Виды нейтралей в электроустановках
В подавляющем большинстве электросетей (до 1 кВ) применяется глухозаземленная нейтраль, поскольку такое исполнение наиболее оптимально для действующих требований электробезопасности. Учитывая распространенность этой схемы заземления нейтрали, имеет смысл подробно ознакомиться с ее устройством, принципом работы и техническими особенностями, а также основными требованиями ПУЭ к электроустановкам до 1 кВ.
Что такое глухозаземленная нейтраль?
Начнем с определения нейтрали, в электротехнике под этим термином подразумевается точка в месте соединения всех фазных обмоток трансформаторов и генераторов, когда применяется тип подключения «Звезда». Соответственно, при включении «Треугольником» нейтрали быть не может.
Включение обмоток: а) «звездой»; б) «треугольником»
Если нейтраль обмоток генератора или трансформатора заземлить, то такая система получит название глухозаземленной, с ее организацией можно ознакомиться ниже.
Рис. 2. Сеть с глухозаземленной нейтралью
Устройство сетей с голухозаземленной нейтралью
Как видно из рисунка 2, характерной особенностью электросетей TN типа является заземление нейтрали. Заметим, что в данном случае речь идет не о защитном заземлении, а о рабочем соединении между нейтралью и заземляющим контуром.
Согласно действующим нормам, максимальное сопротивление такого соединения – 4-е Ома (для сетей 0,4 кВ).
При этом нулевой провод, идущий от глухозаземленной средней точки, должен сохранять свою целостность, то есть, не коммутироваться и не оборудоваться защитными устройствами, например, предохранителями или автоматическими выключателями.
В ВЛ до 1-го кВ, используемых в системах с глухозаземленной нейтралью, нулевые провода прокладываются на опорах, как и фазные. В местах, где делается отвод от ЛЭП, а также через каждые 200,0 метров магистрали, положено повторно заземлять нулевые линии.
Пример устройства сети TN-C-S
Если от трансформаторных подстанций отводятся кабели к потребителю, то при использовании схемы с глухозаземленной нейтралью, длина такой магистрали не может превышать 200,0 метров. На вводных РУ также следует подключать шину РЕ к контуру заземления, что касается нулевого провода, то необходимость в его подключении к «земле» зависит от схемы исполнения.
Технические особенности
В данной системе, где используется общая средняя точка, помимо межфазного присутствует и фазное напряжение. Последнее образуется между рабочим нулем и линейными проводами. Наглядно отличие первого от второго продемонстрировано ниже.
Разница между фазным и линейным напряжением
Разность потенциалов UF1, UF2 и UF3 принято называть фазными, а величины UL1, UL2 и UL3 – линейными или межфазными. Характерно, что UL превышает UF примерно в 1,72 раза.
В идеально сбалансированной сети трехфазного электрического тока должны выполняться поддерживаться следующие соотношения:
UF1= UF2=UF3;
UL1=UL2=UL3.
На практике добиться такого результата невозможно по ряду причин, например из-за неравномерной нагрузки, токов утечки, плохой изоляции фазных проводников и т.д. Когда нейтраль заземлена, дисбаланс линейных и фазных характеристик энергосистемы существенно снижается, то есть, рабочий ноль позволяет выравнивать потенциалы.
Обрыв нулевого провода считается серьезной аварией, которая с большой вероятностью приведет к нарушению симметрии нагрузки, более известной под термином «перекос фаз». В таких случаях в сетях однофазных потребителей произойдет резкое увеличение амплитуды электрического тока, что с большой вероятностью выведет из строя оборудование, рассчитанное на напряжение 220 В. Получить более подробную информацию о перекосе фаз и способах защиты от него, можно на страницах нашего сайта.
Принцип действия сетей с глухозаземленной нейтралью
Теперь рассмотрим подробно, с какой целью заземляется нейтраль и как подобная реализация обеспечивает должный уровень электробезопасности, для этого перечислим обстоятельства, которые могут привести к поражению электротоком:
- Непосредственное прикосновение к токоведущим элементам. В данном случае никакое заземление не поможет. Необходимо ограничивать доступ к таким участкам и быть внимательным при приближении к ним.
- Образование зон с шаговым напряжением в результате аварий на ВЛ или других видах электрохозяйства.
- Повреждения внутренней изоляции может привести к «пробою» на корпус электроустановки, то есть, на нем появляется опасное для жизни напряжение.
- В результате нарушения электроизоляции токоведущих линий под напряжением могут оказаться кабельные каналы, короба и другие металлические конструкции, используемые при трассировке.
В идеале между нейтралью и землей разность потенциалов должна стремиться к нулю. Подключение к заземляющему контуру на вводе потребителя существенно способствует выполнению этого условия, в тех случаях, когда ТП находится на значительном удалении. При правильной организации заземления такая особенность может спасти человеческую жизнь, как минимум, в двух последних случаях из указанного выше списка.
Чтобы избежать пагубного воздействия электротока необходимо заземлять корпуса электроприборов, а также и других металлических частей электроустановок зданий. Это приведет к тому, что при «пробое» возникнет замыкание фазы на землю. В результате произойдет автоматическое отключение снабжения питанием электроприемников, вызванное срабатыванием устройства защиты от токов КЗ.
Даже если защита не сработает, а кто-либо прикоснется к металлическому элементу, все равно ток будет течь по заземляющему проводнику, поскольку в этой цепи будет меньшее сопротивление.
Движение тока при КЗ на корпус
Говоря о принципе работы защиты заземленной нейтрали нельзя не отметить быстрый выход в аварийный режим, когда один из фазных проводов замыкается на шину PEN. По сути, это КЗ на нейтраль, следствием которого является резкое возрастание тока, приводящее к защитному отключению энергоустановки или проблемного участка цепи.
При определенных условиях можно даже организовать защиту от образования опасных зон с шаговым напряжением. Для этого на пол в потенциально опасном помещении стелют (если необходимо, то замуровывают в бетон) металлическую сеть, подключенную к общему заземляющему контуру.
Отличия глухозаземленной нейтрали от изолированной
Чтобы дать объяснить различие необходимо, кратко рассказать об основных особенностях изолированной нейтрали, пример такого исполнения приведен ниже.
Рис. 6. Электроустановка с изолированной нейтралью
Как видно из рисунка при данном способе нейтраль изолирована от контура заземления (в случае соединения обмоток «треугольником» она вообще отсутствует), поэтому открытые проводящие части (далее по тексту ОПЧ) электроустановок заземляются независимо от сети.
