройства при этом не ломаются. Опасным случаем может стать момент, когда исчезнет соединение между средней точкой потребителей щита дома и контуром заземления трансформатора подстанции. Это возникает у электриков, не имеющих достаточной квалификации.

Путь прохода тока через ноль к заземлению исчезает. Ток начинает идти по наружным контурам, имеющим напряжение в 380 В. В результате получается что на нагрузках вместо 220В будет 380В. На одном щите окажется небольшое напряжение, а на втором около 380 В. Высокое значение напряжения повредит изоляцию, нарушит работу устройств, приведет к поломкам и выходу из строя приборов.

Чтобы таких ситуаций не было, применяют защитные устройства для блокировки от повышенного напряжения. Они устанавливаются в щиток квартиры, либо внутри дорогостоящих приборов.

Способы определения где фаза и ноль

Любой домашний мастер при электромонтажных работах дома или в другом месте при подключении розетки или люстры сталкивается с вопросом определения фазы и ноля на проводах. Мы расскажем, какие существуют методы и способы правильного определения фазных проводов, нулевых жил, заземляющих защитных проводов. Конечно, для имеющего опыт в таких электромонтажных работах специалиста не доставит большого труда определить фазу и нулевой провод. Но как быть людям, которые не умеют этого делать?

Разберемся, как можно в домашних условиях без специальных инструментов для измерения и электронных приборов своими силами узнать наличие на проводах где фаза и ноль, заземление.

Во время поломок в сети тока часто домашние умельцы применяют недорогую индикаторную отвертку для проверки наличия напряжения китайского изготовления.

Она действует по закону емкостного тока, проходящего по телу человека. Такая отвертка состоит из следующих деталей:

  • Наконечник металлический, заточенный под отвертку, присоединяется к фазе.
  • Резистор для ограничения тока, который уменьшает амплитуду тока до небольшой величины.
  • Лампочка неоновая, начинает светиться при прохождении тока, показывает наличие фазы на проводнике.
  • Площадка для касания пальцем человека, чтобы создавалась цепь тока по телу через землю.

Квалифицированные специалисты применяют для контроля фазы приборы с качественными деталями и имеющими несколько функций, с индикаторами под отвертку, светодиод светится с помощью транзисторной схемы, подключенной от батареек на 3 вольта.

Такие устройства кроме фазы могут решать другие вспомогательные задачи. Они не имеют клеммы для контакта пальцем. Как проверять наличие фазы в розетках индикатором, показано на рисунке.

Днем плохо видно, как светится лампочка, требуется приглядываться. Там, где лампочка светится, есть фаза. На рабочем нуле и защитном заземлении лампочка не будет гореть. Если лампа светится в других случаях, то это говорит о том, что имеются неисправности в схеме.

Во время работы с такой отверткой нужно проверить исправность ее изоляции, не касаться вывода индикатора без изоляции под напряжением. Также с помощью тестера можно в розетке определить наличие напряжения.

Показания на тестере:

  • 220 В между фазой и нолем.
  • Нет напряжения между защитным нолем и рабочим.
  • Нет напряжения между защитным нолем и фазой.

Последний вариант – это исключение. При нормальной схеме стрелка будет показывать разность потенциалов 220 В. Но в наших розетках его нет, так как здание дома старое, электропроводка не изменялась. После реконструкции электропроводки вольтметр покажет напряжение 220 В.

Особенности нахождения неисправности

Состояние схемы электропроводки не всегда определяется путем обычной проверки напряжения. На выключателях имеется различное положение, которое иногда вводит в заблуждение электрика. На рисунке изображен случай, при выключенном выключателе на проводе фазы светильника нет напряжения при исправной проводке.

Поэтому, при измерениях в поиске поломок нужно проводить тщательный анализ возможных случаев.

Определить, на какой жиле есть напряжение, а на какой нет, довольно просто. Существует много способов вычисления где находятся фаза и ноль

Одним из методов является определение по цвету изоляции проводов. Каждая жила в кабеле и в электрооборудовании окрашена цветом изоляции определенной расцветки, определенной стандартом. Зная цвета распределения функциям проводов, можно легко произвести установку электропроводки.

ЭТО ИНТЕРЕСНО:  Как узнать какой из проводов плюс

Рабочие фазы подключают проводами с черным цветом изоляции, либо может быть коричневый или серый цвет. Нулевой провод монтируют в светло-синей изоляции. При установке вспомогательного дополнительного заземления применяют проводники с зеленым или желтым цветом изоляции.

Такой способ определения по цвету проводов, фаза и ноль, не является надежным, так как при монтаже электропроводки специалисты не всегда добросовестно соблюдают маркировку проводов по цвету жил.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/faza-i-nol/

Какими бывают цвета проводов фазы, ноля и земли в квартирах или частных домах

Играют ключевую роль для обслуживания и ремонта. Сильно упрощается работа для мастеров и скорость устранения проблемы.

