Что такое перекос фаз, как исправить эту проблему
Одним из выдающихся благ цивилизации является электричество. Благодаря тому, что это открытие в наше время так распространено, жизнь общества в целом, и каждого человека в отдельности, значительно упростилась и стала более комфортной.
Вместе с тем, время от времени, в электросети могут возникать трудности, требующие решения. Одной из проблем многих частных владений, общественных заведений и производственных мощностей является перекос фаз.
Что это такое, и как его исправить?
Что такое перекос фаз: Перекос фаз – это состояние электрической сети, при котором одна или две из трех фаз нагружены сильнее, чем остальные. При этом наблюдается значительное снижение мощности трехфазных электрических приборов, преимущественно двигателей и трансформаторов. Но это, что касается промышленных сетей.
В бытовых условиях перекос наблюдается более выражено, при этом может даже возникать риск выхода из строя электроприборов с преобладающей реактивной нагрузкой. К таким относятся компрессоры холодильников, вентиляторы, приборы с простыми силовыми трансформаторными источниками питания. То все то, что не имеет четкой гальванической развязки с сетью и схему защиты от перенапряжений и просадок.
Следует отметить, что существуют разные виды перекоса в электросети. В зависимости от типа проблемы, выбирается наиболее оптимальный способ ее решения. Остановимся на наиболее распространенной и, в то же время, самой простой ситуации – перекос фаз, вызванный неравномерным распределением внутрисетевой нагрузки.
Большинство сетей являются трехфазными. Если в них нагрузка распределена неравномерно, в следствии чего одна или две фазы перегружены, а третья (или же две) недогружена, происходит перекос. На практике это может выглядеть следующим образом: подавляющее большинство однофазных нагрузок питаются от одной фазы, тогда как остальные могут быть вовсе не задействованы либо использоваться по минимуму.
Наиболее часто встречаются ситуации неисправности, в которых при подключении электропитания к трансформаторам не учитывается их потребляемая мощность. Таким образом, бывает, что физически фазы имеют приблизительно одинаковое количество подключений, но вот потребляемая этими подключениями мощность существенно отличается.
Сосредоточие на одной из фаз приборов с высоким потреблением электричества неизбежно вызывает неравномерную нагрузку между фазами. То же самое можно сказать и об общественных и промышленных объектах – во всех случаях очень важно следить за равномерным распределением нагрузки между имеющимися фазами, это позволит предотвратить возникновение сложностей.
Что же собой представляет перекос фаз с точки зрения электротехники?
Трехфазную электрическую сеть в идеале можно представить равносторонним треугольником с нейтральной точкой в его середине.
Он отражает работу силового трансформатора на подстанции, которая установлена в каждом микрорайоне города и предназначена для равномерного распределения электричества по всем потребителям.
Стороны этого треугольника – это векторные линии, соединяющие его вершины. Обозначив вершины точками A, B, C и нейтралью N, можно составить таблицу напряжений и зависимость между ними:
AB=BC=CA=380 В;
AN=BN=CN=220 В.
При этом напряжения AB, BC, CA в 1,73 раза больше напряжений AN, BN, CN.
Идеальный трехфазный генератор, который обычно используется для питания всех бытовых приборов и промышленных сетей, должен обеспечивать эти уровни напряжений в широком диапазоне нагрузок.
Чем опасен перекос фаз
Во время перекоса наблюдается неравномерная нагрузка на фазы – на задействованной напряжение падает ниже нормы, тогда как недогруженная фаза испытывает скачок напряжения, превышающий допустимые показатели.
Результаты такого положения могут быть плачевными для многих электроприборов. Это вызвано тем, что отдельный прибор может либо недополучать требующейся мощности, либо получать ее в избытке.
Особенно такое положение опасно для приборов, потребляющих много энергии: двигателей для ворот, насосов, оборудования, использующегося в бассейнах и при поливе.
Вернемся: как исправит проблему с перекосом фаз?
Предотвратить негативные последствия для оборудования от перекоса между фазами позволяет трехфазный автомат. Если мощность в одной фазе превышаю предусмотренную нагрузку, автоматически отключается электричество во всем доме/линии.
Это не является решением ситуации, потому что лишь подобный подход не позволяет использовать всю доступную мощность.
К примеру, при трехфазном автомате на 16А, при превышении нагрузки на одной фазе 16А – система отключится, но это не позволяет полностью использовать всю возможную мощность 48А (16Х3).
Идеальным вариантом является планирование всех мощностей на начальном этапе проектирования здания, таким образом можно равномерно распределить напряжение между всеми фазами, предотвратив тем самым перекос. Если же здание уже сдано в эксплуатацию – можно замерить напряжение на каждой фазе в отдельности, для этого используется вольтметр, и при необходимости осуществить перераспределение.
Реальные рабочие условия
При стандартном распределении на дом с тремя подъездами обычно одна фаза используется для питания одного подъезда, вторая для второго и третья, соответственно, для третьего. Это позволяет равномерно нагрузить развязывающий понижающий трансформатор на подстанции и обеспечить ему оптимальные режимы работы. Но это справедливо, только если нагрузка примерно одинакова, притом как в активной, так и реактивной составляющей.
Но, к сожалению, потребителю не объяснишь, что необходимо придерживаться норм расхода электричества, а если рассматривать сельскую местность, то многие умельцы в сеть подключают очень большую активную нагрузку, что существенно ухудшает условия работы трансформатора на подстанции. Через одно плечо начинает течь больший ток, чем через остальные, тем самым разогревая магнитопровод, а это приводит к возникновению в нем паразитных вихревых токов, нарушающих режим работы источника еще сильнее.
Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Источник: https://elektronchic.ru/elektrotexnika/chto-takoe-perekos-faz.html
Изготовление дверей
Три фазы = линейное напряжение 380 Вольт, Одна фаза = фазное напряжение 220 Вольт
Статья адресована начинающим электрикам. Я тоже когда-то был начинающим, и всегда рад поделиться знаниями и поднять профессиональный уровень моих читателей.
Итак, почему в некоторые электрощитки приходит напряжение 380 В, а в некоторые – 220? Почему у одних потребителей напряжение трёхфазное, а у других – однофазное? Было время, я задавался этими вопросами и искал на них ответы. Сейчас расскажу популярно, без формул и диаграмм, которыми изобилуют учебники.
Очень коротко, для тех, кто не будет читать дальше: напряжение 380 В называется линейным и действует в трехфазной сети между любыми из трёх фаз. Напряжение 220 В называется фазным и действует между любой из трёх фаз и нейтралью (нулём).
Другими словами. Если к потребителю подходит одна фаза, то потребитель называется однофазным, и напряжение его питания будет 220 В (фазное). Если говорят о трехфазном напряжении, то всегда идёт речь о напряжении 380 В (линейное). Какая разница? Далее – подробнее.
Чем три фазы отличаются от одной?
В обоих видах питания присутствует рабочий нулевой проводник (НОЛЬ). Про защитное заземление я подробно рассказал здесь, это обширная тема. По отношению к нулю на всех трёх фазах – напряжение 220 Вольт. А вот по отношению этих трёх фаз друг к другу – на них 380 Вольт.
Напряжения в трёхфазной системе
Так получается, потому что напряжения (при активной нагрузке , и ток) на трёх фазных проводах отличаются на треть цикла, т.е. на 120°.
Подробнее можно ознакомиться в учебнике электротехники – про напряжение и ток в трехфазной сети, а также увидеть векторные диаграммы.
Получается, что если у нас есть трехфазное напряжение, то у нас есть три фазных напряжения по 220 В. И однофазных потребителей (а таких – почти 100% в наших жилищах) можно подключать к любой фазе и нулю. Только делать это надо так, чтобы потребление по каждой фазе было примерно одинаковым, иначе возможен перекос фаз.
Подробнее о перекосе фаз, и от чего он бывает – здесь.
А защититься от перекоса фаз лучше всего с помощью реле напряжения, например Барьер или ФиФ ЕвроАвтоматика.
Кроме того, чрезмерно нагруженной фазе будет тяжело и обидно, что другие “отдыхают”)
Обе системы питания имеют свои плюсы и минусы, которые меняются местами или становятся несущественными при переходе мощности через порог 10 кВт. Попробую перечислить.