Основное преимущество такой системы заключается в том, что при первом однофазном замыкании можно не производить защитное отключение. Это несомненный плюс для высоковольтных линий, поскольку обеспечивается более высокая надежность электроснабжения.
К сожалению, такой режим заземления не удовлетворяет требования электробезопасности для сетей конечных потребителей.
Низкий уровень электробезопасности основной, но не единственный недостаток изолированной нейтрали, с их полным списком, а также другими особенностями этой схемы электроснабжения, можно ознакомиться на нашем сайте.
Системы TN и её подсистемы
Начнем с аббревиатуры. Первые две буквы характеризуют вариант исполнения заземления для нейтрали и ОПЧ соответственно. Варианты для первой литеры:
- T (от англ. terra – земля) – обозначает глухозаземленную нейтраль.
- I (от англ. isolate – изолировать) – указывает, что соединение с «землей» отсутствует.
Провод для пожарной сигнализации негорючий
Варианты вторых литер говорят об исполнении заземления ОПЧ: N или Т, используется глухозаземленная нейтраль или независимый контур, соответственно.
Сейчас практикуется три схемы нейтрали:
- Эффективное заземление обозначается, как ТТ. Особенность такой схемы заключается в том, что глухозаземленный вывод (N)считается рабочим проводом, а для защиты используется собственный заземляющий проводник (РЕ).Схема заземления ТТ
- Изолированная нейтраль (принятое обозначение IT), схема системы была представлена выше на рис. 6.
- Вариант TN (глухозаземленное исполнение).
Источник: https://rikisweets.com/vidy-neytraley-v-elektroustanovkah/
Режимы работы нейтрали трансформатора, разновидности, достоинства и недостатки
В высоковольтных сетях возможны следующие виды заземления нейтрали трансформатора:
- изолированная;
- компенсированная;
- высокоомное резистивное заземление;
- низкоомное резистивное заземление;
- эффективное заземление нейтрали.
Также возможны комбинации из нескольких способов соединения с землей, реализуемых поочередно в комплексе. Рассмотрим по очереди все эти способы, их достоинства и недостатки и показания к применению.
Изолированная нейтраль
Это некогда еще самый распространенный способ заземления нейтрали, применяемый в сетях 6-35 кВ. Сейчас он понемногу вытесняется другими способами.
Достоинство изолированной нейтрали – наличие небольших токов однофазного замыкания на землю (ОЗЗ), с которыми сеть может работать некоторое время, необходимое для поиска и устранения повреждения.
Ток замыкания носит емкостной характер. Он обусловлен наличием емкостной связи между электрооборудованием, кабельными и воздушными линиями и землей. Активная составляющая тока почти отсутствует, так как резистивной связи между нейтралью и землей нет. Но недостатки таких сетей пересиливают ее достоинство.
При достаточной разветвленности сети емкостные токи увеличиваются, так как увеличивается количество одновременно подключенного к ней электрооборудования. Настает момент, когда ток становится настолько ощутимым, что все равно и почти сразу приводит к перерастанию ОЗЗ в междуфазное.
Режимы работы нейтрали по уровню напряжения
К тому же при ОЗЗ резко повышается напряжение на неповрежденных фазах. Особенно это проявляется при замыканиях с перемежающейся дугой, погасающей при прохождении синусоидального напряжения в месте КЗ через ноль. При повторном нарастании напряжения дуга загорается вновь.
При резком погасании дуги осуществляется зарядка емкостей фаз, на которых ОЗЗ нет, до напряжения, выше номинального рабочего. Последующее зажигание дуги дает толчок к их дополнительному заряду и так далее. Результат грозит пробоем изоляции в других местах сети, имеющих ослабленную изоляцию. Дополнительно возникает риск возникновения резонансных явлений в сердечниках трансформаторов напряжения.
Это явление, называемое феррорезонансом, гарантированно выводит из строя их первичные обмотки.
Работу трансформаторов, у которых нейтраль изолирована, целесообразно использовать в неразветвленных сетях малой протяженности.
Компенсированная нейтраль
Большие емкостные токи ОЗЗ приходится снижать. Для этого сеть с изолированной нейтралью дополняется установкой компенсации. В состав ее входит силовой трансформатор с первичной обмоткой, соединенной в звезду и имеющей вывод нейтрали. Вторичная обмотка его иногда не используется, а может питать какую либо нагрузку.
Нейтраль трансформатора установки компенсации заземляется через дугогасящую катушку (катушку Петерсона), представляющую собой реактор с изменяемой индуктивностью.
Обмотка его находится на магнитопроводе и помещена в бак с маслом, как у обычного трансформатора. Регулировка индуктивности осуществляется либо переключением отводов, либо путем изменения зазора в магнитопроводе.
В сетях 35кВ распространен способ подключения катушки непосредственно к нейтрали силового трансформатора. Настройка катушки возможна в резонанс с емкостью сети, но тогда ток ОЗЗ исчезает совсем.
Его не зафиксировать стандартными элементами защиты, состоящими из ТТНП и токового реле, реагирующего на ток нулевой последовательности.
Чтобы защита работала, используют режим работы катушки с перекомпенсацией. Но использование компенсированного заземления не избавляет сеть от опасных перенапряжений, не устраняет проблему ферромагнитного резонанса. Оно всего лишь снижает токи ОЗЗ.
Про ферромагнитный резонанс смотрите в видео ниже:
Но и это может обратиться во вред: неразвившееся повреждение в кабельной линии в дальнейшем сложнее найти.
Тем не менее, установки компенсации встраиваются во все разветвленные и протяженные сети 6-35 кВ РФ.
Высокоомное резистивное заземление нейтрали
Парадокс в том, что многие основные руководящие документы в РФ, в том числе ПУЭ, ПТЭЭС и ПТЭЭП, не слишком подробно повествуют о резистивном заземлении нейтрали. Хотя польза от него очень ощутима. Есть два случая высокоомного заземления:
- Первый – установка резистора в нейтраль трансформатора, аналогично дугогасящему реактору.
- Второй – использование для этой цели обмотки, соединенной в разомкнутый треугольник.
Высокоомным заземление называется потому, что сопротивление резистора выбирается из соображений возможности длительной работы сети с ОЗЗ.
Но при этом сохраняются достоинства сети с изолированной нейтралью: есть время на поиск повреждения. Но при этом снижаются величины перенапряжений путем шунтирования емкостей фаз сети резистором.