Цвета в электропроводке: важность и практичность

Маркировка – необходимый элемент создания сети электропитания. Благодаря простым обозначениям и цветовому решению удается выделить нужный кабель из пучка.

Такой подход упрощает профилактику, замену оборудования  или выявление поломки. Поэтому так важно разбираться в окрашивании электропроводки.

Как окрашиваются провода на электропроводке?

Согласно европейским и нашим стандартам производители окрашивают провода в разный цвет и индивидуально маркируют. Окрашивается изоляционный материал.

Цветная маркировка проводится по всей длине. Такой подход определяет предназначение каждого элемента, что облегчает коммутацию. Обязательно правильно соединять цвета, чтобы предупредить опасные моменты. Провода в электрике делятся на три вида:

Каждый из них имеет разную окраску, чтобы мастер мог быстро определить их назначение.

Всегда ли одинаково обозначение цветов для сети 220 в?

У каждого производителя свои обозначения, но в целом стараются придерживаться общепринятых правил – европейских и отечественных стандартов. Например, фаза обозначается ярким цветом, чтобы даже непрофессионалу было ясно – опасность.

Какие цвета в элетропроводке?

Согласно правилам устройства электроустановок (ПУЭ), электропроводка покрывается изоляционным материалом разного цвета. Так элементы проще распознаются мастером. В работе используется трехжильный кабель, где есть фаза, ноль, земля, которые окрашены по-разному. Ранее было только черное и белое исполнение, но с введением новых правил, стало безопасней и проще.

Появились варианты:

  • белый;
  • черный;
  • красный;
  • голубой (синий);
  • желто-зеленый;
  • коричневый.

Цвет провода заземления

Желто-зеленый – элементов «заземления». Иногда владельцу прибора встречается просто желтый или зеленый, с двумя буквами – “РЕ”, которые отвечают за маркировку «земли». Если элемент заземления вместе с нулевым, то обозначается “PEN” и чаще имеет зелено-желтый оттенок.

Каким обозначается фаза?

Контакт с фазой самый опасный. При проведении работ стоит остерегаться его. Поскольку некоторые случаи могут быть даже летальными, производители отмечают его ярким цветом, чтобы не спутать с другими вариантами.

Красный и черный – цвета фазы. Встречаются и другие:

  • коричневый;
  • сиреневый;
  • оранжевый;
  • розовый;
  • фиолетовый;
  • белый;
  • серый.

Разобраться с пучком элементов питания будет проще, когда будет исключен ноль и земля. Фаза на схеме отмечается буквой L. Если в сети несколько фаз, что часто встречается при 380 В, такие провода обозначаются L1, L2, L3. В других случаях, могут обозначаться: первая фаза – A, вторая — B и т.д.

Нулевой провод в однофазной сети

Представлен синим или голубым оттенками. В электрике больше не встречается другого обозначения этого цвета. Не важно какой используется в работе кабель – трехжильный, пятижильный, цвет один и тот же.

На схемах «ноль» подписывают буквой N. Такой кабель относят к рабочему элементу, ведь в отличие от заземления, он принимает участие в создании цепи электропитания. В некоторых схемах его читают как «минус», тогда фаза выступает «плюсом».

Как проверить правильность маркировки в квартире?

Полагаться только на цвет не рекомендуется. Перед началом работ рекомендуется проверить их принадлежность. Для этого используется специальная отвертка.

Светодиод на ней загорается при прикосновении к фазе. С двухжильным кабелем проблем не возникнет, ведь второй окажется нулем. Для трехжильного используют другой инструмент – мультиметр или тестер.

Переключатель выставляется по шкале больше 220В. На экране должен высветится этот показатель или даже меньше, ведь таковы наши реалии.

Чтобы использовать мультиметр стоит учитывать, что при прозвоне пары «фаза-земля» показатели ниже, чем при прозвоне пары «фаза-ноль»

Обозначение цветов на схемах по электрике

Количество используемых в работе цветов зависит напрямую от конкретной схемы. Если работы проводятся согласно общепринятым стандартам, то опытный электрик в будущем легко разберется с вашей сетью. Не придется использовать дополнительные устройства для определения фазы, хватит знаний в вопросе обозначения цветов. Стандартной палитрой считается:

  • ноль – синий;
  • земля – желтый;
  • фаза – красный.

В однофазной сети применяется один цвет, если же используются более массивные сети, то фаза может быть отмечена черным и зеленым.

Прежде чем приступить к работам с электропроводкой, важно знать обозначения цветов каждого провода. Во-первых, ради собственной безопасности, во-вторых, такой подход обеспечит максимальный комфорт. Такие знания упрощают процесс монтажа и будущую профилактику сети. Не придется каждый раз использовать специально отвертку, чтобы определить фазу. Опытные электрики смогут «разговаривать» на одном языке, пользуясь стандартами цветобуквенной маркировки.