Однофазная сеть 220 В, плюсы
- Простота
- Дешевизна
- Ниже опасное напряжение
Однофазная сеть 220 В, минусы
- Ограниченная мощность потребителя
Трехфазная сеть 380 В, плюсы
- Мощность ограничена только сечением проводов
- Экономия при трехфазном потреблении
- Питание промышленного оборудования
- Возможность переключения однофазной нагрузки на “хорошую” фазу при ухудшении качества или пропадании питания
Трехфазная сеть 380 В, минусы
- Дороже оборудование
- Более опасное напряжение
- Ограничивается максимальная мощность однофазных нагрузок
Когда 380, а когда 220?
Так почему же в квартирах у нас напряжение 220 В, а не 380? Дело в том, что к потребителям мощностью менее 10 кВт, как правило, подключают одну фазу. А это значит, что в дом вводится одна фаза и нейтральный (нулевой) проводник. В 99% квартир и домов именно так и происходит.
Однофазный электрощиток в доме. Правый автомат – вводной, далее – по комнатам. Кто найдёт ошибки на фото? Хотя, этот щиток – одна сплошная ошибка
Однако, если планируется потреблять мощность более 10 кВт, то лучше – трехфазный ввод. А если имеется оборудование с трехфазным питанием (содержащее трехфазные двигатели), то я категорически рекомендую заводить в дом трехфазный ввод с линейным напряжением 380 В. Это позволит сэкономить на сечении проводов, на безопасности, и на электроэнергии.
Трехфазный ввод. Вводной автомат на 100 А, далее – на счетчик трехфазный прямого включения Меркурий 230.
Не смотря на то, что есть способы включения трехфазной нагрузки в однофазную сеть, такие переделки резко снижают КПД двигателей, и иногда при прочих равных условиях можно за 220 В заплатить в 2 раза больше, чем за 380.
Однофазное напряжение применяется в частном секторе, где потребляемая мощность, как правило, не превышает 10 кВт. При этом на вводе применяют кабель с проводами сечением 4-6 мм². Потребляемый ток ограничивается вводным автоматическим выключателем, номинальный ток защиты которого – не более 40 А.
Про выбор защитного автомата я уже писал здесь. А про выбор сечения провода – здесь. Там же – жаркие обсуждения вопросов.
А если Вам вообще интересно то, о чем я пишу, подписывайтесь на получение новых статей и вступайте в группу в ВК!
Но если мощность потребителя – 15 кВт и выше, то тут обязательно нужно использовать трехфазное питание. Даже, если в данном здании нет трехфазных потребителей, например, электродвигателей. В таком случае мощность разделяется по фазам, и на электрооборудование (вводной кабель, коммутация) ложится не такая нагрузка, как если бы ту же мощность брали от одной фазы.
Пример трехфазного электрощитка. Потребители и трехфазные, и однофазные.
Например, 15 кВт – это для одной фазы около 70А, нужен медный провод сечением не менее 10 мм². Стоить кабель с такими жилами будет существенно. А автоматов на одну фазу (однополюсных) на ток больше 63 А на ДИН-рейку я не встречал.
Поэтому в офисах, магазинах, и тем более на предприятиях применяют только трёхфазное питание. И, соответственно, трёхфазные счетчики, которые бывают прямого включения и трансформаторного включения (с трансформаторами тока).
А что там свежего в группе ВК СамЭлектрик.ру?
И на вводе (перед счетчиком) стоят примерно такие “ящички”:
Трехфазный ввод. Вводной автомат перед счетчиком.
Существенный минус трехфазного ввода (отмечал его выше) – ограничение по мощности однофазных нагрузок. Например, выделенная мощность трехфазного напряжения – 15 кВт. Это значит, что по каждой фазе – максимум 5 кВт. А это значит, что максимальный ток по каждой фазе – не более 22 А (практически – 25). И надо крутиться, распределяя нагрузку.
Надеюсь, теперь понятно, что такое трехфазное напряжение 380 В и однофазное напряжение 220 В?
Схемы Звезда и Треугольник в трехфазной сети
Существуют различные вариации включения нагрузки с рабочим напряжением 220 и 380 Вольт в трехфазную сеть. Эти схемы называются “Звезда” и “Треугольник”.
Когда нагрузка рассчитана на напряжение 220В, то она включается в трехфазную сеть по схеме “Звезда”, то есть к фазному напряжению. При этом все группы нагрузки распределяются так, чтобы мощности по фазам были примерно одинаковы. Нули всех групп соединены вместе и подключены к нейтральному проводу трехфазного ввода.
В “Звезду” подключены все наши квартиры и дома с однофазным вводом, другой пример – подключение ТЭНов в мощных калориферах и конвектоматах.
Когда нагрузка на напряжение 380В, то она включается по схеме “Треугольник”, то есть к линейному напряжению. Такое распределение по фазам наиболее типично для электродвигателей и другой нагрузки, где все три части нагрузки принадлежат к единому устройству.
Система распределения электроэнергии
Исходно напряжение всегда является трехфазным. Под “исходно” я подразумеваю генератор на электростанции (тепловой, газовой, атомной), с которого напряжение в много тысяч вольт поступает на понижающие трансформаторы, которые образуют несколько ступеней напряжения. Последний трансформатор понижает напряжение до уровня 0,4 кВ и подаёт его конечным потребителям – нам с вами, в квартирные дома и в частный жилой сектор.
На крупных предприятиях с потреблением мощности более 100 кВт обычно существуют собственные подстанции 10/0,4 кВ.
Наглядно:
Трехфазное питание – ступени от генератора до потребителя
На рисунке упрощенно показано, как с генератора G напряжение (везде речь идёт про трехфазное) 110 кВ (может быть 220 кВ, 330 кВ или другое) поступает на первую трансформаторную подстанцию ТП1, которая понижает напряжение в первый раз до 10 кВ. Одна такая ТП устанавливается для питания города или района и может иметь мощность порядка от единиц до сотен мегаватт (МВт).
Далее напряжение поступает на трансформатор ТП2 второй ступени, на выходе которого действует напряжение конечного потребителя 0,4 кВ (380В). Мощность трансформаторов ТП2 – от сотен до тысяч кВт. С ТП2 напряжение поступает к нам – на несколько многоквартирных домов, на частный сектор, и т.п.
Такие ступени преобразования уровня напряжения необходимы для того, чтобы уменьшить потери при транспортировке электроэнергии. Подробнее о потерях в кабельных линиях – в другой моей статье.
Схема упрощённая, ступеней может быть несколько, напряжения и мощности могут быть другие, но суть от этого не меняется. Только конечное напряжение потребителей одно – 380 В.
Фото
Напоследок – ещё несколько фото с комментариями.
Электрощит с трехфазным вводом, но все потребители – однофазные.
Трехфазный ввод. Переход на меньшее сечение проводов, чтобы подключить их к счетчику.
Друзья, на сегодня всё, всем удачи!
Жду отзывов и вопросов в комментариях!
Статья понравилась?Добавьте её в свою соц.сеть и дайте оценку!
Источник: https://911dveri.ru/blog/360-ili-380-volt.html
Как проверить или измерить напряжение электрического тока?
Январь 24, 2014
26668 просмотров
Сразу расскажу для чего необходимо самостоятельно в своей квартире или доме измерять в Вольтах напряжение.
Во-первых, для того что бы убедится в исправности электрической розетки, выключателя, светильника- Мы проверяем на их контактах наличие напряжения, которое должно соответствовать 220 Вольтам с допустимыми отклонениями для домашней электросети.
Во-вторых, если напряжение в электропроводки будет значительно выше допустимых пределов, то как показала практика- это является очень часто причиной поломки электроники, бытовой техники и перегорания ламп в светильниках. Причем не только превышение или перенапряжение в электросети опасно, но так же, но конечно в меньшей степени- опасно снижение ниже допустимой величины напряжения, в таких условиях, как правило ломается компрессор холодильника.
Допустимые значения напряжения, причины скачков
Согласно требованиям ГОСТа 13109, значение напряжения в домашней электрической сети должно быть в пределах 220В ±10% ( от 198 Вольт до 242 Вольт). Если в вашем доме или квартире стали тускло гореть, моргать лампочки или, вообще они часто перегорают, не стабильно работает бытовая техника и электроника- рекомендую сразу по максимуму все выключить и проверить значение напряжения в электропроводке.