Что приводит к ускорению их разряда при погасании дуги, что в свою очередь снижает потолочное значение, до которого они успевают зарядиться. В итоге минимизируется риск выхода из строя изоляции электрооборудования от перенапряжений, а также – уменьшается до минимума вероятность возникновения феррорезонансных явлений.
Про резистивное заземление нейтрали можно посмотреть в видео ниже:
Низкоомное заземление нейтрали
Уменьшение сопротивления резистора необходимо в случае, если требуется обеспечить быстродействующее отключение присоединения с ОЗЗ релейной защитой.
При этом еще больше снижается величина перенапряжений, что приводит к повышению степени безаварийности работы электрооборудования.
Увеличение тока КЗ через низкоомный резистор приводит к необходимости увеличения его способности отводить тепло. Если это невозможно, то предусматривается ограничение длительности протекания тока с помощью устройств РЗА. При срабатывании защиты резистор отключается, и нейтраль переводится в изолированный режим работы.
Есть и второй вариант: перевод нейтрали через заранее установленное время, необходимое для ликвидации повреждения в ней устройствами РЗА, с низкоомного заземления на высокоомное. Режим низкоомного заземления иногда применяется в комбинации с установками компенсации емкостных токов. В случае фиксации ОЗЗ к сети кратковременно подключается резистор, помогающий срабатывать устройствам защиты.
Эффективно заземленная нейтраль
Схемы непосредственного заземления нейтралей трансформаторов используются в сетях 110 кВ и выше.
задача при таком режиме работы – получение сравнительно больших токов ОЗЗ для облегчения их фиксации и отключения релейной защитой. Однако при этом увеличиваются капиталовложения на обустройство контуров заземления, по сравнению с электроустановками, имеющими изолированную нейтраль.
А при питании повреждения от нескольких источников одновременно величина тока КЗ в месте ОЗЗ значительно превышает их величины при междуфазных КЗ.
Для исключения этого недостатка нейтрали трансформаторов, подключенных к линии с нескольких сторон, не соединяют с землей одновременно: соединение выполняется на одном из них. За этим следят оперативные работники, занятые эксплуатацией сетей.
Источник: https://pue8.ru/elektricheskie-seti/949-rezhimy-raboty-nejtrali-transformatora-raznovidnosti-dostoinstva-i-nedostatki.html
Методические указания по выбору режима заземления нейтрали в сетях напряжением 6 и 10 kb дочерних обществ и организаций оао «газпром»
СТО ГАЗПРОМ 2-1.11-070-2006Дата введения — 2006-08-10
ПРЕДИСЛОВИЕ
1 РАЗРАБОТАН Обществом с ограниченной ответственностью «Научно-исследовательский институт природных газов и газовых технологий — ВНИИГАЗ»2 ВНЕСЕН Управлением энергетики Департамента по транспортировке, подземному хранению и использованию газа ОАО «Газпром»3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Распоряжением ОАО «Газпром» от 20 марта 2006 г. № 25
4 ВВЕДЕН ВПЕРВЫЕ
ВВЕДЕНИЕ
Правилами устройства электроустановок (ПУЭ) установлен режим эксплуатации электрических сетей напряжением 6 и 10 кВ с изолированной нейтралью или компенсированной нейтралью.
Наиболее распространенный вид повреждений в таких сетях — однофазные замыкания на землю с перемежающейся дугой, составляющие более 70 % в соответствии с [2]. Возникающие при этом дуговые перенапряжения кратностью до 3-4 Uф опасны для электрооборудования, в первую очередь для высоковольтных электродвигателей, генераторов, кабелей и трансформаторов напряжения согласно [2 — 5].
В системах электроснабжения промышленных объектов ОАО «Газпром» сети напряжением 6 и 10 кВ работают с изолированной нейтралью. Релейная защита от однофазных замыканий на землю в таких сетях в ряде случаев не способна селективно отключить аварийное присоединение и выполняется с действием на сигнал. При этом вся сеть напряжением 6 и 10 кВ длительно находится под воздействием дуговых перенапряжений на время поиска повреждения согласно [4 — 5].
В настоящее время в России происходит процесс отказа от изолированного режима заземления нейтрали в сетях напряжением 6 и 10 кВ. Предлагаются новые комплектные устройства для высокоомного или низкоомного резистивного заземления нейтрали, позволяющие устранить недостатки сети с изолированной нейтралью. Применение резистивного заземления нейтрали позволяет избавиться от опасных перенапряжений и повышает быстродействие и селективность релейной защиты.
Необходимость применения резистивного заземления нейтрали особенно остро стоит в питающих сетях 6 и 10 кВ электроприводных компрессорных станций с мощной двигательной нагрузкой.
Указанные проблемы обусловливают необходимость разработки стандарта, определяющего режим заземления нейтрали в сетях напряжением 6 и 10 кВ дочерних обществ и организаций ОАО «Газпром».
Разработанный стандарт не отменяет действие норм ПУЭ, однако в части выбора режима заземления нейтрали сетей различного назначения, структуры и параметров оборудования для регулирования режима заземления нейтрали является уточняющим документом.
1 ОБЛАСТЬ ПРИМЕНЕНИЯ
1.1 Настоящий стандарт определяет состояние нейтрали сетей напряжением 6 и 10 кВ (далее — сети 6 и 10 кВ) объектов ОАО «Газпром», выбор технических средств по регулированию режима заземления нейтрали сети и обоснование основных параметров технических средств.
1.2 Стандарт предназначен для использования при проектировании новых электроустановок, а также при проведении
реконструкции и модернизации действующих систем электроснабжения.
1.3 Действие стандарта распространяется на все объекты электроснабжения дочерних обществ и организаций ОАО «Газпром», в число которых входят:
— питающие и распределительные сети, распределительные устройства напряжением 6 и 10 кВ компрессорных станций;
— сети 6 и 10 кВ систем электроснабжения газовых промыслов и промплощадок;
— питающие высоковольтные сети буровых установок;
— распределительные сети 6 и 10 кВ электростанций собственных нужд объектов дочерних обществ и организаций ОАО «Газпром»;
— сети электроснабжения подземных хранилищ газа;
— сети 6 и 10 кВ питания жилых поселков и промзоны;
— сети 6 и 10 кВ газоперерабатывающих заводов.
1.4 Стандарт не отменяет действие норм ПУЭ, однако в части выбора режима заземления нейтрали сетей различного назначения, структуры и параметров оборудования для регулирования режима заземления нейтрали является уточняющим документом.
1.5 При электроснабжении объектов ОАО «Газпром» от сетей 6 и 10 кВ РАО «ЕЭС России» реализация режимов заземления нейтрали сетей и использование соответствующих технических средств для осуществления этих режимов, предусмотренных нормами настоящего стандарта, должны быть согласованы с соответствующими службами предприятий энергосистем.