Источник: https://elektrika.expert/provodka/cvet-provodov-v-jelektroprovodke.html

Провод СИП

Вы можете заказать самонесущий провод в компании «СтройТрэйд» по демократичным ценам. Этот провод зарекомендовал себя, как очень надёжный и поэтому широко используется в любой сфере жизни. Основным назначением провода СИП (самонесущий изолированный провод) является передача и распределение электроэнергии переменного тока в сетях освещения и силовых сетях напряжением 0.4-1 кВ.

Провод СИП получил широкое применение при строительстве магистральных воздушных линий электропередач и различных ответвлений к вводам во всевозможные жилые помещения и хозяйские постройки.

Он представляет собой жгут, скрученный из изолированных фазных, жил, сделанных из алюминия и нулевой несущей жилы. Фазные жилы оснащены изоляцией, сделанной из светостабилизированного полиэтилена повышенного давления, окрашенного в черный цвет, который обладает устойчивостью к ультрафиолетовым излучениям. В центре нулевой жилы находится стальной сердечник, скрученный вокруг алюминиевыми проволоками.

Расшифровка СИП — Самонесущий Изолированный Провод.

Конструкция кабеля и его структура

 В основном применяется радиальная схема распределения от понижающих трансформаторных подстанций 10/0,4 кВ, которая построена с использованием самонесущих изолированных проводов, подвешенных на деревянных опорах. Эта система была разработана финскими сетевыми компаниями совместно с производителями оборудования в 60-х годах, как альтернатива традиционным неизолированным проводам и кабельным линиям, подвешенным на тросах.

В финских сетях в основном применяется система СИП, состоящая из трёх изолированных фазных проводов, навитых вокруг неизолированного нейтрального несущего провода. Изоляция проводников выполнена из полиэтилена низкого давления LDPE (англ. low density polyethylene) или сшитого полиэтилена XLPE (англ. cross-linked polyethylene).

Для подвески таких проводов требуются крюки, поддерживающие зажимы, анкерные зажимы и прокалывающие зажимы. Воздушные линии, в основном, монтируются на деревянных опорах (Пропитанные деревянные опоры используются в электрических сетях более ста лет; срок службы качественно изготовленной деревянной опоры превышает нормативный срок службы воздушной линии в целом.

В Финляндии сегодня установлены и находятся в эксплуатации более 7 миллионов деревянных опор).

Технические характеристики кабеля

Сети 0,4 кВ выполняются трёхфазными, четырёхпроводными. Линия состоит из 1—5 изолированных проводов, навитых вокруг несущего проводника из алюминиевого сплава. Несущий проводник используется в качестве нейтрального провода.  Несущий проводник может быть, как голым, так и изолированным. Нейтральный провод заземлён на ТП и в конце каждой ветви или линии длиной более 200 м или на расстоянии не более 200 м от конца линии или ветви, где подключена нагрузка.

Самонесущие изолированные провода, в отличие от проводов неизолированных, имеют изолирующее полиэтиленовое покрытие на фазных проводах и, в зависимости от модификации, имеют или не имеют подобное покрытие на несущем нейтральном проводе. Кроме того, есть разновидность СИП без несущего провода, у которой все четыре провода изолированы. Все три системы СИП на сегодняшний день являются равноправными, поскольку они одинаково широко получили распространение в десятках стран.

Преимущества СИП состоят в том, что при его использовании:

    • обеспечивается работа линий электропередач даже при схлёстывании проводов или падения на них деревьев;
    • на проводах не происходит ледообразования;
    • уменьшается ширина просеки; в городе требуется меньшая полоса отчуждения земли;
    • применение СИП снижает эксплуатационные расходы до 80 %;
    • затрудняется возможность незаконных подключений для кражи электроэнергии;
    • исключается гибель птиц на ЛЭП

Типы СИП проводов и их краткие технические характеристики

Выпускается несколько основных видом СИП проводов, они различаются по строению и хорошо бы понимать значение каждого из принятых обозначений возможных видов.

Провод сип 1 технические характеристики

      • Так, провод СИП1 отличает то, что у него на несущей жиле нет изоляции. А другие жилы изолированы. У СИП1А все жилы изолированы. Для изоляции в этом случае используется термопластичный светостализированный полиэтилен.

Провод сип 2 технические характеристики

      • В СИП2 и СИП2А, которые отличаются теми же характеристиками, что и СИП 1 ,для изоляции используется сшитый светостабилизированный полиэтилен.

Провод сип 3 технические характеристики

      • У провода СИП3 только одна проводящая ток жила, изолированная при помощи также сшитого полиэтилена.