Если Вы зарегистрировали скачки напряжения, то чаще всего в периодическом снижении ниже допустимого уровня виноваты соседи по дому или улице. Так как к линии, идущей от подстанции не только Вы подключены, но и ваши соседи.
Это обычно характерно для частных или индивидуальных домов, в случаях, если другой человек, а тем более если несколько, на той же линии включат мощный потребитель, который периодически меняет уровень энергопотребления, например сварочный аппарат, станок и т. д.
Второй вариант касается всех, но чаще встречается в многоквартирных домах. Если в щите на 380 Вольт отгорит ноль, все квартиры начинают получать электроэнергию в аварийном режиме. Причем, в зависимости от нагрузки на каждую фазу, в одной квартире будет перенапряжение в другой наоборот- падение.
Почему это происходит? Потому что на этажный щиток приходит 3 фазы + ноль = заземляющий проводник. Каждая квартира подключается к одной фазе, нулю и заземлению (для 3 проводных линий).
Квартиры сидят на разных фазах, потому что необходимо обеспечить равномерную нагрузку на все 3 фазы для нормальной работы всей электросети до подстанции. Так вот напряжение между фазами 380 Вольт, а между фазой и нулем (заземлением)- 220 Вольт.
Получается что все нулевые проводники сведены в одну точку (смотрите справа схему), и при пропадании (обрыве) нулевого проводника- все квартиры начинают запитываться без него только фазами, которые оказываются подключенными в звезду.
Что такое линейное и фазное напряжение
Знание этих понятий очень важно для работы в электрощитах и с электротехническими устройствами, работающими на 380 Вольт. Если у Вас обычная квартира и Вы не собираетесь работать в электрощитах, то этот пункт можете пропустить т. к. у Вас в квартире только фазное напряжение 220 вольт.
В большинстве частных или индивидуальных домов так же на электрощит или счетчик приходит только 2 (фаза и ноль) или 3 (+заземление) провода, что означает присутствие в вашей квартире или доме напряжения 220 Вольт. Но если приходит 4 или 5 проводов то, это означает что Ваш дом (бывает и в гаражах, и особенно в офисах) подключен к сети 380 Вольт.
Напряжение между любыми двумя из трех фазами линии электропитания называется линейным, а между любой фазой и нулем- фазным.
В нашей стране линейное напряжение у электропотребителей равно 380 Вольтам (измеряется между фазами), а фазное- 220 Вольт. Смотрите на рисунке слева.
Бывают и другие значения в электросистеме нашей страны, но фазное всегда меньше линейного на корень квадратный из трех.
Как проверить напряжение
Для измерения напряжения электрического тока служат следующие измерительные приборы:
- Вольтметр, хорошо знакомый всем с уроков физики. В повседневной жизни он не используется.
- Мультиметр, обладающий многочисленными функциями, в том числе и измерения величины тока и напряжения. Рекомендую почитать нашу статью: «Как пользоваться мультиметром».
- Тестер— то же самое что и мультиметр, только механической стрелочной конструкции.
Внимание, при измерении источников постоянного тока (какие к ним относят) необходимо соблюдать полярность.
Как измерить напряжение в розетке, в патроне лампы и т. п.:
- Проверяем надежность изоляции измерительного прибора, особенно обращаем внимание на щупы, которые обязательно необходимо подключать только в соответствующие проводимым операциям гнезда.
- Устанавливаем переключатель пределов измерений на приборе в положение измерения переменного напряжения до 250 Вольт (400- для измерений линейного напряжения).
- Вставляем щупы в розетку или подносим к контактам на лампе, светильнике или любом другом электроприборе.
- Снимаем показания.
Будьте осторожны- работа проводится под напряжением- не касайтесь руками не изолированных контактов и проводов, находящихся под напряжением.
Как измерить напряжение аккумулятора, батарейки и блока питания
Все источники постоянного тока необходимо измерять с соблюдением полярности- черный щуп ставим на минусовую клемму, а красный — на плюсовую клемму.
А так все аналогично проводятся как и при проведении вышеописанных измерений в розетке, но только тестер или мультиметр необходимо переключить в режим измерения постоянного тока с пределом выше указанного на АКБ, батарейке или блоке питания.
Источник: http://jelektro.ru/elektricheskie-terminy/kak_izmerit_naprjazhenie.html
В чем разница между фазами электрического тока (фазы 1, 2, 3 )? — дом из соломы. дневник эко-стройки « дом из соломы
Rating: +10
Часто можно слышать, как называют электрические сети трёхфазными, двухфазными, реже — однофазными, но иногда подразумевается под этими понятиями не одно и то же. Чтобы не запутаться, давайте разберёмся с тем, чем отличаются эти сети и что имеют в виду, когда говорят, например, про отличия трехфазного от однофазного тока.
Однофазные сети | Двухфазные сети | Трёхфазные сети |
Прохождение тока возможно при замкнутой цепи. Поэтому ток нужно сначала подвести к нагрузке, а затем вернуть назад. |
При переменном токе провод, подводящий ток — это фаза. Её схемное обозначение L1 (А).
Второй называют нулевым. Обозначение — N.
Значит, для передачи однофазного тока нужно использовать два провода. Называются они фазным и нулевым соответственно.
Между этими проводами напряжение 220 В.
Передают токи двумя проводами: двумя фазными и двумя нулевыми.
Это дорого. Поэтому теперь на электростанциях его не генерируют и по линиям электропередач (ЛЭП) не передают.
Передаётся три переменных тока. По фазе их напряжения сдвигаются на 120 градусов.
Казалось бы, для передачи тока нужно было задействовать шесть проводов, но, используя соединение источников по схеме «звезда», обходятся тремя (вид схемы похож на латинскую букву Y).
Три провода являются фазными, один — нулевой.
Экономична. Ток без труда передаётся на далёкие расстояния.
Любая пара фазных проводов имеет напряжение 380 В.
Пара фазный провод и нуль — напряжение 220 В.
Таким образом, электропитание наших домов и квартир может быть однофазным или трёхфазным.
Однофазное электропитание
Однофазноый ток подключают двумя методами: 2-проводным и 3-проводным.
- При первом (двухпроводном) используют два провода. По одному течёт фазный ток, другой предназначен для нулевого провода. Подобным образом электропитание подведено почти во все, построенные в бывшем СССР, старые дома.
- При втором — добавляют ещё один провод. Называется он заземление (РЕ). Его предназначение спасать жизнь человека, а приборы от поломки.
Трёхфазное электропитание
Распределение трёхфазного питания по дому выполняется двумя способами: 4-проводным и 5-проводным.
- Четырёхпроводное подключение выполняется тремя фазными и одним нулевым проводом. После электрощитка для питания розеток и выключателей используют два провода — одну из фаз и нуль. Напряжение между этими проводами 220В.
- Пятипроводное подключение — добавляется защитный, заземляющий провод (РЕ).
В трёхфазной сети фазы должны нагружаться максимально равномерно. Иначе произойдёт перекос фаз. Результат этого явления весьма плачевен и непредсказуем для человеческой жизни и техники.
От того, какая электропроводка в доме зависит и то, какое электрооборудование можно в неё включать.
Например, заземление, а значит и розетки с заземляющим контактом обязательны, когда в сеть включаются:
- приборы с большой мощностью — холодильники, печи, обогреватели,
- электронные бытовые приборы — компьютеры, телевизоры (оно необходимо для отвода статического электричества),
- устройства, связанные с водой — джакузи, душевые кабины (вода проводник тока).
А для электропитания двигателей (актуальных для частного дома) нужен трёхфазный ток.
Сколько стоит подключение однофазного и трехфазного электричества?
Затраты на расходные материалы и монтаж оборудования планируются также, исходя из наиболее предпочтительного подключения. И если предсказать стоимость розеток, выключателей, светильников трудно (всё зависит от причуд вашей и дизайнерской фантазии), то цены на монтажные работы приблизительно одинаковы. В среднем это:
- сборка электрощитка, в который устанавливаются автоматы защиты (12 групп) и счетчик стоит от 80$
- монтаж выключателей и розеток 2-6$
- установка точечных светильников 1,5-5$ за единицу.