1.6 Положения стандарта являются обязательными для всех производственных организаций и дочерних обществ ОАО «Газпром» и организаций, осуществляющих проектирование, строительство, реконструкцию и эксплуатацию объектов электроснабжения ОАО «Газпром».
2 ТЕРМИНЫ, ОПРЕДЕЛЕНИЯ И СОКРАЩЕНИЯ
2.1 В настоящем стандарте применены следующие термины с соответствующими определениями:
2.1.1 бестоковая пауза: При дуговом замыкании — интервал времени между моментом погасания дуги и ее повторным зажиганием.
2.1.2 дуговое перенапряжение: Перенапряжение, возникающее в сети при неустойчивом горении дуги в месте повреждения.
2.1.3 дуговое замыкание на землю: Замыкание на землю, сопровождающееся неустойчивым горением дуги в месте повреждения.
2.1.4 заземление нейтрали сети через дугогасящий реактор: Преднамеренное электрическое соединение нейтрали сети с заземляющим устройством через дугогасящий реактор, который создает индуктивный ток с целью компенсации емкостного тока в месте однофазного замыкания на землю.
Примечание — Применение дугогасящего реактора осуществляется при превышении током однофазного замыкания на землю нормируемых ПУЭ значений.
2.1.5 высокоомное резистивное заземление нейтрали сети:
Резистивное заземление нейтрали, выполняемое с целью обеспечения длительной работы сети с однофазным замыканием на землю (на время поиска и отключения поврежденного
присоединения оперативным персоналом) без перенапряжений и феррорезонансных явлений.
Примечание — Заземляющий трансформатор и резистор должны быть рассчитаны на длительный режим работы.
2.1.6 низкоомное резистивное заземление нейтрали сети:
Резистивное заземление нейтрали, выполняемое с целью ограничения дугового перенапряжения, быстрого отключения однофазного замыкания на землю и максимального охвата обмоток электрических машин защитой от однофазного замыкания на землю.
Примечание — Заземляющий трансформатор и резистор выбираются для кратковременного режима работы.
2.1.7 резистивное заземление нейтрали сети:
Преднамеренное электрическое соединение нейтрали генератора или специального заземляющего трансформатора с заземляющим устройством через активное сопротивление с целью подавления перенапряжений и феррорезонансных явлений при однофазном замыкании на землю.
2.1.8 резонансное заземление нейтрали: Заземление нейтрали, при котором индуктивный ток реактора равен емкостному току сети.
2.1.9 режим заземления нейтрали сети: Способ эксплуатации нейтрали сети с разземленной нейтралью либо иной режим, при котором в нейтраль включено оборудование, изменяющее величину тока однофазного замыкания на землю.
2.1.10 регулируемая резисторная установка: Резисторная установка с регулируемой величиной резистора.
Источник: http://electric-alipapa.ru/nejtral-zazemlenie/
Изолированная нейтраль. Устройство и работа. Применение
Изолированная нейтраль — в процессе передачи, распределения и потребления электрической энергии применяется симметричная 3-фазная система. Такую симметричность можно достичь, приведя в одинаковое положение линейные и фазные напряжения. Поэтому на всех фазах создается равномерная нагрузка по току, равный фазный сдвиг напряжений и токов.
Но при эксплуатации такой системы часто возникают аварийные режимы, приводящие к различным неисправностям проводников. Вследствие этого возникает нарушение симметричности трехфазной системы. Такие нарушения необходимо быстро устранять. На это оказывает большое влияние быстродействие релейной защиты.
Ее правильное функционирование зависит от нейтралей, которые бывают изолированными или глухозаземленными. Каждая из них имеет свои недостатки и преимущества, и используется в соответствующих условиях работы. От технического состояния релейной защиты зависит ее нормальная эксплуатация.
Устройство
Изолированная нейтраль создает режим, который нашел применение в российских энергосистемах для трансформаторов, а также генераторов. Их нейтральные точки не имеют соединения с контуром заземления. В сетях высокого напряжения (от 6 до 10 кВ) нейтральная точка не обязательна, так как обмотки трансформаторов выполнены по схеме треугольника.
По правилам имеется возможность ограничить режим изолированной нейтрали током емкости. Этот ток возникает при замыкании одной фазы.
Ток замыкания можно компенсировать путем использования дугогасящих реакторов в следующих случаях:
- Более 30 А, напряжение от 3 до 6 кВ.
- Больше 20 А, напряжение 10 кВ.
- Ток более 15 А, напряжение от 15 до 20 кВ.
- Ток больше 10 А, напряжение от 3 до 20 кВ, с опорами линий передач электроэнергии.
- Все сети питания на напряжение 35 кВ.
- В группе «генератор-трансформатор» при нагрузке 5 А и напряжении на генераторе от 6 до 20 кВ.
Допускается производить компенсацию тока замыкания на заземляющий контур путем замены ее на заземление нейтрали специальным резистором. В таком случае порядок действия релейной защиты изменится.
Изолированная нейтраль впервые была заземлена в электрических устройствах с небольшой величиной напряжения.
В отечественных сетях питания изолированная нейтраль применяется в:
- 2-проводных сетях постоянного тока.
- 3-фазных сетях переменного тока до 1 кВ.
- 3-фазных сетях от 6 до 35 киловольт при условии допустимого тока замыкания.
- Низковольтных сетях, имеющих защитные устройства в виде разделяющих трансформаторов, защитной изоляции, для создания безопасных условий человека.
Принцип действия
Изолированная нейтраль применяется в схемах сетей питания в случаях соединения вторичных обмоток трансформаторов по схеме треугольника, а также при невозможности отключения питания при аварии. Поэтому точка нейтрали отсутствует.
Замыкание фазы на землю не считается коротким при схеме сети с изолированной нейтралью, так как нет соединения между землей и проводниками сети. Но это не значит, что не будет тока утечки при замыкании.
Это объясняется тем, что изоляция кабеля – это не абсолютный диэлектрик, как и другие изоляторы, которые имеют некую минимальную проводимость. Чем больше длина линии, тем выше ток утечки. Представим жилу кабеля обкладкой конденсатора. Второй обкладкой будет земля. Воздух и изоляция будет диэлектриком между токоведущими частями без напряжения, и кабелем. Емкость такого воображаемого конденсатора будет тем выше, чем длиннее линия передач.