Провод сип 4 технические характеристики

      • В СИП4 нет нулевой жилы, ее функцию выполняют все остальные жилы, заключенные в изоляцию из термопластичного полиэтилена.
Количество и сечение жил, шт х кв.мм Масса провода, кг/км Наружный диаметр, мм
СИП
1×16+1×25 135 15
3×16+1×25 270 22
3×25+1х35 390 26
3×35+1×50 530 30
3×50+1×50 685 32
3×50+1×70 740 35
3×70+1×70 930 37
3×70+1×90 990 41
3×95+1×70 1190 41
3×95+1×95 1255 43
3×120+1×95 1480 46
3×150+1×95 1715 48
3х185+1х95 2330 52
3×240+1×95 2895 56

Источник: http://strade.pro/cable-products/provod/provod-ustanovochnyij.html

Заземление нулевого провода

Электрическая сеть, которая предназначена для электроснабжения содержит источник электроэнергии, преобразователи этой энергии, а также потребителей. Поскольку используется три фазы при схеме соединения «звезда» появляется узел соединения общий для них.

Если такой узел есть с каждой стороны электрической цепи, причем эти узлы соединяет провод, последний называется, либо «нейтралью», либо «нулевым проводом». Его режим работы весьма важен для функционирования сети электроснабжения.

Существует несколько режимов для нулевого провода:

  • Потенциал нейтрали равен потенциалу земли, в результате чего получается глухозаземленный нулевой провод.
  • Нейтраль надежно изолирована, между ней и землей возможны небольшие по величине токи утечки. В результате получается изолированный нулевой провод.
  • Нейтраль является частью электрической цепи, которая также включает сопротивление с некоторым достаточно малым импедансом и сопротивление земли.

От использования одного из перечисленных соединений нулевого провода с землей в сети электроснабжения зависят:

  • аварийные токи и скачки напряжения в фазах при их повреждениях;
  • система релейной защиты от замыкания фазы на землю;
  • схема защиты от скачков напряжения;
  • параметры заземления, используемого на подстанции;
  • безопасность выполняемых работ;
  • надежность функционирования всех электрических машин и прочего электрического оборудования в электрической сети, связанных с нейтралью.
  • Нулевой провод с «глухим» заземлением используется главным образом в электросетях с напряжениями 380 Вольт и начиная с 110 киловольт и выше.
  • Изолированный нулевой провод используется главным образом в электросетях с напряжениями 6, 10 и 35 киловольт.

Стоит отметить, что вы можете выполнять это своими руками или заказать электромонтажные работы у мастеров на сайте Kabanchik.ua. Но, тем не менее, разобраться в основах, изучив мат часть.

Нулевой провод в сети электроснабжения 380 Вольт

Документально для этих сетей заданы такие стандарты:

  • МЭК 364 «Электрические установки зданий»;
  • ГОСТ 30331.1-95 – ГОСТ 30331.9-95.

В соответствии с ГОСТ 30331.2-95 в электрических схемах используются такие обозначения:

Широко распространена система заземления с использованием нейтрального провода, которая именуется как TN-C (на изображении ниже).

В системе TN-C заземление сделано на трансформаторной подстанции. К нему присоединены фазные обмотки трансформаторов, обеспечивающих электропитание нагрузок фазным напряжением 220 Вольт. Подача напряжения к нагрузкам обеспечивают фазные провода и провод PEN, присоединенный к заземлению на подстанции. Система TN-C отличается от других подобных систем TN-S, TN-C-S, TT и IT дешевизной и простотой. Но по электрической безопасности она хуже.

Это объясняется ее появлением в те довольно-таки далекие времена, когда от замыканий на корпус спасали предохранители и автоматические выключатели.

Время срабатывания этих защитных устройств, которое довольно велико, определяет и время воздействия на живой объект поражающего тока при тех или иных повреждениях и контактах этих объектов с поврежденными токоведущими частями оборудования или электросети.

Большим по величине должен быть и ток срабатывания. Также при использовании провода PEN для заземления возможно появление высокого потенциала на всех устройствах, заземленных через него.

Например, при авариях на воздушных линиях электропередачи, когда провод одной из фаз обрывается и падает на землю. До срабатывания защиты на устройствах, заземленных через провод PEN, будет опасное для жизни напряжение.

Еще более фатальными могут быть последствия при обрыве связи нулевого провода с заземлением на подстанции, например при его перегорании. Это обеспечит гарантированное появление фазного напряжения на всем оборудовании, заземленном через перегоревший провод.

А устройства защитного отключения при этом не могут быть использованы.

Более дорогой, но и более безопасной является система TN-S (на изображении далее). Ее улучшенная безопасность обеспечена устройствами защитного отключения. Они будут гарантированно срабатывать по причине использования дополнительного провода, через который не текут аварийные токи.

В некоторых электросетях используется смешанная система заземления нулевого провода, в которой учтены признаки, а также достоинства и недостатки двух предыдущих систем заземления нейтрали. Это система заземления TN-C-S, пример которой на изображении далее:

По схеме TT применяется отдельное заземление без проводной связи с заземлением на питающей трансформаторной подстанции. В такой схеме необходимо применять устройства защитного отключения. Они будут надежно срабатывать, поскольку измеряют напряжение относительно отдельного заземления. Автоматические выключатели и предохранители будут малоэффективны в качестве защитных устройств.