***
Лично я также задумался про солнечные батареи — на http://220volt.com.ua поизучал немного, теперь пробую структурировать мысли, как и что делать с их подключением
Источник: http://biodoma.ru/raznica/elektrika/v-chem-raznica-mezhdu-fazami-elektricheskogo-toka-fazy-1-2-3/
Трехфазные и однофазные сети. Отличия и преимущества. Недостатки
В электрооборудовании жилых многоквартирных домов, а также в частном секторе применяются трехфазные и однофазные сети. Изначально электрическая сеть выходит от электростанции с тремя фазами, и чаще всего к жилым домам подключена сеть питания именно трехфазная. Далее она имеет разветвления на отдельные фазы. Такой метод применяется для создания наиболее эффективной передачи электрического тока от электростанции к месту назначения, а также для уменьшения потерь при транспортировке.
Чтобы определить количество фаз у себя в квартире, достаточно открыть распределительный щит, расположенный на лестничной площадке, либо прямо в квартире, и посмотреть, какое количество проводов поступает в квартиру. Если сеть однофазная, то проводов будет 2 – фаза и ноль. Возможен еще третий провод – заземление.
Если электрическая сеть трехфазная, то проводов будет 4 или 5. Три из них – это фазы, четвертый – ноль, и пятый – заземление. Также число фаз определяется и по количеству автоматических выключателей.
Трехфазные сети в квартирах применяются редко, в случаях подключения старых электроплит с тремя фазами, либо мощных нагрузок в виде циркулярной пилы или отопительных устройств. Число фаз также можно определить по величине входного напряжения. В 1-фазной сети напряжение 220 вольт, в 3-фазной сети между фазой и нолем тоже 220 вольт, между 2-мя фазами – 380 вольт.
Если не брать во внимание отличие в числе проводов сетей и схему подключения, то можно определить некоторые другие особенности, которые имеют трехфазные и однофазные сети
- В случае трехфазной сети питания возможен перекос фаз из-за неравномерного разделения по фазам нагрузки. На одной фазе может быть подключен мощный обогреватель или печь, а на другой телевизор и стиральная машина. Тогда и возникает этот отрицательный эффект, сопровождающийся несимметрией напряжений и токов по фазам, что влечет неисправности бытовых устройств. Для предотвращения таких факторов необходимо заранее распределять нагрузку по фазам перед прокладкой проводов электрической сети.
- Для 3-фазной сети требуется больше кабелей, проводников и выключателей, а значит, денежные средства слишком не сэкономить.
- Возможности однофазной бытовой сети по мощности значительно меньше трехфазной. Если планируется применение нескольких мощных потребителей и бытовых устройств, электроинструмента, то предпочтительно подводить к дому или квартире трехфазную сеть питания.
- Основным достоинством 3-фазной сети является малое падение напряжения по сравнению с 1-фазной сетью, при условии одинаковой мощности. Это можно объяснить тем, что в 3-фазной сети ток в проводнике фазы меньше в три раза, чем в 1-фазной сети, а на проводе ноля тока вообще нет.
Преимущества 1-фазной сети
Основным достоинством является экономичность ее использования. В таких сетях используются трехпроводные кабели, по сравнению с тем, что в 3-фазных сетях – пятипроводные. Чтобы осуществить защиту оборудования в 1-фазных сетях, нужно иметь однополюсные защитные автоматы, в то время как в 3-фазных сетях без трехполюсных автоматов не обойтись.
В связи с этим габариты приборов защиты также будут значительно отличаться. Даже на одном электрическом автомате уже есть экономия в два модуля. А по габаритам это составляет около 36 мм, что значительно повлияет при размещении автоматов в щите на DIN рейке. А при установке дифференциального автомата экономия места составит более 100 мм.
Трехфазные и однофазные сети для частного дома
Расход электроэнергии населением постоянно повышается. В середине прошлого столетия в частных домах было сравнительно немного бытовых устройств. Сегодня в этом плане совсем другая картина. Бытовые потребители энергии в частных домах плодятся не по дням, а по часам. Поэтому в собственных частных владениях уже не стоит вопрос, какие сети питания выбрать для подключения. Чаще всего в частных постройках выполняют сети питания с тремя фазами, а от однофазной сети отказываются.
Но стоит ли трехфазная сеть такого превосходства в установке? Многие считают, что, подключив три фазы, будет возможность пользоваться большим количеством устройств. Но не всегда это получается. Наибольшая допустимая мощность определена в техусловиях на подключение. Обычно, этот параметр составляет 15 кВт на все частное домовладение. В случае однофазной сети этот параметр примерно такой же. Поэтому видно, что по мощности особой выгоды нет.
Но, необходимо помнить, что если трехфазные и однофазные сети имеют равную мощность, то для 3-фазной сети можно применить кабель меньшего сечения, так как мощность и ток распределяется по всем фазам, следовательно, меньше нагружает отдельные проводники фаз. Номинальное значение тока автомата защиты для 3-фазное сети также будет ниже.
Большое значение имеет размер распределительного щита, который для 3-фазной сети будет иметь размеры заметно больше. Это зависит от размера трехфазного счетчика, который имеет габариты больше однофазного, а также автомат ввода будет занимать больше места. Поэтому распределительный щит для трехфазной сети будет состоять из нескольких ярусов, что является недостатком этой сети.
Но у трехфазного питания есть и свои преимущества, выражающиеся в том, что можно подключать трехфазные приемники тока. Ими могут быть электродвигатели, электрические котлы и другие мощные устройства, что является достоинством трехфазной сети. Рабочее напряжение 3-фазной сети равно 380 В, что выше, чем в однофазном типе, а значит, вопросам электробезопасности придется уделить больше внимания. Также дело обстоит и с пожарной безопасностью.
В результате можно выделить несколько недостатков применения трехфазной сети для частного дома:
- Нужно получать техусловия и разрешение на подключение сети от энергосбыта.
- Повышается опасность поражения током, а также опасность возгорания по причине повышенного напряжения.
- Значительные габаритные размеры распредщита ввода питания. Для хозяев загородных домов такой недостаток не имеет большого значения, так как места у них хватает.
- Необходим монтаж ограничителей напряжения в виде модулей на вводном щитке. В трехфазной сети это особенно актуально.
Преимущества трехфазного питания для частных домов:
- Есть возможность распределить нагрузку равномерно по фазам, во избежание возникновения перекоса фаз.
- Можно подключать в сеть мощные трехфазные потребители энергии. Это является наиболее ощутимым достоинством.
- Уменьшение номинальных значений аппаратов защиты на вводе, а также снижение сечения кабеля ввода.
- Во многих случаях можно добиться разрешения у компании по энергосбыту на повышение допустимого наибольшего уровня мощности потребления электроэнергии.
В итоге, можно сделать вывод, что практически осуществлять ввод трехфазной сети питания рекомендуется для частных строений и домов с жилой площадью более 100 м2.
Трехфазное питание особенно подходит тем хозяевам, которые собираются установить у себя циркулярную пилу, котел отопления, различные приводы механизмов с трехфазными электродвигателями.
Остальным владельцам частных домов переходить на трехфазное питание не обязательно, так как это может создать только дополнительные проблемы.
Похожие темы:
Источник: https://electrosam.ru/glavnaja/jelektroobustrojstvo/jelektroprovodka/trekhfaznye-i-odnofaznye-seti/
Как проверить фазы 380в
Для отыскания фазного провода или клеммы в розетке, вам понадобится один из приборов — индикаторная отвертка или мультиметр.
Определение фазы индикаторной отверткой
Наиболее простой метод определения фазы, который подойдет для любого обывателя — это использование индикаторной отвертки, или как ее еще называют «контрольки».
Контрольная отвертка по внешнему виду очень похожа на обычную, за исключением своей внутренней начинки. Не советую использовать жало отвертки для откручивания или завинчивания винтов. Именно это чаще всего и приводит ее к выходу из строя.
Как определить фазу и ноль этой отверткой? Все очень просто:
- ⚡жалом отвертки прикасаетесь к контакту
- ⚡нажимаете или дотрагиваетесь пальцем до металлической кнопки в верхней части отвертки
- ⚡если светодиод внутри отвертки загорелся — это фазный проводник, если нет — нулевой
Не перепутайте индикаторную отвертку с отверткой для прозвонки. Последняя в своей конструкции имеет батарейки. Здесь для того, чтобы определить фазу и ноль, при касании жалом контактов, не нужно дотрагиваться пальцем до металлической площадки на конце. Иначе отвертка будет светиться в любом случае.
По правилам, лампочка индикатора рассчитанного на 220-380В, должна светиться при напряжении от 50В и более.