Сеть с изолированной нейтралью представляет собой цепь замещения, учитывая удельную электроемкость сети и сопротивление изоляции. Это изображено на рисунке.
Такие компоненты цепи создают ток утечки. При различных условиях в таких сетях 380 вольт ток утечки незначителен, и составляет несколько миллиампер. Несмотря на это, такое замыкание приводит к аварии сети, хотя сеть еще может некоторое время работать.
Нельзя забывать, что в аналогичных сетях при замыкании 1-фазы на землю значительно повышается напряжение между землей и исправными фазами. Это напряжение приближается к величине 380 вольт (линейное напряжение). Этот факт может привести к удару электрическим током электротехнических работников.
Также, изолированная нейтраль при замыкании одной фазы на землю способствует пробиванию изоляции и появлению замыкания на других фазах, то есть, может возникнуть межфазное замыкание с большими токами. Чтобы обеспечить защиту в такой ситуации, необходимы плавкие вставки или автоматические выключатели
Двойное замыкание на землю очень опасно для работников, обслуживающих сети. Поэтому, если в сети имеется однофазное замыкание, то такую сеть считают аварийной, так как условия безопасности резко снижаются. Наличие «земли» повышает опасность удара током при касании к элементам под напряжением. Поэтому замыкания даже одной фазы на землю немедленно должны устраняться.
Незначительная величина тока 1-фазного замыкания при изолированной нейтрали является причиной такого фактора, что такое замыкание невозможно отключить предохранителями и автоматами защиты. Поэтому потребуется вспомогательные релейные электроустановки, которые предупредят об аварийном режиме.
Эта система питания требует значительного числа сигнализаций и защитных устройств, а к работникам, которые обслуживают сети, предъявляются высокие квалификационные требования.
Преимущества
Режим изолированной нейтрали обладает достоинством, которое заключается в отсутствии надобности оперативного отключения первого 1-фазного замыкания на землю. В местах неисправности появляется незначительный ток, при условии небольшой емкости тока на заземление.
Изолированная нейтраль применяется ограниченно, так как имеет несколько серьезных недостатков.
Недостатки
- Сложное обнаружение неисправностей.
- Все электроустановки требуется изолировать на линейное напряжение.
- Если замыкание продолжается длительное время, то существует действительная опасность удара человека электрическим током.
- При 1-фазных замыканиях не обеспечивается нормальное функционирование релейной защиты, так как величина действительного тока замыкания напрямую зависит от работы сети питания, а именно от числа подключенных веток цепи.
- Снижается срок службы изоляции из-за постепенного накапливания дефектов вследствие воздействия на нее дуговых перенапряжений в течение длительного времени.
- Повреждения могут появиться в различных местах из-за пробоя изоляции в других местах, где появляются дуговые перенапряжения. Поэтому многие кабели выходят из строя, так же, как электродвигатели и другие электроустановки.
- Возможно появление дуговых перенапряжений, дуги незначительного тока в местах 1-фазного замыкания на землю.
В результате можно сказать, что значительное число недостатков превосходит все преимущества этого режима. Но при некоторых условиях такой способ вполне проявляет свою эффективность и не нарушает требований правил электроустановок.
Похожие темы:
Источник: https://electrosam.ru/glavnaja/jelektrotehnika/jelektrobezopasnost/izolirovannaia-neitral/
Режимы работы нейтралей в электроустановках
Нейтралями электроустановок называют общие точки трехфазных обмоток генераторов или трансформаторов, соединенных в звезду.
В зависимости от режима нейтрали электрические сети разделяют на четыре группы:
- сети с незаземленными (изолированными) нейтралями;
- сети с резонансно-заземленными (компенсированными) нейтралями;
- сети с эффективно заземленными нейтралями;
- сети с глухозаземленными нейтралями.
Согласно требованиям Правил устройства электроустановок (ПУЭ, гл. 1.2)
Сети с номинальным напряжением до 1 кВ, питающиеся от понижающих трансформаторов, присоединенных к сетям с Uном > 1 кВ, выполняются с глухим заземлением нейтрали.
Сети с Uном до 1 кВ, питающиеся от автономного источника или разделительного трансформатора (по условию обеспечения максимальной электробезопасности при замыканиях на землю), выполняются с незаземленной нейтралью.
Сети с Uном = 110 кВ и выше выполняются с эффективным заземлением нейтрали (нейтраль заземляется непосредственно или через небольшое сопротивление).
Сети 3 — 35 кВ, выполненные кабелями, при любых токах замыкания на землю выполняются с заземлением нейтрали через резистор.
Сети 3—35 кВ, имеющие воздушные линии, при токе замыкания не более 30 А выполняются с заземлением нейтрали через резистор.
Компенсация емкостного тока на землю необходима при значениях этого тока в нормальных условиях:
- в сетях 3 — 20 кВ с железобетонными и металлическими опорами ВЛ и во всех сетях 35 кВ — более 10 А;
- в сетях, не имеющих железобетонных или металлических опор ВЛ: при напряжении 3 — 6 кВ — более 30 А; при 10 кВ — более 20 А; при 15 — 20 кВ — более 15 А;
- в схемах 6 — 20 кВ блоков генератор — трансформатор — более 5А
При токах замыкания на землю более 50 А рекомендуется установка не менее двух заземляющих дугогасящих реакторов.
Источник: http://www.matic.ru/clients/technical-directory/modes-of-neutrals-in-electrical-installations/
Виды нейтралей электроустановок
Нейтраль – та часть электроустановки, которая имеет нулевой потенциал относительно физической земли или ее токопроводящих элементов. Трехфазные цепи могут иметь как технологическую, имеющую физическое соединение с токопроводящими частями, так и конструктивную, отдельную от них нейтраль. Это зависит от способа соединения выходных обмоток силовых трансформаторов.
В первом случае – звездой, во втором – треугольником. Поскольку в этом проводнике течет ток, что происходит в результате или аварии, или технологического перекоса фаз, выражение «режим работы нейтрали» имеет полное право на существование. О том, каким он может быть, и о способах подключения нейтральных проводников пойдет речь в этой статье.
Режимы заземления нейтрали
В экзаменационных билетах по электробезопасности для монтеров, работающих с установками напряжением до 1000 вольт, есть вопрос: «С какой нейтралью должны работать электрические сети напряжением 10 кВ?» Правильный ответ: «С изолированной». Однако существуют и другие режимы работы нейтралей в электроустановках:
- Эффективное заземление.
- Глухое заземление.
От их выбора зависит множество факторов:
- Бесперебойность электроснабжения.