К заземлению на подстанции в земле будет течь ток. Поэтому на отдельном заземлении появится довольно большой потенциал. Он, скорее всего, будет представлять опасность для жизни в случае прикосновения к электрооборудованию, присоединенному к этому отдельному заземлению. Схема TT приведена на изображении ниже.

В схеме IT на трансформаторной подстанции заземление присоединено к общему узлу фазных обмоток через резистор. Его сопротивление может быть от сотен Ом до единиц килоом. С целью защиты применяется провод не связанный с нейтралью.

У однофазных потребителей при замыкании на корпус токи получаются небольшими по величине, потому что протекают по цепи с резистором, через который обмотки присоединены к заземлению.

Использование устройств защитного отключения еще больше усиливает эту наиболее безопасную схему, показанную на изображении ниже.

Не существует такого решения с заземлением нулевого провода, который успешно решает все необходимые задачи. Поэтому для каждого случая лучше всего применять наиболее подходящую схему.

  • Схемы TN-C и TN-C-S существуют, но только по причине того, что были первыми и привязаны к объектам давно построенным. Для новых решений не следует их применять. Они наиболее опасны при авариях как источник поражения током и как источник пожара. При авариях токи значительны по величине, сильно разветвляются и создают по этой причине значительные электромагнитные излучения.
  • Для капитальных объектов, в которых со временем не будут вноситься какие-либо изменения, схема TN-S является наиболее подходящей.
  • Если сеть электроснабжения подвержена частым переделкам или является временной, для нее рекомендуется схема TT.
  • В том случае, когда надежность электроснабжения является наиболее значимым приоритетом надо использовать схему IT.
  • Для увеличения надежности рекомендуется выполнять несколько заземлений разнесенных по направлению нулевого провода.
ЭТО ИНТЕРЕСНО:  Как определить диаметр провода по сечению

Как заземляется провод в сетях с высоким напряжением?

В сетях с напряжением 6-35 киловольт схема заземления нулевого провода выбирается исходя из тех аварийных ситуаций, которые могут возникать при замыканиях на землю. То же самое относится и к более высоковольтным сетям. Поскольку такие электросети в своем большинстве состоят из линий электропередачи, бесперебойность электроснабжения потребителей в них является приоритетной задачей. В общем, заземление нулевого провода в таких электрических сетях окажет влияние на:

  • величину тока на месте аварии;
  • аварийные скачки напряжения в двух работоспособных фазах при замыкании на землю в третьей фазе;
  • характеристики изоляции электрических машин и прочего электрического оборудования;
  • характеристики оборудования для защиты от перенапряжений;
  • непрерывность подачи электроэнергии потребителям;
  • параметры заземляющих контуров на подстанциях в пределах нейтрали;
  • безопасность во время однофазных замыканий работников и функционирующего электрического оборудования.

При более подробном рассмотрении перечисленных пунктов потребуется несколько больших статей, или даже книга. По этой причине в рамках настоящей небольшой статьи более детально они не рассматриваются.

Источник: http://podvi.ru/osnovy-elektromontazhnyx-rabot/zazemlenie-nulevogo-provoda.html

Провод СИП 2: характеристики | Комплексэнерго

В этой статье вы сможете узнать все технические характеристики самонесущего изолированного провода (СИП-2), а также ознакомиться с деталями, необходимыми для его монтажа.

Самонесущий изолированный провод (СИП) применяется в основном для подачи к потребителям электроэнергии, вырабатываемой подстанциями 10/0,4 кВ. Свою историю он ведет из далеких 60-х годов прошедшего столетия, когда задумались о необходимости создания альтернативы проводам без изоляции (провод АС и А).

Провод СИП-2 с нулевой изолированной жилой

СИП-2 представляет собой часть группы самонесущих кабелей, оснащенных изоляцией, что подводят электроэнергию воздушным путем к разным социальным объектам (жилым строениям и т.д.). Кроме этого, его применяют в области сетей наружного освещения. Использовать провод можно как в обычной, так и агрессивной (соль и высокая влажность) или промышленной среде. На фото выше – СИП-2 с нулевой изолированной жилой.

Есть и другие типы, отличающиеся конструкцией:

  • СИП-1 – нулевая жила без изоляции (для воздушных ЛЭП и ответвлений к строениям, в данный момент уже не производится);
  • СИП-3 – изолирован и имеет одну жилу (высоковольтные линии);
  • СИП-4 – полное отсутствие несущей жилы (2-4 скрученных провода, для ответвлений).

Типы самонесущего изолированного провода (СИП)

Для магистральных проводов с алюминиевыми многопроволочными и уплотненными жилами применяют изоляцию из сшитого полиэтилена, что повышает стойкость к ультрафиолетовому излучению, внешней среде и продолжительному воздействию температур до 900 С. Токонесущие жилы «навиваются» на нулевую жилу, которая подразделяется на два типа: она может быть как без изоляции (типы СИП-1), так и с ее наличием (СИП-2, СИП-3, СИП-4).