Аналогичным образом определяется фаза в розетке, выключателе и любом другом оборудовании.
Меры безопасности при работе с «пробником»
- ⚡никогда не дотрагивайтесь до нижней части отвертки при замерах
- ⚡отвертка перед измерением должна быть чистой, иначе может произойти пробой изоляции
- ⚡если индикаторной отверткой необходимо определить отсутствие напряжения, а не его наличие, для того чтобы безопасно можно было работать с проводкой, сначала проверьте работоспособность прибора на оборудовании заведомо находящегося под напряжением.
Как определить фазу и ноль мультиметром или тестером
Здесь в первую очередь переключите тестер в режим измерения переменного напряжения. Далее замер можно сделать несколькими способами:
- ⚡зажимаете один из щупов двумя пальцами. Второй щуп подводите к контакту в розетке или выключателе. Если показания на табло мультиметра будут незначительными (до 10 Вольт) — это говорит о том, что вы коснулись нулевого проводника. Если коснуться другого контакта — показания изменятся. В зависимости от качества вашего прибора, это может быть несколько десятков вольт, а также от 100В и выше. Делаем вывод, что в данном контакте фаза.
- ⚡если вы боитесь в любом случае прикасаться руками к щупу, можно попробовать по другому. Один стержень вставляете в розетку, а другим просто дотрагиваетесь до стенки рядом с розеткой. Если у вас штукатурка, результат будет похожим с первым измерением.
- ⚡еще один способ — одним из щупов прикасаетесь к заведомо заземленной поверхности (корпус щита или оборудования), а вторым прикасаетесь к измеряемому проводу. Если он будет фазным, тестер покажет наличие напряжения 220В.
Меры безопасности при работе с мультиметром:
- ⚡обязательно перед определением фазы по первому способу (когда зажимаете пальцами щуп) убедитесь, что мультиметр включен в положение «замер напряжения» — значок
V или ACV. Иначе может ударить током.
В современных квартирах в розетки и распредкоробки заходят трехжильные провода. Фазный, рабочий нулевой и защитный. Как отличить их между собой можно узнать из статьи 4 способа отличить заземляющий проводник от нулевого.
Добрый день.Уважаемые господа электрики все чаще встает проблема определить где у меня фаза А а где В и С.Приборы конечно в продаже видел только все не купишь. Может кто в теме как это сделать народными средствами,может что самодельное не сильно сложное изготовить можно для такого определения. Спасибо.
электрикваня написал :
Уважаемые господа электрики все чаще встает проблема определить где у меня фаза А а где В и С.
Определить одноименность фаз можно только прозвонкой жил от источника питания или поочередной подачей напряжения на одну фазу.
Но,- подобное мероприятие требуется лишь для сетей 35 кВ и выше. В остальных случаях речь идет лишь о порядке чередования фаз.
электрикваня написал :
Приборы конечно в продаже видел только все не купишь.
Наиболее простое решение приборы подобные этому » > Вот выбор » >
Вот наиболее дешевое решение вопроса » > 800 рублей.
электрикваня написал :
Может кто в теме как это сделать народными средствами,может что самодельное не сильно сложное изготовить можно для такого определения.
Народ определяет правильность чередования фаз направлением вращения трехфазного асинхронного электродвигателя.
А для чего вам это требуется, если не секрет?
Источник: https://crast.ru/instrumenty/kak-proverit-fazy-380v
Какой стабилизатор напряжения выбрать для установки на весь дом?
03.06.2019
Важнейшей технической характеристикой при выборе стабилизатора напряжения для загородного дома или коттеджа является его входное питающее напряжение, которое определяется используемой системой электроснабжения — однофазной или трехфазной.
Единственным вариантом стабилизации напряжения в однофазной сети является применение однофазных стабилизаторов с номинальным напряжением выхода 220 (230) В.
В трехфазных сетях для коррекции напряжения может быть выбран один из трёх способов:
- использование трехфазного стабилизатора с номиналом входа и выхода 380 (400) В;
- установка трех однофазных стабилизаторов напряжения как магистральных по отдельному прибору на каждую питающую фазу или одного однофазного стабилизатора — для стабилизации питающего напряжения части однофазных электроприборов, подключенных на одну фазу;
- применение стабилизатора с конфигурацией 3:1 («три в один»), рассчитанного на трехфазное входное напряжение и обеспечивающего однофазное выходное (3:1 – соотношение числа фаз между входом и выходом).
Рассмотрим преимущества и недостатки вышеприведённых вариантов, а также целесообразность применения каждого из них.
Три однофазных стабилизатора напряжения 220В для дома
Этот способ предполагает подключение отдельного однофазного стабилизатора для стабилизации напряжения по каждой сетевой фазе.
К преимуществам данного варианта можно отнести:
- меньшую стоимость трех однофазных устройств по сравнению с одним трехфазным стабилизатором (не у всех производителей);
- повышенную устойчивость к неполадкам в электроснабжении (обусловлено независимостью работы стабилизаторов друг от друга: сбой на отдельной фазе или неисправность одного из устройств не отразится на функционировании двух других фаз и состоянии установленных на них стабилизаторов);
- возможность индивидуального подбора мощности, типа и настроек стабилизатора для каждой фазы с учетом характера и мощности питаемой от неё нагрузки;
- экономию пространства в связи с меньшими, чем у трехфазных аналогов, габаритами однофазных стабилизаторов.
Недостатки применения трех однофазных стабилизаторов:
- невозможность подключения трехфазных потребителей;
- отсутствие мониторинга и индикации, способных отобразить параметры трехфазной системы электроснабжения в целом;
- отсутствие контроля за равномерностью нагрузки на каждую фазу (велика вероятность перекоса фаз).
Перекос фаз – режим работы трехфазной сети в котором на одну из питающих фаз ложится нагрузка, большая её номинала, что может привести к перегреву её обмотки, срабатыванию защитной автоматики, а также к экстремальному росту напряжения на остальных, недозагруженных фазах.
Вариант с применением трех однофазных стабилизаторов в условиях трехфазной сети позволит существенно сократить финансовые затраты, однако он недопустим при наличии в доме хотя бы одного трехфазного электроприбора. Такое решение может использоваться только в случае однофазной нагрузки, равномерно распределённой между тремя приходящими фазами, и при условии отсутствия задач по мониторингу общего состояния питающей сети.
Один однофазный стабилизатор напряжения 220В для дома
Использовать в трехфазной сети один однофазный стабилизатор можно как для локального электропитания одного или нескольких объединенных в группу однофазных электроприборов (для этой цели подходят стабилизаторы малых мощностей), так и для централизованной стабилизации напряжения отдельной фазы (необходимо более мощное устройство).
В первом случае стабилизатор включается между обычной сетевой розеткой (220/230 В) и нуждающимися в защите потребителями. Во втором – стабилизатор следует подключать к фазе, питающей приоритетную однофазную нагрузку, то есть оборудование, работа которого напрямую зависит от качества электроэнергии, например: энергозависимые отопительные котлы, насосы, охранно-пожарные системы, компьютерная и телекоммуникационная техника, современная бытовая электроника и т.д.
Применение в трехфазной сети одного однофазного стабилизатора наиболее бюджетный вариант, но защита будет распространяться лишь на определенные электроприборы, что не позволит считать её полноценной. Кроме того, сгруппированная на одной фазе приоритетная нагрузка может привести к перекосу фаз в системе электроснабжения.
Трехфазный стабилизатор напряжения 380В для дома
Трехфазный стабилизатор часто используется для решения задачи по организации качественного электроснабжения различных нагрузок в сетях 380 (400) В.
Преимущества применения одного трехфазного стабилизатора:
- возможность питания и однофазных и трехфазных нагрузок;
- конструктивная целостность — моноблочное исполнение;
- контроль обрыва, перекоса и чередования фаз — параметр особенно важный при подключении симметричных нагрузок, например, электроприводов трехфазного тока;
- простота коммутации силовых цепей — подключение выполняется через одну клеммную колодку.
Недостатки применения трехфазных устройств:
- более высокая стоимость: в большинстве случаев покупка трех однофазных стабилизаторов обходится существенно дешевле;
- большие габаритные размеры и вес, ограничивающие выбор места расположения и монтажа стабилизаторов;
- неустойчивость работы трехфазного стабилизатора при перебоях в одной из фаз. В устройстве современных трехфазных стабилизаторов присутствует специальный блок, отвечающий за согласованность линейного и фазных напряжений сети. Поэтому при исчезновении напряжения на любой входной фазе произойдёт защитное отключение стабилизатора, которое обесточит весь дом.