- Безопасность обслуживающего персонала и электроустановок в случае замыкания одной из фаз на землю.
- Величины токов в местах повреждений.
- Схема построения релейной защиты.
Различные типы электрических сетей по-разному подключаются к нейтрали и реагируют на аварийные ситуации.
Высоковольтные магистральные электросети
К ним относятся все электросети, линейное (между фазными проводниками) напряжение в которых превышает 35 кВ. Выходные (статорные) обмотки промышленных электрогенераторов соединяют треугольником. Это связано с меньшим уровнем электрических потерь и отсутствием технологического перекоса фаз, что напрямую влияет на качество подаваемой потребителям электрической энергии.
При однофазном пробое на физическую землю – в случае обрыва провода или изменения диэлектрических свойств изоляторов на опорах, происходит падение линейного напряжения до нуля в аварийной фазе и рост в 1,7 раза в работоспособных.
Чтобы избежать электрического пробоя изоляторов рабочих фаз и не увеличивать их без того немалые размеры, в этом случае применяется способ подключения, называемый «эффективной нейтралью». Он заключается в том, что на промежуточных силовых подстанциях выходные обмотки трансформаторов, использующиеся для обеспечения их внутренних нужд (например, обогрева, сигнализации), включаются по схеме «звезда», общий провод которой наглухо соединяется с физической землей.
В результате напряжение в неповрежденных фазах растет не более, чем в 1,4 раза, а ток короткого замыкания ограничивается на уровне, который недостаточен для срабатывания реле защиты. Это позволяет не прерывать электроснабжение на время большее, чем то, что определено нормативами правил эксплуатации электроустановок для различных типов потребителей.
Магистральные электросети среднего напряжения
Электрическая сеть, линейное напряжение в которой от 6 до 35 кВ. Обмотки силовых трансформаторов соединяются звездой. Нейтраль изолированная, она не имеет физического контакта с землей. Это делается по трем причинам:
- Меньшие токи, что позволяет уменьшить размеры изоляторов – меньше вес, меньше нагрузка на опоры, возможна экономия при их производстве и монтаже.
- В сетях с изолированной нейтралью токи между фазами имеют емкостной характер, поэтому при пробое одной из них не возникает короткого замыкания. Ток как бы стекает с поврежденного проводника на землю и рассеивается ею.
- Нет необходимости тянуть четвертую линию, не имеющую функционального назначения.
В результате при аварии линейное напряжение растет в 1,7 раза, что для промежуточных силовых трансформаторов на линии не является критическим режимом. Электроснабжение продолжается по двум оставшимся линиям. Опасность представляет только оборванный провод в радиусе 10–30 метров – создается зона, где возможно возникновение так называемого шагового напряжения.
Однако при малом сопротивлении физической земли (в результате дождей, при прокладке электролинии по болотам) ток в поврежденном проводнике может достигнуть значения, достаточного для возникновения электрической дуги. В этом случае применяется так называемая компенсированная нейтраль.
Сущность компенсированной нейтрали заключается в том, что общий для всех обмоток провод все же имеет контакт с землей, но через сопротивление. Оно может иметь индуктивный или активный характер. В первом случае устройство называют дугогасящим реактором.
Ток, через него текущий, находится в противофазе с тем, который идет на физическую землю через поврежденный проводник. Они компенсируют друг друга, поэтому электрическая дуга не зажигается. Заземление нейтрали через резистор в нашей стране практически не применяется. А если и используется, то в качестве элемента, помогающего определить место повреждения – при его включении параллельно дугогасящему реактору происходит срабатывание релейной защиты на аварийном участке.
В нашей стране количество линий с компенсированной нейтралью равно 20% от числа всех электрических магистралей. А ее полную изоляцию используют еще только в Финляндии. Большинство европейских стран применяет подключение нейтрали через активное сопротивление большой величины.
Изолированная нейтраль также применяется в трехфазных сетях напряжением 0,4 кВ, которые прокладываются в шахтах, рудниках и на торфяных выработках. Везде, где пропуск электрического тока по физической земле может привести к поражению людей. А также в передвижных электроустановках при невозможности создания надежного контакта с заземлителем.
Низковольтные электрические сети
Все трехфазные электрические линии напряжением 0,4 кВ, от которых питаются конечные потребители, исполняются четырехпроводными. Это так называемые сети с глухозаземленной нейтралью. Выходные обмотки силовых линейных трансформаторов соединяются звездой, а их общий проводник – с физической землей. Делается это исходя из двух соображений:
- При однофазном замыкании на землю происходит мгновенное отключение всей линии, что необходимо для предотвращения поражения людей и животных электрическим током. Для этого в ней между фазными проводниками устанавливаются автоматы, реагирующие на сверхтоки (короткое замыкание) или дифференциальный ток.
- Кроме линейного напряжения в 380 (400) вольт, используется и фазное (между проводником и нейтралью), равное 220 вольт. При отсутствии надежного контакта с физической землей возможно возникновение технологического перекоса фаз, в результате которого у одного из потребителей на вводах будет 100–110 вольт, а у других – 290–300 вольт, что приводит к выходу из строя электрических приборов.
Если вы увидели на линии высокого напряжения оборванный провод, не подходите к нему близко, наверняка он находится под напряжением, поскольку в режиме изолированной нейтрали мгновенного отключения не происходит. И не относитесь к нейтральному проводнику четырехпроводной бытовой линии 0,4 кВ как к абсолютно безопасной железке. В случае неисправности или аварии по нему течет смертельно опасный ток.
Источник: https://electriktop.ru/baza-znaniy/vidy-nejtralej-elektroustanovok.html
Эффективно-заземлённая нейтраль | Электротехнический журнал
Эффективно-заземлённая нейтраль (трех-фазной электроустановки) — нейтраль трёхфазной электрической сети выше 1000В (1 кВ и выше), коэффициент замыкания на землю в которой не более Кзам = 1,4.
Термин «глухозаземлённая нейтраль» в сетях выше 1000В в данный момент не применяется. Электроустановки, в которых нейтраль соединяется с заземляющим устройством непосредственно, также относятся к электроустановкам с эффективно-заземлённой нейтралью.
Коэффициент замыкания на землю в трехфазной электрической сети — это отношение разности потенциалов между неповреждённой фазой и землёй в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землёй в этой точке до замыкания.
Иначе говоря при замыкании фазы в сети с изолированной нейтралью напряжение между землёй и неповреждёнными фазами возрастает до линейного — примерно в 1,73 раза; в сети с эффективно заземлённой нейтралью напряжение на неповреждённых фазах относительно земли возрастёт не более чем в 1,4 раза.