Показатели сопротивления нулевой жилы должны равняться нормативам, указанным в таблице:

Сечение жилы, мм2 25 35 50 54.6 70 95
Сопротивление, Ом/км 1.38 0.986 0.72 0.63 0.493 0.363
Количество проволок 2-7 2-7 2-7 2-7 2-7 2-7
Минимальная прочность при растяжении, Кн 7.4 10.3 14.2 16.6 20.6 27.9
Вес провода (без тары), кг/км 670 770 907 1170 1265

Сопротивление фазных жил отличается, от сопротивления нулевых.

Положительные качества СИП-2

  1. Можно использовать на общих опорах рядом с другими проводами;
  2. Снижение затрат на использование;
  3. В случае непредусмотренных контактов с фазными проводами под напряжением – безопасен;
  4. Линия работает даже в случае схлестывания проводов;
  5. При соприкосновении токонесущего провода и заземленных элементов КЗ исключено;
  6. Простота конструкций, можно увеличить расстояние между опорами;
  7. Сложность самовольного подключения;
  8. Не нужно заменять изоляторы;
  9. Можно производить ремонт, не отключая напряжение линии;
  10. Индуктивное сопротивление ниже в 2,5-3 раза за счет изоляции, в отличии от провода АС.

Технические характеристики СИП-2

Сшитый полиэтилен в составе изоляции провода играет огромную роль. Он значительно улучшает его характеристики: износостойкость, эластичность, устойчивость к высоким температурам.

Сечение Диаметр жгута, мм Масса смотки, кг/км Сила тока в рабочем режиме, А
Фазный провод Провод освещения
1 3×25+54,6 24 531 112
2 3×25+54,6+16 25 600 112 83
3 3×25+54,6+2×16 26.5 670 112 83
4 3×35+54,6 24.6 641 138
5 3×35+54,6+16 25.5 710 138 83
6 3×35+54,6+2×16 27.5 779 138 83
7 3×50+54,6 27 770 165
8 3×50+54,6+16 28.5 839 165 83
9 3×50+54,6+2×16 30 907 165 83
10 3×70+54,6 30 985 180
11 3×70+54,6+16 32.2 1054 180 83
12 3×70+54,6+2×16 33 1122 180 83
13 3×950 35 1130 258
14 3×950+16 36 1200 258 83
15 3×950+2×16 37 1265 258 83
16 3×1200 37 1380 300
17 3×1200+16 38 1450 300 83
18 3×1200+2×16 39 1520 300 83
19 3×1500 40 1749 344
20 3×1500+16 41 1817 344 83
21 3×1500+2×16 42 1885 344 83

СИП-2 рассчитан на следующие температурные условия:

  • температура среды – от -600С до +500С;
  • максимальная рабочая температура кабеля – 900С;
  • предельное значение при перегрузке (около 8 час. в сутки) – 1300С;
  • нагрев жил при КЗ (до 5 сек.) – 2500С;
  • допустимый радиус изгиба кабеля – не менее 10 диаметров.

СИП-2 цена

Цена за погонный метр провода СИП-2 сильно варьируется. На стоимость влияет сечение токонесущих жил, сечение нулевой жилы, наличие или отсутствие дополнительных жил (для освещения) и иные характеристики.  Цена будет меньше, если покупатель сделает заказ на большой объем продукции.

Арматура для СИП-2

1. Несущую нейтраль зажимают в анкерные клиновые зажимы (изоляция не снимается). При монтаже кабель располагается внутри зажима, сделанного из сплава алюминия, и фиксируется пластиковыми клиньями (рис. А). Типы зажимов: РА-1000, РА-1500, РА-2000.

Источник: https://kompleksenergo.ru/stati/provod-sip2/

Глухозаземленная нейтраль: принцип действия, устройство, схемы

В подавляющем большинстве электросетей (до 1 кВ) применяется глухозаземленная нейтраль, поскольку такое исполнение наиболее оптимально для действующих требований электробезопасности. Учитывая распространенность этой схемы заземления нейтрали, имеет смысл подробно ознакомиться с ее устройством, принципом работы и техническими особенностями, а также основными требованиями ПУЭ к электроустановкам до 1 кВ.

Что такое глухозаземленная нейтраль?

Начнем с определения нейтрали, в электротехнике под этим термином подразумевается точка в месте соединения всех фазных обмоток трансформаторов и генераторов, когда применяется тип подключения «Звезда». Соответственно, при включении «Треугольником» нейтрали быть не может.

Включение обмоток: а) «звездой»; б) «треугольником»

Если нейтраль обмоток генератора или трансформатора заземлить, то такая система получит название глухозаземленной, с ее организацией можно ознакомиться ниже.