Применение трехфазного стабилизатора неизбежно при наличии хотя бы одной трехфазной нагрузки. При отсутствии таковой можно обойтись и тремя однофазными стабилизаторами. Однако, выбирая этот вариант, следует понимать, что если в будущем всё-таки возникнет потребность в подключении трехфазного электроприбора, однофазные стабилизаторы окажутся бесполезны и придётся потратиться на трехфазную модель.
Один однофазный стабилизатор (конфигурация 3:1) для дома
Особенность устройств данного типа заключается в том, что они рассчитаны на питание от трехфазной сети, но при этом имеют однофазное выходное напряжение.
Основные преимущества стабилизаторов конфигурации «три в один»:
- симметричное распределение мощности однофазной нагрузки по всем питающим фазам, исключающее возможность перекоса сетевых фаз в номинальном режиме работы стабилизатора;
- единый корпус и полный контроль системы электроснабжения (аналогично трехфазному стабилизатору).
Стабилизатор «3:1» позволяет подключить к трехфазной сети однофазную нагрузку, мощность которой превышает мощность отдельной фазы этой сети – при варианте с тремя однофазными или одним трехфазным стабилизатором такой возможности нет!
Недостатками данных устройств является аналогичная трехфазному стабилизатору чувствительность к отключению одной из фаз приходящей сети, а также невозможность подключения трехфазных потребителей.
https://www.youtube.com/watch?v=spZpkiTXT_s
Примером моделей с трехфазным входом и однофазным выходом являются стабилизаторы «Штиль» серии «ИнСтаб» IS3110, IS3115 и IS3120 (мощность соответственно наименованию – 10, 15 и 20 кВА). Названные изделия имеют идеальные параметры выходного напряжения (чистая «синусоида», минимальное отклонение от номинала) и подходят для работы с любыми однофазными электроприборами бытового и промышленного назначения.
Обратите внимание! При переходе из номинального режима на байпас стабилизатор «Штиль» конфигурации 3:1 осуществляет электропитание только через фазу А, что может привести к перекосу сетевых фаз. Поэтому включение байпаса не рекомендовано в случае нагрузки, составляющей более 1/3 от номинала устройства.
Источник: https://www.shtyl.ru/support/articles/kakoj-stabilizator-napryazheniya-vybrat-dlya-ustanovki-na-ves-dom/
Измерение электрического тока напряжения
В процессе эксплуатации бытовых электроприборов возникают ситуации, когда требуется измерение напряжения. Для проверки работоспособности розеток не всегда достаточно однополюсного указателя: наличие фазы он проверит, а вот для диагностики обрыва нулевого провода этот метод не поможет. То же самое относится и к неисправностям осветительных приборов. Для определения целостности удлинителей и шнуров питания бытовых приборов метод измерения напряжения является более наглядным.
При помощи вольтметра выявляются такие неисправности, как некачественное контактное соединение, снижающее величину напряжения на нагрузке. Указатель покажет наличие на ней фазы, но из-за недостаточной величины напряжения электроприбор может работать с пониженной мощностью (обогреватель) или не работать совсем (телевизор, компьютер, стиральная машина).
Только измерением можно определить наличие повышенного или пониженного напряжения в электрической сети. Завышенное напряжение – частая причина поломок бытовой техники. Электроприборы начинают потреблять больший ток и работать в режиме, не предусмотренном производителем. Следствие этого – сокращение ресурса работы. Лампы накаливания при завышенном напряжении не только быстрее перегорают, но и взрываются при включении.
Заниженное значение напряжения в сети не менее опасно для бытовых электроприборов. Электроинструмент перегревается, а компрессор холодильника выходит из строя.
Причины и методы измерений колебаний напряжения
Согласно ГОСТ 13109 величина напряжения в сети не должны выходить из диапазона 198 – 242 В (220В ± 10%). Если у вас часто выходят из строя лампы, периодически изменяется их световой поток или при загадочных обстоятельствах выходит из строя бытовая техника, нужно проверить величину напряжения в электропроводке. Во избежание ненужных поломок электроприборов, до окончания проверки лучше отключить от сети все лишнее.
Измерения производятся либо постоянным наблюдением за подключенным к сети вольтметром или мультиметром, либо периодическим (раз в полчаса) измерением в фиксацией показаний. Величина напряжения в сети не постоянна и изменяется в зависимости от степени загруженности. Самое высокое значение будет ночью, когда все спят и не пользуются электроприборами.
При колебаниях и провалах напряжения, возникающих на короткое время, для контроля полезно использовать лампы накаливания. Если лампочка вдруг потускнеет или ярче загорится – в тот же момент производится измерение напряжения в сети. Причиной таких колебаний является подключение к сети мощных потребителей, снижающих напряжение в фазе, к которой они подключены. В оставшихся фазах напряжение может наоборот – вырасти.
Посадки напряжения, вызванные работой сварочного аппарата, легко выявляются при помощи лампы накаливания. Она будет снижать яркость свечения при сварке и гореть совсем тускло в моменты «залипания» электрода. Тот, кто хоть иногда пользовался сварочным аппаратом, по ритму изменений яркости лампы безошибочно определит, что провалы напряжения вызваны именно им.
Самая серьезная причина изменения величины напряжения – обрыв нуля в трехфазной питающей сети. Все потребители дома или поселка равномерно распределяются по трем фазам. При наличии нуля напряжение у всех примерно одинаковое и незначительно зависит от нагрузки по фазам. Но при его обрыве напряжение перераспределяется таким образом, что на фазе с минимальной нагрузкой напряжение становится наибольшим. При нагрузке, близкой к нулю, напряжение приближается к 380 В.
При подозрении на обрыв нуля (резкие изменения яркости свечения ламп, как в большую, так и в меньшую сторону, изменение тона работы компрессора холодильника, частоты вращения электроинструмента), немедленно обесточьте всю квартиру и измерьте напряжение на вводе.
Линейные и фазные напряжения
При выполнении измерений в электрощитах полезно знать, чем отличается линейное напряжение от фазного. На вход трехфазных щитков приходят кабели с четырьмя-пятью жилами. Три жилы – это «фазы», четвертая жила четырехжильного кабеля – совмещенный нулевой проводник. Назначение двух оставшихся жил пятижильного кабеля – рабочий ноль и защитный ноль.
Напряжение между любыми двумя фазами называется линейным и равно 380 В. Напряжение между фазой и нулевым рабочим (совмещенным) проводником называется фазным и равно 220 В. Напряжение между фазой и нулевым защитным проводником в нормальном режиме работы сети равно фазному, между защитным и рабочим проводниками – нулю.
Фазные и линейные напряжения и токи
Однофазные щитки получают питание от двух- или трехжильных кабелей, все автоматические выключатели них – однополюсные. Напряжение в них измеряется между фазой и нулем и оно – только фазное, равное 220 В.
Как измерить напряжение?
Для измерений используются приборы:
— вольтметр – специализированный прибор, предназначенный только для измерения напряжения;
Измерение напряжения: вольтметр
— мультиметр – комбинированный цифровой прибор, предназначенный для измерения ряда электрических величин (как пользоваться мультиметром?);
Мультиметр для измерения напряжения в сети
— тестер – комбинированный аналоговый прибор, выполняющий функции мультиметра., но в отличие от него имеющий шкалу со стрелкой.
Тестер для измерения напряжения тока
Перед использованием нужно обратить внимание на состояние изоляции соединительных проводов прибора и изучить инструкцию по его эксплуатации. При использовании мультиметров и тестеров – правильно выбрать род тока и предел измерения.
Род тока | Обозначение на мультиметре | Обозначение на тестере |
Переменный | АС | ~ |
постоянный | DC | = |
Предел измерения всегда первоначально выставляется больше ожидаемого. При измерении напряжений в трехфазном щитке он не должен быть ниже 500 В.
При измерениях напряжений источников постоянного тока нужно соблюдать полярность подключения прибора. Для тестера это очень важно, так как при ошибке в подключении его стрелка отклонится в обратную сторону. Мультиметр при обратной полярности покажет на индикаторе перед измеренным значением знак «–». И не забудьте переключить прибор в режим измерения постоянного напряжения.