Это особенно важно для сетей высокого напряжения, что уменьшает количество изоляции при изготовлении сетей и аппаратов, удешевляя их производство. Согласно рекомендации МЭК к сетям с эффективно-заземлённой нейтралью относят сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землёй непосредственно или через небольшое активное сопротивление.
В СССР и России сети с эффективно-заземлённой нейтралью — это сети напряжением 110 кВ и выше.
Недостатки
- Возникновение больших токов короткого замыкания (ТКЗ) через заземлённые нейтрали трансформаторов при замыкании одной фазы на землю, что должно быть быстро устранено отключением от устройств релейной защиты. Большинство коротких замыканий на землю в сетях 110 кВ и выше относятся к самоустранимым и электроснабжение обычно восстанавливается АПВ.
- Удорожание сооружения контура заземления, способного отводить большие токи к.з.
- Значительный ток однофазного к.з., при большом количестве заземлённых нейтралей трансформаторов может превышать значение трёхфазного тока к.з. Для устранения этого вводят режим частично разземлённых нейтралей трансформаторов (часть трансформаторов 110-220 кВ работают с изолированной нейтралью: нулевые выводы трансформаторов присоединяются через разъединители, которые находятся в отключённом состоянии). Ещё одним из способов ограничения тока к.з. на землю-это заземление нейтралей трансформаторов через активные токоограничивающие сопротивления.
Особенности выполнения эффективно заземлённой нейтрали
Согласно ПТЭЭП максимально допустимая величина сопротивления заземляющего устройства для сетей с эффективно заземлённой нейтралью (для электроустановок выше 1000 В и с большим током замыкания на землю — свыше 500 А — каждого объекта) составляет 0,5 Ом с учётом естественного заземления (при сопротивлении искусственного заземляющего устройства — не более 1 Ом). Это вызвано необходимостью пропускания значительных токов при к.з.
на землю, высоким и сверхвысоким напряжением сети, требованием ограничения напряжения между землёй и неповреждёнными фазами, а также возможностью появления при авариях высоких напряжений прикосновения, шаговых напряжений и опасных «выносов потенциалов» за территорию подстанции.
Необходимость равномерности распределения потенциалов внутри подстанции и исключения появления шаговых напряжений на значительном удалении от подстанции исключается т.н. устройством выравнивания потенциалов, которое является составной частью заземляющего устройства для эффективно заземлённых нейтралей.
Особые требования для заземляющих устройств с эффективно заземлёнными нейтралями создаёт значительные трудности для их расчёта и сооружения, делает их материалоёмкими, особенно для грунтов с высоким удельным сопротивлением (каменистые, скальные, песчаные грунты) и стеснёнными условиями сооружения.
Смотри также
- Глухозаземлённая нейтраль
- Изолированная нейтраль
- Режимы работы нейтрали
Примечания
Просмотров всего: 829, Просмотров за день: 1
Источник: https://www.el-info.ru/biblioteka/enciklopediya/effektivno-zazemlyonnaya-nejtral/
Рекомендации Рекомендации по проектированию заземления и защитных мер электробезопасности в силовых электроустановках напряжением до 1 кВ промышленных предприятий
МИНИСТЕРСТВО МОНТАЖНЫХ И СПЕЦИАЛЬНЫХ
СТРОИТЕЛЬНЫХ РАБОТ СССР
НАУЧНО ПРОИЗВОДСТВЕННОЕ
ОБЪЕДИНЕНИЕ «ЭЛЕКТРОМОНТАЖ»
ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ВСЕСОЮЗНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТНЫЙ И ПРОЕКТНО-КОНСТРУКТОРСКИЙ ИНСТИТУТ
ПО КОМПЛЕКСНОЙ ЭЛЕКТРИФИКАЦИИ ПРОМЫШЛЕННЫХ ОБЪЕКТОВ
ТЯЖПРОМЭЛЕКТРОПРОЕКТ
РЕКОМЕНДАЦИИ
ПО ПРОЕКТИРОВАНИЮ ЗАЗЕМЛЕНИЯ И ЗАЩИТНЫХ МЕР ЭЛЕКТРОБЕЗОПАСНОСТИ В СИЛОВЫХ ЭЛЕКТРОУСТАНОВКАХ НАПРЯЖЕНИЕМ ДО 1 кВ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ
МОСКВА 1989
СОГЛАСОВАНО: Начальник технического отдела Л.Б. Годгельф | Главный инженер института М.Г. Зименков Начальник отдела промышленных установок Б.А. Лесков Ответственный исполнитель О.А. Шаблинская |
СОДЕРЖАНИЕ
1. ОБЩАЯ ЧАСТЬ
1.1. При проектировании электротехнической части промышленного предприятия решаются вопросы защитных мер электробезопасности для обслуживающего персонала, т.е. принимаются меры для защиты людей от поражения электрическим током.
1.2. Для правильного решения, какие конкретно защитные меры электробезопасности должны быть приняты для электроустановок в зданиях и наружных электроустановок промышленного предприятия необходимо:
1.2.1. Определить все помещения здания согласно ПУЭ, главе 1.1 в отношении опасности поражения людей электрическим током, которые классифицируются как:
1) помещения без повышенной опасности;
2) помещения с повышенной опасностью;
3) особо опасные помещения;
4) наличие наружных электроустановок;
5) наличие взрывоопасных зон в помещениях и в наружных электроустановках.
1.2.2. Знать, какие электроустановки и электрические сети (режимы нейтралей и величины токов замыкания на землю) имеются в здании, так как в зависимости от этого определяются конкретные меры электробезопасности, которые надо принимать, а именно:
1) электроустановки до 1 кВ, сеть с изолированной нейтралью;
2) электроустановки до 1 кВ, сеть с глухозаземленной нейтралью;
3) электроустановки выше 1 кВ, сеть с изолированной нейтралью;
4) электроустановки выше 1 кВ, сеть с эффективно заземленной нейтралью.
1.2.3. Для здания, в котором размещено распределительное устройство (РУ) 6-10 кВ, принимающее электроэнергию от ГПП на промышленное предприятие, или расположены трансформаторные подстанции, принимающие непосредственно электроэнергию на промышленное предприятие, выяснить какую электрическую сеть имеет электроустановка выше 1 кВ ГПП от которой подается питание.
Если на ГПП установлены трансформаторы с обмотками на первичной стороне 110 или 220 кВ и сеть с эффективно заземленной нейтралью, то необходимо знать, имеется ли металлическая связь между ГПП и зданием, принимающим от ГПП электроэнергию.