Рис. 2. Сеть с глухозаземленной нейтралью

Устройство сетей с голухозаземленной нейтралью

Как видно из рисунка 2, характерной особенностью электросетей TN типа является заземление нейтрали. Заметим, что в данном случае речь идет не о защитном заземлении, а о рабочем соединении между нейтралью и заземляющим контуром.

Согласно действующим нормам, максимальное сопротивление такого соединения — 4-е Ома (для сетей 0,4 кВ).

При этом нулевой провод, идущий от глухозаземленной средней точки, должен сохранять свою целостность, то есть, не коммутироваться и не оборудоваться защитными устройствами, например, предохранителями или автоматическими выключателями.

В ВЛ до 1-го кВ, используемых в системах с глухозаземленной нейтралью, нулевые провода прокладываются на опорах, как и фазные. В местах, где делается отвод от ЛЭП, а также через каждые 200,0 метров магистрали, положено повторно заземлять нулевые линии.

Пример устройства сети TN-C-S

Если от трансформаторных подстанций отводятся кабели к потребителю, то при использовании схемы с глухозаземленной нейтралью, длина такой магистрали не может превышать 200,0 метров. На вводных РУ также следует подключать шину РЕ к контуру заземления, что касается нулевого провода, то необходимость в его подключении к «земле» зависит от схемы исполнения.

Технические особенности

В данной системе, где используется общая средняя точка, помимо межфазного присутствует и фазное напряжение. Последнее образуется между рабочим нулем и линейными проводами. Наглядно отличие первого от второго продемонстрировано ниже.

Разница между фазным и линейным напряжением

Разность потенциалов UF1, UF2 и UF3 принято называть фазными, а величины UL1, UL2 и UL3 – линейными или межфазными. Характерно, что UL превышает UF примерно в 1,72 раза.

В идеально сбалансированной сети трехфазного электрического тока должны выполняться поддерживаться следующие соотношения:

UF1= UF2=UF3;

UL1=UL2=UL3.

На практике добиться такого результата невозможно по ряду причин, например из-за неравномерной нагрузки, токов утечки, плохой изоляции фазных проводников и т.д. Когда нейтраль заземлена, дисбаланс линейных и фазных характеристик энергосистемы существенно снижается, то есть, рабочий ноль позволяет выравнивать потенциалы.

Обрыв нулевого провода считается серьезной аварией, которая с большой вероятностью приведет к нарушению симметрии нагрузки, более известной под термином «перекос фаз». В таких случаях в сетях однофазных потребителей произойдет резкое увеличение амплитуды электрического тока, что с большой вероятностью выведет из строя оборудование, рассчитанное на напряжение 220 В. Получить более подробную информацию о перекосе фаз и способах защиты от него, можно на страницах нашего сайта.

Принцип действия сетей с глухозаземленной нейтралью

Теперь рассмотрим подробно, с какой целью заземляется нейтраль и как подобная реализация обеспечивает должный уровень электробезопасности, для этого перечислим обстоятельства, которые могут привести к поражению электротоком:

  • Непосредственное прикосновение к токоведущим элементам. В данном случае никакое заземление не поможет. Необходимо ограничивать доступ к таким участкам и быть внимательным при приближении к ним.
  • Образование зон с шаговым напряжением в результате аварий на ВЛ или других видах электрохозяйства.
  • Повреждения внутренней изоляции может привести к «пробою» на корпус электроустановки, то есть, на нем появляется опасное для жизни напряжение.
  • В результате нарушения электроизоляции токоведущих линий под напряжением могут оказаться кабельные каналы, короба и другие металлические конструкции, используемые при трассировке.

В идеале между нейтралью и землей разность потенциалов должна стремиться к нулю. Подключение к заземляющему контуру на вводе потребителя существенно способствует выполнению этого условия, в тех случаях, когда ТП находится на значительном удалении. При правильной организации заземления такая особенность может спасти человеческую жизнь, как минимум, в двух последних случаях из указанного выше списка.

Чтобы избежать пагубного воздействия электротока необходимо заземлять корпуса электроприборов, а также и других металлических частей электроустановок зданий. Это приведет к тому, что при «пробое» возникнет замыкание фазы на землю. В результате произойдет автоматическое отключение снабжения питанием электроприемников, вызванное срабатыванием устройства защиты от токов КЗ.

Даже если защита не сработает, а кто-либо прикоснется к металлическому элементу, все равно ток будет течь по заземляющему проводнику, поскольку в этой цепи будет меньшее сопротивление.

Движение тока при КЗ на корпус

Говоря о принципе работы защиты заземленной нейтрали нельзя не отметить быстрый выход в аварийный режим, когда один из фазных проводов замыкается на шину PEN. По сути, это КЗ на нейтраль, следствием которого является резкое возрастание тока, приводящее к защитному отключению энергоустановки или проблемного участка цепи.