Источник: http://electric-tolk.ru/izmerenie-napryazheniya-v-elektricheskix-setyax/
Фаза тока
У новичков в мире электрики и домовладельцев иногда возникает вопрос: что такое фаза тока в бытовой электропроводке. Связано это с необходимостью починить какой-либо электроприбор.
В возникшей ситуации наиболее приоритетной задачей мастера должно стать соблюдение правил техники безопасности, а не проявление прикладных навыков и умений. Знание элементарных законов функционирования тока и процессов, проходящих внутри бытовых электроприборов не только поможет справиться с большинством неисправностей, возникающих в них, но и сделает этот процесс наиболее безопасным.
Конструкторы и инженеры делают все возможное, чтобы предотвратить несчастный случай при работе с электричеством в быту. Задача потребителя сводится к соблюдению предписанных норм.
Далее мы рассмотрим:
- однофазный ток;
- двухфазный ток;
- трехфазный ток.
Однофазный ток
Переменный ток, который получают при помощи вращения в магнитном потоке проводника или системы проводников, соединенных в одну катушку, называется однофазным переменным током.
Как правило, для передачи однофазного тока используют 2 провода. Называются они фазным и нулевым соответственно. Напряжение между этими проводами составляет 220 В.
Однофазное электропитание. Однофазный ток можно подвести к потребителю двумя различными способами: 2-проводным и 3-проводным. При первом (двухпроводном), для подведения однофазного тока используют два провода. По одному протекает фазный ток, другой предназначен для нулевого провода.
Таким образом электропитание подведено почти во все, построенные в бывшем СССР, дома. При втором способе для подведения однофазного тока — добавляют ещё один провод. Называется такой провод заземлением (РЕ).
Он предназначен для предотвращения поражения человека электрическим током, а так же для отвода токов утечки и предотвращения приборов от поломки.
Двухфазный ток
Двухфазным электрическим током называется совокупность двух однофазных токов, сдвинутых по фазе относительно друг друга на угол Pi2 или на 90 °.
Наглядный пример образования двухфазного тока. Возьмем две катушки индуктивности и расположим их в пространстве таким образом, чтобы их оси были взаимно перпендикулярны, после чего запитаем систему катушек двухфазным током, как результат получим в системе два магнитных потока.
Вектор результирующего магнитного поля будет вращаться с постоянной угловой скоростью, как следствие, возникает вращающееся магнитное поле.
Ротор с обмотками, изготовленными в виде короткозамкнутого «беличьего колеса» или представляющий собой металлический цилиндр на валу, будет вращаться, приводя в движение механизмы.
Передают двухфазные токи при помощи двух проводов: двумя фазными и двумя нулевыми.
Трехфазный ток
Трехфазной системой электрических цепей называется система, которая состоит из трех цепей, в которых действуют переменные, ЭДС одной и той же частоты, сдвинутые по фазе друг относительно друга на 1/3 периода(φ=2π/3).
Каждую отдельную цепь такой системы коротко называют ее фазой, а систему трех сдвинутых по фазе переменных токов в таких цепях называют просто трехфазным током. Трехфазный ток легко передаётся на дальние расстояния. Любая пара фазных проводов имеет напряжение 380 В.
Пара — фазный провод и нуль — имеет напряжение 220 В.
Распределение трёхфазного тока по жилым домам выполняется двумя способами: 4-проводным и 5-проводным. Четырёхпроводное подключение выполняется тремя фазными и одним нулевым проводом. После распределительного щита для питания розеток и выключателей используют два провода — одну из фаз и нуль. Напряжение между этими проводами будет составлять 220В.
Пятипроводное подключение трехфазного тока — в схему добавляется защитный, заземляющий провод (РЕ). В трёхфазной сети фазы должны нагружаться максимально равномерно, в противном случае может произойти перекос фаз. От того, какая электропроводка используется в доме, зависит какое электрооборудование можно в неё включать.
К примеру, заземление обязательно, если в сеть включаются приборы с большой мощностью — холодильники, печи, обогреватели, электронные бытовые приборы — компьютеры, телевизоры, устройства, связанные с водой — джакузи, душевые кабины (вода проводник тока).
Трехфазный ток необходим для электропитания двигателей (актуальных для частного дома).
Устройство бытовой электропроводки
Вначале электроэнергия вырабатывается на электростанции. Затем через промышленную электросеть она попадает на трансформаторную подстанцию, где напряжение преобразуется в 380 вольт. Соединение вторичных обмоток понижающего трансформатора выполнено по схеме «звезда»: три контакта подключены к общей точке «0», а три оставшихся присоединены к клеммам «A», «B» и «C» соответственно. Для наглядности приводится картинка.
Объединенные контакты «0» подсоединяются к заземлительному контуру подстанции. Также здесь ноль расщепляется на:
- Рабочий ноль (на картинке изображен синим)
- PE-проводник, выполняющий защитную функцию (линия желто-зеленого цвета)
Нули и фазы тока с выхода понижающего трансформатора подводятся к распределительному щитку жилого дома. Полученная трехфазная система разводится по щиткам в подъездах. В конечном итоге, в квартиру попадает фазовое напряжение 220 В и проводник PE, выполняющий защитную функцию.
Итак, что же такое фаза тока и ноль? Нулем называют проводник тока, присоединенный к заземлительному контуру понижающего трансформатора и служащий для создания нагрузки от фазы тока, подсоединенной к противоположному концу обмотки трансформатора. Кроме того, существует так называемый «защитный ноль» — это PE-контакт, описанный ранее. Он служит для отвода токов при возникновении технической неисправности в цепи.
Этот метод подключения жилых домов к городской электросети отработан десятилетиями, но все же он не идеален. Иногда в вышеописанной системе появляются неисправности. Чаще всего, они связаны с низким качеством соединения на определенном участке цепи или полным обрывом электрического провода.
Что происходит в нуле и фазе при обрыве провода
Обрыв электрического провода часто обусловлен элементарной рассеянностью мастера – забыть присоединить к определенному прибору в доме фазу тока или ноль – проще простого. Кроме того, нередки случаи отгорания нуля на подъездном щитке в связи с высокой нагрузкой на систему.
В случае обрыва соединения любого электроприбора в доме со щитком, этот прибор перестает работать – ведь цепь не замкнута. При этом не имеет значения, какой именно провод разорван – ноль или фаза тока.
Аналогичная ситуация происходит, когда разрыв наблюдается между распределительным щитком многоквартирного дома и щитом конкретного подъезда – все квартиры, подключенные к щиту подъезда, окажутся обесточены.
Вышеописанные ситуации не вызывают серьезных сложностей и не представляют опасности. Они связаны с обрывом лишь одного проводника и не несут в себе угрозы безопасности электроприборов или людей, находящихся в квартире.
Самая опасная ситуация – исчезновение соединения между заземлительным контуром подстанции и средней точкой, к которой подключена нагрузка внутридомового электрощита.
В этом случае электрический ток пойдет по контурам AB, BC, CA, а общее напряжение на этих контурах – 380 В. В связи с этим возникнет очень неприятная и опасная ситуация – на одном электрощитке может вовсе не быть напряжения, так как хозяин квартиры посчитал нужным отключить электроприборы, а на другом возникнет высокое напряжение близкое к 380 вольтам. Это вызовет выход из строя большинства электроприборов, ведь номинальное напряжение работы для них – 240 вольт.
Конечно, такие ситуации можно предотвратить – существуют достаточно дорогостоящие решения для защиты от скачков напряжения. Некоторые производитель встраивают их в свои приборы.
Как определить ноль и фазу собственными силами
Для определения нуля и фазы тока существуют специальные отвертки-тестеры.
Она работает по принципу прохождения тока низкого напряжения через тело человека, использующего ее. Отвертка состоит из следующих частей:
- Наконечник для подключения к фазовому потенциалу розетки;
- Резистор, снижающий амплитуду электротока до безопасных пределов;
- Светодиод, загорающийся при наличии потенциала фазы тока в цепи;
- Плоский контакт для создания цепи сквозь тело оператора.
Принцип работы с отверткой-тестером показан на картинке ниже.
Кроме тестовых отверток, существуют и другие способы определить, к какому контакту розетки подключена фаза тока, а к какому – ноль. Некоторые электрики предпочитают пользоваться более точным тестером, используя его в режиме вольтметра.