Такая связь может быть:
1) через металлические оболочку и броню питающих кабелей;
2) через металлические трубопроводы различного назначения;
3) через кабельные конструкции по которым проложены питающие кабели.
Через металлические связи будут соединены заземляющие устройства ГПП и здания, принимающего электроэнергию, и может быть вынос высокого потенциала в здание промышленного предприятия на время срабатывания защиты от однофазных КЗ на землю в сети 110 или 220 кВ ГПП.
1.2.4. Вынос потенциала — распространение за пределы электроустановки по естественным или искусственным заземлителям или по заземляющим проводникам напряжения относительно зоны нулевого потенциала, при котором возможное напряжение прикосновения превышает допустимые значения по ГОСТ 12.1.038-82. «Предельно допустимые уровни напряжений прикосновения и токов».
Зона нулевого потенциала — зона земли, расположенная за пределами зоны растекания тока замыкания на землю, в которой электрический потенциал, обусловленный током замыкания на землю условно принят равным нулю.
1.2.5. Если возможен вынос высокого потенциала в здание промышленной установки необходимы меры по его выравниванию снаружи этого здания.
Внутри здания выравнивание потенциалов обеспечивается наличием разветвленной сети заземления и зануления, а также большого числа электрически связанных между собой и с сетью заземления и зануления металлических частей строительного и производственного назначения, трубопроводов и т.д. Чем более насыщено здание оборудованием, тем эффективнее осуществляется выравнивание потенциалов.
Если даже исключен вынос потенциала с заземляющего устройства ГПП с эффективно заземленной нейтралью, но расстояние между заземлителями здания промышленного предприятия и заземлителями ГПП менее 20 м (см. п. 6.1 Рекомендаций) надо предусматривать выравнивание потенциалов (заземлители здания промышленного предприятия подвержены влиянию заземляющего устройства ГПП).
1.3. Возможные защитные меры электробезопасности:
1) заземление;
2) зануление;
3) выравнивание потенциалов;
4) уравнивание потенциалов;
5) защитное отключение;
6) разделяющий трансформатор (защитное разделение сети);
7) двойная или усиленная изоляция:
малое напряжение.
1.4. Основными защитными мерами электробезопасности на промышленных предприятиях является заземление или зануление корпусов электрооборудования, выравнивание и уравнивание потенциалов.
1.5. Заземление или зануление корпусов электрооборудования следует выполнять:
1.5.1. В помещениях без повышенной опасности — при напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока.
1.5.2. В помещениях с повышенной опасностью, особо опасных и наружных электроустановках — при напряжении выше 42 В переменного тока и выше 110 В постоянного тока.
1.5.3. Во взрывоопасных зонах в помещениях и в наружных электроустановках — при всех напряжениях переменного и постоянного тока.
1.5.4. В пожароопасных зонах всех классов в помещениях — с учетом классификации помещения в отношении опасности поражения электрическим током по п. 1.2.1. Рекомендаций в котором находится пожароопасная зона.
1.5.5. В пожароопасных зонах наружных электроустановок согласно п. 1.5.2. Рекомендаций.
1.6. Для электроустановок до 1 кВ в сети с изолированной нейтралью, а также для электроустановок выше 1 кВ в сети с изолированной нейтралью в качестве защитной меры электробезопасности принимается защитное заземление, т.е. преднамеренное соединение с землей корпусов электрооборудования, нормально не находящихся под напряжением.
Назначение защитного заземления — создание преднамеренного соединения (заземляющего устройства) с такой величиной сопротивления между корпусом электрооборудования и землей, при котором через тело человека при его прикосновении к корпусу электрооборудования, оказавшемуся под напряжением, будет проходить ток, не угрожающий жизни и здоровью человека (человек присоединяется к соединению параллельно).
1.7. Для электроустановок до 1 кВ в сети с глухозаземленной нейтралью в качестве защитной меры электробезопасности применяется зануление, т.е. преднамеренное соединение корпусов электрооборудования, нормально не находящихся под напряжением, с глухозаземленной нейтралью питающего трансформатора.
Назначение зануления — при замыкании поврежденной фазы на корпус электрооборудования или на нулевой защитный проводник создать ток однофазного КЗ такой величины, который будет автоматически отключаться аппаратом защиты, установленном в голове аварийного участка. Цепь для КЗ: петля фаза электроприемника — нуль трансформатора.
1.8. Заземляющее устройство — совокупность конструктивно объединенных (электрически) заземлителей и заземляющих проводников.
1.9. Заземлители — проводники, электрически соединенные между собой, находящиеся непосредственно в соприкосновении с землей (создают электрическое соединение с землей).
1.10. Заземляющий проводник — проводник, соединяющий заземлители с заземляемыми частями электроустановки.
В сетях до 1 кВ с изолированной нейтралью и в сетях выше 1 кВ с изолированной нейтралью — заземляющие проводники.
В сетях до 1 кВ с глухозаземленной нейтралью — нулевые защитные проводники. Нулевой защитный проводник — проводник, соединяющий зануляемые части с глухозаземленной нейтралью трансформатора.
1.11. При монтаже заземляющего устройства должны быть выполнены требования СНиП 3.05.06-85 «Электротехнические устройства», раздел «Заземляющие устройства».
1.12. Изолированная нейтраль трансформатора — нейтраль не присоединенная к заземляющему устройству (обмотка, соединенная в треугольник) или присоединенная к нему через устройства, имеющие большое сопротивление (обмотка, соединенная в звезду).
1.13. Глухозаземленная нейтраль трансформатора — нейтраль присоединенная к заземляющему устройству непосредственно или через малое сопротивление, например, через трансформаторы тока (обмотка, соединенная в звезду или зигзаг).
1.14. При невозможности выполнения заземления или зануления, удовлетворяющих гл. 1.7. ПУЭ, или если это представляет значительные трудности по технологическим причинам, допускается обслуживание электрооборудования с изолирующих площадок.
Изолирующие площадки должны быть выполнены таким образом, чтобы прикосновение к токоведущим частям, а также к корпусам электрооборудования было возможно только с площадки. При этом должна быть исключена возможность одновременного прикосновения к выше указанным частям электрооборудования и металлическим частям зданий, сооружений, оборудования, трубопроводам, не относящихся к электроустановкам.
Применение изолирующих площадок для обслуживания электрооборудования — ПУЭ, п. 1.7.45.
Источник: http://www.gostrf.com/normadata/1/4294847/4294847064.htm