При определенных условиях можно даже организовать защиту от образования опасных зон с шаговым напряжением. Для этого на пол в потенциально опасном помещении стелют (если необходимо, то замуровывают в бетон) металлическую сеть, подключенную к общему заземляющему контуру.

Отличия глухозаземленной нейтрали от изолированной

Чтобы дать объяснить различие необходимо, кратко рассказать об основных особенностях изолированной нейтрали, пример такого исполнения приведен ниже.

Рис. 6. Электроустановка с изолированной нейтралью

Как видно из рисунка при данном способе нейтраль изолирована от контура заземления (в случае соединения обмоток «треугольником» она вообще отсутствует), поэтому открытые проводящие части (далее по тексту ОПЧ) электроустановок заземляются независимо от сети.

Основное преимущество такой системы заключается в том, что при первом однофазном замыкании можно не производить защитное отключение. Это несомненный плюс для высоковольтных линий, поскольку обеспечивается более высокая надежность электроснабжения.

К сожалению, такой режим заземления не удовлетворяет требования электробезопасности для сетей конечных потребителей.

Низкий уровень электробезопасности основной, но не единственный недостаток изолированной нейтрали, с их полным списком, а также другими особенностями этой схемы электроснабжения, можно ознакомиться на нашем сайте.

Системы TN и её подсистемы

Начнем с аббревиатуры. Первые две буквы характеризуют вариант исполнения заземления для нейтрали и ОПЧ соответственно. Варианты для первой литеры:

  • T (от англ. terra — земля) — обозначает глухозаземленную нейтраль.
  • I (от англ. isolate — изолировать) – указывает, что соединение с «землей» отсутствует.

Варианты вторых литер говорят об исполнении заземления ОПЧ: N или Т, используется глухозаземленная нейтраль или независимый контур, соответственно.

Сейчас практикуется три схемы нейтрали:

  1. Эффективное заземление обозначается, как ТТ. Особенность такой схемы заключается в том, что глухозаземленный вывод (N)считается рабочим проводом, а для защиты используется собственный заземляющий проводник (РЕ).Схема заземления ТТ
  2. Изолированная нейтраль (принятое обозначение IT), схема системы была представлена выше на рис. 6.
  3. Вариант TN (глухозаземленное исполнение).

У последнего варианта исполнения есть три подвида:

  • Совмещенный вариант, принятое обозначение TN-С. У данного подвида защитный нуль соединен с нейтральным проводом, что не обеспечивает должного уровня электробезопасности. При обрыве РЕ+N защитное зануление становится бесполезным. Это основная причина, по которой от системы TN-C постепенно отказываются.Схема заземления TN-С
  • Вариант TN-S, нулевой и защитный проводники проложены раздельно. Такая схема наиболее безопасна, но для нее требуется использовать не 4-х, а 5-ти жильный кабель, что повышает стоимость реализации.Схема заземления TN-S
  • Подсистема, совмещающая в себе два предыдущих варианта – TN-C-S. От подстанции до ввода потребителя идет один провод, в РУ он подключается к шинам PE, N и заземляющему контуру. Такая подсистема заземленной нейтрали сейчас наиболее распространена.Схема заземления TN-C-S

Требования ПУЭ

В Правилах нормам и требованиям к глухозаземленной посвящена глава 1.7, приведем наиболее значимые выдержки из нее:

  • Для подключения нейтрали к контуру заземления необходимо использовать специальный проводник.
  • При выборе места под заземляющее устройство следует исходить из минимально допустимого расстояния между ним и нейтралью.
  • Если в качестве заземления используется жб конструкция фундамента, то к его армирующему основанию следует подключаться не менее чем в 2-х точках, это гарантирует наиболее эффективную защиту.
  • Сопротивление заземляющего проводника для трехфазной цепи электрической сети 0,4 кВ имеет ограничение 4-е Ома. В исключительных случаях эта норма может быть пересмотрена исходя из характеристик грунта.
  • В линии глухозаземленной нейтрали запрещено устанавливать предохранители, защитные устройства и другие элементы, способные нарушить целостность проводника.
  • Правилами предписывается обеспечить заземляющему проводнику надежную защиту от механических повреждений.
  • ВЛ должна быть оборудована дублирующими заземлителями, они устанавливаются в начале и конце линии, на отводах, а также через каждые 200 м.
  • Дублирующее заземление должно выполняться и на вводе потребителя и обязательно указываться в схеме щитка ВРУ.
  • При организации бытовых однофазных сетей от ВРУ должна выполняться разводка тремя проводами, один из которых фаза, второй – ноль (N) и третий – защитный (РЕ).
  • Скорость срабатывания защитных автоматов, установленных в однофазных сетях с глухозаземленной нейтралью, не должна быть продолжительней 0,40 сек.

Источник: https://www.asutpp.ru/gluhozazemlennaja-nejtral.html

Понравилась статья? Поделиться с друзьями:
Электро Дело
Для любых предложений по сайту: [email protected]