Показания стрелки вольтметра означают:
1. Наличие напряжения 220 В между фазой и нулем
2. Отсутствие напряжения между землей и нулем
3. Отсутствие напряжения между фазой и нулем
Вообще-то, в последнем случае стрелка должна показывать 220 В, но в данном конкретном случае центральный контакт розетки не подключен к потенциалу земли.
Источник: https://www.calc.ru/Faza-Toka.html
Как из 220 Вольт сделать 380 В: обзор методик и способов
Почти все бытовые электроприборы рассчитаны на напряжение 220 В. Мы, не задумываясь, включаем их в розетку и наслаждаемся работой устройств. Но иногда требуется подключить асинхронный двигатель, рассчитанный на 380 В. Для его запуска можно использовать специальную схему, которая позволяет подключать электромотор к однофазной сети, но при этом придётся смириться с потерей мощности. Можно ли однофазную сеть превратить в трехфазную и как из 220 Вольт сделать 380?
Оказывается, такая возможность есть. Существует несколько способов получить 380 В из однофазной сети. Ниже мы покажем, как это сделать, но для начала разберёмся в том, чем отличается однофазная сеть от трёхфазной.
Теория
На промышленных электростанциях генераторы вырабатывают трёхфазный ток, и повышают его напряжение до десятков и даже сотен киловольт. По линиям электропередач электричество поставляется потребителям. Но перед этим ток поступает на силовой трансформатор, который понижает напряжение до 380 В. Из распределительной подстанции электроэнергия поступает в потребительскую сеть.
В трёхфазной сети ток подаётся таким образом, что все три сдвинуты относительно друг друга на 120 градусов. Напряжение между фазами составляет 380 В, а между фазой и нейтралью 220 В (см.рис. 1). Именно это напряжение подаётся в каждую квартиру.
Рис. 1. Структура трёхфазного тока
Так как нашей целью является получение 380 В именно из однофазной сети, то перейдём к способам преобразования 220 В на 380.
Способы получения 380 Вольт из 220
Рассмотрим основные способы преобразования 220 вольт в полноценный трёхфазный ток, напряжением 380 В:
- с помощью электронного преобразователя напряжения;
- путём применения трансформатора;
- использованием трёх фаз;
- используя трёхфазный двигатель в качестве генератора;
- пользуясь конденсаторной схемой.
Преобразователь напряжения
Самый простой и надёжный способ преобразовать 220 В в 380 – купить электронный преобразователь напряжения. (см. рис. 2). Этот прибор часто называют инвертором. Гаджет прост в управлении и генерирует качественный трёхфазный ток. Правда, мощность инверторов не слишком большая, но её, как правило, хватает для большинства трёхфазных бытовых приборов.
Рис. 2. Преобразователь напряжения
Преобразователь хорош ещё и тем, что у него есть встроенная функция защиты от перегрузок и КЗ. А это значит, что электромотор не перегреется и не выйдет из строя в результате КЗ.
Высокое качество тока достигается благодаря принципу работы устройства. Инвертор сначала выпрямляет переменный однофазный ток, а затем генерирует трёхфазное напряжение с заданной частотой и со стандартным сдвигом фаз. При этом количество фаз может быть и больше чем 3 (с соответствующим углом сдвига).
Используя трансформатор
С помощью повышающего трансформатора можно получить какое угодно напряжение, в том числе и 380 В. Однако, если вас интересует трёхфазное напряжение, то необходим специальный трёхфазный трансформатор. преобразующий однофазный ток в трёхфазный. Такие трансформаторы есть в продаже.
Обмотки трансформатора соединены звездой или треугольником. Напряжение однофазной сети подаётся на две первичные обмотки напрямую, а на третью – через конденсатор. При этом ёмкость конденсатора подбирается из расчёта 7 мкФ на каждые 100 Вт мощности.
Обратите внимание на то, что номинальное напряжение конденсатора не должно быть ниже 400 В. Такое устройство нельзя включать без нагрузки.
Хоть мы и получим таким способом необходимые 380 В, всё равно будет наблюдаться снижение мощности электромотора (если вы планируете подключать его к трансформатору). Соответственно КПД двигателя тоже упадёт.
Использование 3-х фаз
Если вы проживаете в многоквартирном доме, то к нему уже подведено 3 фазы, которые с целью оптимального распределения нагрузок разведены по отдельным квартирам. На каждом этаже стоят распределительные щиты, откуда можно завести в квартиру недостающие две фазы. Но для этого потребуется разрешение.
При желании вы можете получить разрешение у энергоснабжающей компании или согласовать с Энергонадзором обустройство трёхфазного питания в вашей квартире. При этом потребуется установить трёхфазный счётчик электроэнергии.
Использование электродвигателя
Вы наверно знаете, что ротор обычного трёхфазного двигателя после запуска продолжает вращаться после отключения одной фазы. Оказывается, что между выводом отключенной обмотки и задействованными выводами имеется ЭДС.
Сдвиг фаз между обмотками статора зависит только от их расположения. В трёхфазном двигателе эти катушки расположены под углом 120º, а значит они обеспечивают такой же угол сдвига фаз. Это обстоятельство наталкивает на мысль, что асинхронный трёхфазный двигатель можно использовать для получения 380 вольт от обычной однофазной сети.
Простая схема подключения электромотора изображена на рисунке 3. Конденсатор на схеме нужен только для запуска двигателя. После запуска его можно отключить. Конденсатор берём типа МБГО, МБГП, МБГТ или К42-4, рабочее напряжение которого должно быть не менее 600 В. Можно применить конденсатор К42-19, с рабочим напряжением минимум 250 В.
Пример подключения фазосдвигающего конденсатора см. на рис. 3.
Рис. 3. Подключение пускового конденсатора
Параметры конденсатора подбираем в зависимости от мощности мотора. Заметим, что параметры фазосдвигающего конденсатора на качество генерируемого тока не влияют. Нагрузку подключаем к обмоткам статора, согласно схеме, показанной на рис. 4.
Рис. 4. Трёхфазный ток от электромотора
Скорость вращения ротора почти не зависит от напряжения однофазной сети, так что её можно считать постоянной. Это значит, что частота трёхфазного тока при номинальных нагрузках изменяться не будет.
Следует иметь в виду то, что мощность трёхфазного двигателя, работающего от однофазной сети, падает. Соответственно, номинальная мощность трёхфазной нагрузки будет, примерно, на треть ниже, от той, которая заявлена в паспорте электромотора.
Электродвигатель в качестве генератора
Ещё один способ, позволяющий из 220 В получить 380, это создание системы двигатель-генератор. В качестве двигателя можно взять любой электромотор, работающий от сети 220 В, а в качестве генератора – доработанный трёхфазный асинхронный двигатель (схему установки смотрите на рис. 5).
Сразу заметим, что эффективность такой установки под вопросом, но получить таким способом требуемое напряжение 380 В можно. В данной схеме требуется обеспечить такую частоту вращения ротора, чтобы генератор выдавал ток с частотой, равной 50 Гц. Для этого необходимо вращать вал с угловой скоростью 1500 об/мин.
Рис. 5. Трёхфазный двигатель в качестве генератора
В домашних условиях в качестве привода можно использовать однофазный мотор от стиральной машины или другой бытовой техники. Важно только обеспечить требуемую угловую скорость вращения ротора.
Поскольку вращение вала электродвигателей работающих, например, в стиральной машине составляет около 12 – 20 тыс. об./мин., то необходимо использовать шкивы, диаметры которых соотносятся как 1 к 10. То есть, чтобы обеспечить вращение ротора генератора со скоростью 1500 об/мин. можно взять шкив, который уже смонтирован на электромоторе от пралки, а на вал трёхфазного двигателя надеть шкив, диаметром в 10 раз больше.
Выводы
Получить 380 вольт от сети 220 В возможно несколькими способами. Самым эффективным является способ применения электронного инвертора:
- стабильные параметры тока;
- безопасная эксплуатация;
- обеспечение заявленной выходной мощности;
- компактность установки.
Все выше перечисленные способы преобразования 220 Вольт в 380 работают, поэтому имеют право на существование. Но надо быть готовым к потере мощности и к трудностям по достижению других параметров тока, включая его частотные характеристики.
Источник: https://www.asutpp.ru/kak-iz-220-volt-sdelat-380-v.html